|
|
import gradio as gr
|
|
|
import pandas as pd
|
|
|
from transformers import pipeline
|
|
|
import warnings
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
print("Loading models...")
|
|
|
token_classifier = pipeline(
|
|
|
model="sdf299/abte-restaurants-distilbert-base-uncased",
|
|
|
aggregation_strategy="simple"
|
|
|
)
|
|
|
|
|
|
classifier = pipeline(
|
|
|
model="sdf299/absa-restaurants-distilbert-base-uncased"
|
|
|
)
|
|
|
print("Models loaded successfully!")
|
|
|
|
|
|
def analyze_sentiment(sentence):
|
|
|
"""
|
|
|
Perform aspect-based sentiment analysis on the input sentence.
|
|
|
|
|
|
Args:
|
|
|
sentence (str): Input sentence to analyze
|
|
|
|
|
|
Returns:
|
|
|
tuple: (formatted_results, aspects_summary, detailed_dataframe)
|
|
|
"""
|
|
|
if not sentence.strip():
|
|
|
return "Please enter a sentence to analyze.", "", pd.DataFrame()
|
|
|
|
|
|
try:
|
|
|
|
|
|
results = token_classifier(sentence)
|
|
|
|
|
|
if not results:
|
|
|
return "No aspects found in the sentence.", "", pd.DataFrame()
|
|
|
|
|
|
|
|
|
aspects = list(set([result['word'] for result in results]))
|
|
|
|
|
|
|
|
|
detailed_results = []
|
|
|
formatted_output = f"**Input Sentence:** {sentence}\n\n**Analysis Results:**\n\n"
|
|
|
|
|
|
for aspect in aspects:
|
|
|
|
|
|
sentiment_result = classifier(f'{sentence} [SEP] {aspect}')
|
|
|
|
|
|
|
|
|
sentiment_label = sentiment_result[0]['label']
|
|
|
confidence = sentiment_result[0]['score']
|
|
|
|
|
|
|
|
|
formatted_output += f"π― **Aspect:** {aspect}\n"
|
|
|
formatted_output += f" **Sentiment:** {sentiment_label} (Confidence: {confidence:.3f})\n\n"
|
|
|
|
|
|
|
|
|
detailed_results.append({
|
|
|
'Aspect': aspect,
|
|
|
'Sentiment': sentiment_label,
|
|
|
'Confidence': f"{confidence:.3f}"
|
|
|
})
|
|
|
|
|
|
|
|
|
aspects_summary = f"**Identified Aspects:** {', '.join(aspects)}"
|
|
|
|
|
|
|
|
|
df = pd.DataFrame(detailed_results)
|
|
|
|
|
|
return formatted_output, aspects_summary, df
|
|
|
|
|
|
except Exception as e:
|
|
|
error_msg = f"Error during analysis: {str(e)}"
|
|
|
return error_msg, "", pd.DataFrame()
|
|
|
|
|
|
def create_interface():
|
|
|
"""Create and configure the Gradio interface."""
|
|
|
|
|
|
with gr.Blocks(
|
|
|
title="Aspect-Based Sentiment Analysis",
|
|
|
theme=gr.themes.Soft(),
|
|
|
css="""
|
|
|
.gradio-container {
|
|
|
font-family: 'Arial', sans-serif;
|
|
|
}
|
|
|
.main-header {
|
|
|
text-align: center;
|
|
|
margin-bottom: 30px;
|
|
|
}
|
|
|
"""
|
|
|
) as demo:
|
|
|
|
|
|
gr.HTML("""
|
|
|
<div class="main-header">
|
|
|
<h1>π½οΈ Restaurant Review Analyzer</h1>
|
|
|
<h3>Aspect-Based Sentiment Analysis</h3>
|
|
|
<p>Analyze restaurant reviews to identify specific aspects (food, service, atmosphere, etc.) and their associated sentiments.</p>
|
|
|
</div>
|
|
|
""")
|
|
|
|
|
|
with gr.Row():
|
|
|
with gr.Column(scale=2):
|
|
|
|
|
|
sentence_input = gr.Textbox(
|
|
|
label="Enter Restaurant Review",
|
|
|
placeholder="e.g., The services here is wonderful, but I hate the food. However, I still love the atmosphere here.",
|
|
|
lines=3,
|
|
|
max_lines=5
|
|
|
)
|
|
|
|
|
|
analyze_btn = gr.Button("π Analyze Sentiment", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
gr.Examples(
|
|
|
examples=[
|
|
|
["The services here is wonderful, but I hate the food. However, I still love the atmosphere here."],
|
|
|
["The food was amazing and the staff was very friendly, but the restaurant was too noisy."],
|
|
|
["Great location and delicious pizza, but the service was slow and the prices are too high."],
|
|
|
["The ambiance is perfect for a romantic dinner, excellent wine selection, but the dessert was disappointing."],
|
|
|
["Fast service and good value for money, but the food quality could be better."]
|
|
|
],
|
|
|
inputs=sentence_input
|
|
|
)
|
|
|
|
|
|
with gr.Column(scale=3):
|
|
|
|
|
|
with gr.Tab("π Detailed Results"):
|
|
|
results_output = gr.Markdown(label="Analysis Results")
|
|
|
|
|
|
with gr.Tab("π Quick Summary"):
|
|
|
aspects_output = gr.Markdown(label="Aspects Summary")
|
|
|
|
|
|
with gr.Tab("π Data Table"):
|
|
|
table_output = gr.Dataframe(
|
|
|
label="Results Table",
|
|
|
headers=["Aspect", "Sentiment", "Confidence"]
|
|
|
)
|
|
|
|
|
|
|
|
|
analyze_btn.click(
|
|
|
fn=analyze_sentiment,
|
|
|
inputs=[sentence_input],
|
|
|
outputs=[results_output, aspects_output, table_output]
|
|
|
)
|
|
|
|
|
|
sentence_input.submit(
|
|
|
fn=analyze_sentiment,
|
|
|
inputs=[sentence_input],
|
|
|
outputs=[results_output, aspects_output, table_output]
|
|
|
)
|
|
|
|
|
|
|
|
|
gr.HTML("""
|
|
|
<div style="text-align: center; margin-top: 30px; padding: 20px; border-top: 1px solid #eee;">
|
|
|
<p><strong>Models Used:</strong></p>
|
|
|
<p>π€ Aspect Extraction: <code>sdf299/abte-restaurants-distilbert-base-uncased</code></p>
|
|
|
<p>π Sentiment Classification: <code>sdf299/absa-restaurants-distilbert-base-uncased</code></p>
|
|
|
</div>
|
|
|
""")
|
|
|
|
|
|
return demo
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
demo = create_interface()
|
|
|
demo.launch(
|
|
|
share=True,
|
|
|
server_name="0.0.0.0",
|
|
|
server_port=7860,
|
|
|
show_error=True
|
|
|
) |