import json import os import random import re import shutil import string import time import zipfile from collections import defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed from pathlib import Path from typing import Any, Dict, List import numpy as np import pandas as pd import pymupdf from gradio import Progress from pdf2image import convert_from_path, pdfinfo_from_path from PIL import Image, ImageFile from pymupdf import Document, Page from scipy.spatial import cKDTree from tqdm import tqdm from tools.config import ( COMPRESS_REDACTED_PDF, IMAGES_DPI, INPUT_FOLDER, LOAD_REDACTION_ANNOTATIONS_FROM_PDF, LOAD_TRUNCATED_IMAGES, MAX_IMAGE_PIXELS, MAX_SIMULTANEOUS_FILES, OUTPUT_FOLDER, SELECTABLE_TEXT_EXTRACT_OPTION, TESSERACT_TEXT_EXTRACT_OPTION, TEXTRACT_TEXT_EXTRACT_OPTION, ) from tools.helper_functions import get_file_name_without_type, read_file from tools.secure_path_utils import secure_file_read, secure_join from tools.secure_regex_utils import safe_extract_page_number_from_path IMAGE_NUM_REGEX = re.compile(r"_(\d+)\.png$") pd.set_option("future.no_silent_downcasting", True) image_dpi = float(IMAGES_DPI) if not MAX_IMAGE_PIXELS: Image.MAX_IMAGE_PIXELS = None else: Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS ImageFile.LOAD_TRUNCATED_IMAGES = LOAD_TRUNCATED_IMAGES def is_pdf_or_image(filename): """ Check if a file name is a PDF or an image file. Args: filename (str): The name of the file. Returns: bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise. """ if ( filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png") ): output = True else: output = False return output def is_pdf(filename): """ Check if a file name is a PDF. Args: filename (str): The name of the file. Returns: bool: True if the file name ends with ".pdf", False otherwise. """ return filename.lower().endswith(".pdf") def check_image_size_and_reduce(out_path: str, image: Image): """ Check if a given image size is above around 4.5mb, and reduce size if necessary. 5mb is the maximum possible to submit to AWS Textract. Args: out_path (str): The file path where the image is currently saved and will be saved after resizing. image (Image): The PIL Image object to be checked and potentially resized. """ all_img_details = list() page_num = 0 # Check file size and resize if necessary max_size = 4.5 * 1024 * 1024 # 5 MB in bytes # 5 file_size = os.path.getsize(out_path) width = image.width height = image.height # Resize images if they are too big if file_size > max_size: # Start with the original image size print(f"Image size before {width}x{height}, original file_size: {file_size}") while file_size > max_size: # Reduce the size by a factor (e.g., 50% of the current size) new_width = int(width * 0.5) new_height = int(height * 0.5) image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) # Save the resized image image.save(out_path, format="PNG", optimize=True) # Update the file size file_size = os.path.getsize(out_path) print(f"Resized to {new_width}x{new_height}, new file_size: {file_size}") else: new_width = width new_height = height all_img_details.append((page_num, image, new_width, new_height)) return image, new_width, new_height, all_img_details, out_path def process_single_page_for_image_conversion( pdf_path: str, page_num: int, image_dpi: float = image_dpi, create_images: bool = True, input_folder: str = INPUT_FOLDER, ) -> tuple[int, str, float, float]: """ Processes a single page of a PDF or image file for image conversion, saving it as a PNG and optionally resizing it if too large. Args: pdf_path (str): The path to the input PDF or image file. page_num (int): The 0-indexed page number to process. image_dpi (float, optional): The DPI to use for PDF to image conversion. Defaults to image_dpi from config. create_images (bool, optional): Whether to create and save the image. Defaults to True. input_folder (str, optional): The folder where the converted images will be saved. Defaults to INPUT_FOLDER from config. Returns: tuple[int, str, float, float]: A tuple containing: - The processed page number. - The path to the saved output image. - The width of the processed image. - The height of the processed image. """ out_path_placeholder = "placeholder_image_" + str(page_num) + ".png" if create_images is True: try: # Construct the full output directory path image_output_dir = secure_join(os.getcwd(), input_folder) out_path = secure_join( image_output_dir, f"{os.path.basename(pdf_path)}_{page_num}.png" ) os.makedirs(os.path.dirname(out_path), exist_ok=True) if os.path.exists(out_path): # Load existing image image = Image.open(out_path) elif pdf_path.lower().endswith(".pdf"): # Convert PDF page to image image_l = convert_from_path( pdf_path, first_page=page_num + 1, last_page=page_num + 1, dpi=image_dpi, use_cropbox=False, use_pdftocairo=False, ) image = image_l[0] image = image.convert("L") image.save(out_path, format="PNG") elif ( pdf_path.lower().endswith(".jpg") or pdf_path.lower().endswith(".png") or pdf_path.lower().endswith(".jpeg") ): image = Image.open(pdf_path) image.save(out_path, format="PNG") else: raise Warning("Could not create image.") width, height = image.size # Check if image size too large and reduce if necessary # print("Checking size of image and reducing if necessary.") image, width, height, all_img_details, img_path = ( check_image_size_and_reduce(out_path, image) ) return page_num, out_path, width, height except Exception as e: print(f"Error processing page {page_num + 1}: {e}") return page_num, out_path_placeholder, pd.NA, pd.NA else: # print("Not creating image for page", page_num) return page_num, out_path_placeholder, pd.NA, pd.NA def convert_pdf_to_images( pdf_path: str, prepare_for_review: bool = False, page_min: int = 0, page_max: int = 0, create_images: bool = True, image_dpi: float = image_dpi, num_threads: int = 8, input_folder: str = INPUT_FOLDER, ): """ Converts a PDF document into a series of images, processing each page concurrently. Args: pdf_path (str): The path to the PDF file to convert. prepare_for_review (bool, optional): If True, only the first page is processed (feature not currently used). Defaults to False. page_min (int, optional): The starting page number (0-indexed) for conversion. If 0, uses the first page. Defaults to 0. page_max (int, optional): The ending page number (exclusive, 0-indexed) for conversion. If 0, uses the last page of the document. Defaults to 0. create_images (bool, optional): If True, images are created and saved to disk. Defaults to True. image_dpi (float, optional): The DPI (dots per inch) to use for converting PDF pages to images. Defaults to the global `image_dpi`. num_threads (int, optional): The number of threads to use for concurrent page processing. Defaults to 8. input_folder (str, optional): The base input folder, used for determining output paths. Defaults to `INPUT_FOLDER`. Returns: list: A list of tuples, where each tuple contains (page_num, image_path, width, height) for successfully processed pages. For failed pages, it returns (page_num, placeholder_path, pd.NA, pd.NA). """ # If preparing for review, just load the first page (not currently used) if prepare_for_review is True: page_count = pdfinfo_from_path(pdf_path)["Pages"] # 1 page_min = 0 page_max = page_count else: page_count = pdfinfo_from_path(pdf_path)["Pages"] print(f"Creating images. Number of pages in PDF: {page_count}") # Handle special cases for page range # If page_min is 0, use the first page (0-indexed) if page_min == 0: page_min = 0 # First page is 0-indexed else: page_min = page_min - 1 # If page_max is 0, use the last page of the document if page_max == 0: page_max = page_count results = list() with ThreadPoolExecutor(max_workers=num_threads) as executor: futures = list() for page_num in range(page_min, page_max): futures.append( executor.submit( process_single_page_for_image_conversion, pdf_path, page_num, image_dpi, create_images=create_images, input_folder=input_folder, ) ) for future in tqdm( as_completed(futures), total=len(futures), unit="pages", desc="Converting pages to image", ): page_num, img_path, width, height = future.result() if img_path: results.append((page_num, img_path, width, height)) else: print(f"Page {page_num + 1} failed to process.") results.append( ( page_num, "placeholder_image_" + str(page_num) + ".png", pd.NA, pd.NA, ) ) # Sort results by page number results.sort(key=lambda x: x[0]) images = [result[1] for result in results] widths = [result[2] for result in results] heights = [result[3] for result in results] # print("PDF has been converted to images.") return images, widths, heights, results # Function to take in a file path, decide if it is an image or pdf, then process appropriately. def process_file_for_image_creation( file_path: str, prepare_for_review: bool = False, input_folder: str = INPUT_FOLDER, create_images: bool = True, page_min: int = 0, page_max: int = 0, ): """ Processes a given file path, determining if it's an image or a PDF, and then converts it into a list of image paths, along with their dimensions. Args: file_path (str): The path to the file (image or PDF) to be processed. prepare_for_review (bool, optional): If True, prepares the PDF for review (e.g., by converting pages to images). Defaults to False. input_folder (str, optional): The folder where input files are located. Defaults to INPUT_FOLDER. create_images (bool, optional): If True, images will be created from PDF pages. If False, only metadata will be extracted. Defaults to True. page_min (int, optional): The minimum page number to process (0-indexed). If 0, uses the first page. Defaults to 0. page_max (int, optional): The maximum page number to process (0-indexed). If 0, uses the last page of the document. Defaults to 0. """ # Get the file extension file_extension = os.path.splitext(file_path)[1].lower() # Check if the file is an image type if file_extension in [".jpg", ".jpeg", ".png"]: print(f"{file_path} is an image file.") # Perform image processing here img_object = [file_path] # [Image.open(file_path)] # Load images from the file paths. Test to see if it is bigger than 4.5 mb and reduct if needed (Textract limit is 5mb) image = Image.open(file_path) img_object, image_sizes_width, image_sizes_height, all_img_details, img_path = ( check_image_size_and_reduce(file_path, image) ) if not isinstance(image_sizes_width, list): img_path = [img_path] image_sizes_width = [image_sizes_width] image_sizes_height = [image_sizes_height] all_img_details = [all_img_details] # Check if the file is a PDF elif file_extension == ".pdf": # Run your function for processing PDF files here img_path, image_sizes_width, image_sizes_height, all_img_details = ( convert_pdf_to_images( file_path, prepare_for_review, page_min=page_min, page_max=page_max, input_folder=input_folder, create_images=create_images, ) ) else: print(f"{file_path} is not an image or PDF file.") img_path = list() image_sizes_width = list() image_sizes_height = list() all_img_details = list() return img_path, image_sizes_width, image_sizes_height, all_img_details def get_input_file_names(file_input: List[str]): """ Get list of input files to report to logs. """ all_relevant_files = list() file_name_with_extension = "" full_file_name = "" total_pdf_page_count = 0 if isinstance(file_input, dict): file_input = os.path.abspath(file_input["name"]) if isinstance(file_input, str): file_input_list = [file_input] else: file_input_list = file_input for file in file_input_list: if isinstance(file, str): file_path = file else: file_path = file.name file_path_without_ext = get_file_name_without_type(file_path) file_extension = os.path.splitext(file_path)[1].lower() # Check if the file is in acceptable types if ( ( file_extension in [ ".jpg", ".jpeg", ".png", ".pdf", ".xlsx", ".csv", ".parquet", ".docx", ] ) & ("review_file" not in file_path_without_ext) & ("ocr_output" not in file_path_without_ext) & ("ocr_results_with_words" not in file_path_without_ext) ): all_relevant_files.append(file_path_without_ext) file_name_with_extension = file_path_without_ext + file_extension full_file_name = file_path # If PDF, get number of pages if file_extension in [".pdf"]: # Open the PDF file pdf_document = pymupdf.open(file_path) # Get the number of pages page_count = pdf_document.page_count # Close the document pdf_document.close() else: page_count = 1 total_pdf_page_count += page_count all_relevant_files_str = ", ".join(all_relevant_files) return ( all_relevant_files_str, file_name_with_extension, full_file_name, all_relevant_files, total_pdf_page_count, ) def convert_pymupdf_to_image_coords( pymupdf_page: Page, x1: float, y1: float, x2: float, y2: float, image: Image = None, image_dimensions: dict = dict(), ): """ Converts bounding box coordinates from PyMuPDF page format to image coordinates. This function takes coordinates (x1, y1, x2, y2) defined relative to a PyMuPDF page's coordinate system and transforms them to correspond to the coordinate system of a target image. It accounts for scaling differences between the page's mediabox/rect and the image dimensions, as well as any potential offsets. Args: pymupdf_page (Page): The PyMuPDF page object from which the coordinates originate. x1 (float): The x-coordinate of the top-left corner in PyMuPDF page units. y1 (float): The y-coordinate of the top-left corner in PyMuPDF page units. x2 (float): The x-coordinate of the bottom-right corner in PyMuPDF page units. y2 (float): The y-coordinate of the bottom-right corner in PyMuPDF page units. image (Image, optional): A PIL Image object. If provided, its dimensions are used as the target image dimensions. Defaults to None. image_dimensions (dict, optional): A dictionary containing 'image_width' and 'image_height'. Used if 'image' is not provided and 'image' is None. Defaults to an empty dictionary. """ # Get rect dimensions rect = pymupdf_page.rect rect_width = rect.width rect_height = rect.height # Get mediabox dimensions and position mediabox = pymupdf_page.mediabox mediabox_width = mediabox.width mediabox_height = mediabox.height # Get target image dimensions if image: image_page_width, image_page_height = image.size elif image_dimensions: image_page_width, image_page_height = ( image_dimensions["image_width"], image_dimensions["image_height"], ) else: image_page_width, image_page_height = mediabox_width, mediabox_height # Calculate scaling factors image_to_mediabox_x_scale = image_page_width / mediabox_width image_to_mediabox_y_scale = image_page_height / mediabox_height # Adjust coordinates: # Apply scaling to match image dimensions x1_image = x1 * image_to_mediabox_x_scale x2_image = x2 * image_to_mediabox_x_scale y1_image = y1 * image_to_mediabox_y_scale y2_image = y2 * image_to_mediabox_y_scale # Correct for difference in rect and mediabox size if mediabox_width != rect_width: mediabox_to_rect_x_scale = mediabox_width / rect_width mediabox_to_rect_y_scale = mediabox_height / rect_height rect_width / mediabox_width # rect_to_mediabox_y_scale = rect_height / mediabox_height mediabox_rect_x_diff = (mediabox_width - rect_width) * ( image_to_mediabox_x_scale / 2 ) mediabox_rect_y_diff = (mediabox_height - rect_height) * ( image_to_mediabox_y_scale / 2 ) x1_image -= mediabox_rect_x_diff x2_image -= mediabox_rect_x_diff y1_image += mediabox_rect_y_diff y2_image += mediabox_rect_y_diff # x1_image *= mediabox_to_rect_x_scale x2_image *= mediabox_to_rect_x_scale y1_image *= mediabox_to_rect_y_scale y2_image *= mediabox_to_rect_y_scale return x1_image, y1_image, x2_image, y2_image def create_page_size_objects( pymupdf_doc: Document, image_sizes_width: List[float], image_sizes_height: List[float], image_file_paths: List[str], page_min: int = 0, page_max: int = 0, ): """ Creates page size objects for a PyMuPDF document. Creates entries for ALL pages in the document. Pages that were processed for image creation will have actual image paths and dimensions. Pages that were not processed will have placeholder image paths and no image dimensions. Args: pymupdf_doc (Document): The PyMuPDF document object. image_sizes_width (List[float]): List of image widths for processed pages. image_sizes_height (List[float]): List of image heights for processed pages. image_file_paths (List[str]): List of image file paths for processed pages. page_min (int, optional): The minimum page number that was processed (0-indexed). If 0, uses the first page. Defaults to 0. page_max (int, optional): The maximum page number that was processed (0-indexed). If 0, uses the last page of the document. Defaults to 0. """ page_sizes = list() original_cropboxes = list() # Handle special cases for page range # If page_min is 0, use the first page (0-indexed) if page_min == 0: page_min = 0 # First page is 0-indexed else: page_min = page_min - 1 # If page_max is 0, use the last page of the document if page_max == 0: page_max = len(pymupdf_doc) # Process ALL pages in the document, not just the ones with images for page_no in range(len(pymupdf_doc)): reported_page_no = page_no + 1 pymupdf_page = pymupdf_doc.load_page(page_no) original_cropboxes.append(pymupdf_page.cropbox) # Save original CropBox # Check if this page was processed for image creation is_page_in_range = page_min <= page_no < page_max image_index = page_no - page_min if is_page_in_range else None # Create a page_sizes_object for every page out_page_image_sizes = { "page": reported_page_no, "mediabox_width": pymupdf_page.mediabox.width, "mediabox_height": pymupdf_page.mediabox.height, "cropbox_width": pymupdf_page.cropbox.width, "cropbox_height": pymupdf_page.cropbox.height, "original_cropbox": original_cropboxes[-1], } # cropbox_x_offset: Distance from MediaBox left edge to CropBox left edge # This is simply the difference in their x0 coordinates. out_page_image_sizes["cropbox_x_offset"] = ( pymupdf_page.cropbox.x0 - pymupdf_page.mediabox.x0 ) # cropbox_y_offset_from_top: Distance from MediaBox top edge to CropBox top edge out_page_image_sizes["cropbox_y_offset_from_top"] = ( pymupdf_page.mediabox.y1 - pymupdf_page.cropbox.y1 ) # Set image path and dimensions based on whether this page was processed if ( is_page_in_range and image_index is not None and image_index < len(image_file_paths) ): # This page was processed for image creation out_page_image_sizes["image_path"] = image_file_paths[image_index] # Add image dimensions if available if ( image_sizes_width and image_sizes_height and image_index < len(image_sizes_width) and image_index < len(image_sizes_height) ): out_page_image_sizes["image_width"] = image_sizes_width[image_index] out_page_image_sizes["image_height"] = image_sizes_height[image_index] else: # This page was not processed for image creation - use placeholder out_page_image_sizes["image_path"] = f"image_placeholder_{page_no}.png" # No image dimensions for placeholder pages page_sizes.append(out_page_image_sizes) return page_sizes, original_cropboxes def word_level_ocr_output_to_dataframe(ocr_results: dict) -> pd.DataFrame: """ Convert a json of ocr results to a dataframe Args: ocr_results (dict): A dictionary containing OCR results. Returns: pd.DataFrame: A dataframe containing the OCR results. """ rows = list() ocr_results[0] for ocr_result in ocr_results: page_number = int(ocr_result["page"]) for line_key, line_data in ocr_result["results"].items(): line_number = int(line_data["line"]) if "conf" not in line_data: line_data["conf"] = 100.0 for word in line_data["words"]: if "conf" not in word: word["conf"] = 100.0 rows.append( { "page": page_number, "line": line_number, "word_text": word["text"], "word_x0": word["bounding_box"][0], "word_y0": word["bounding_box"][1], "word_x1": word["bounding_box"][2], "word_y1": word["bounding_box"][3], "word_conf": word["conf"], "line_text": "", # line_data['text'], # This data is too large to include "line_x0": line_data["bounding_box"][0], "line_y0": line_data["bounding_box"][1], "line_x1": line_data["bounding_box"][2], "line_y1": line_data["bounding_box"][3], "line_conf": line_data["conf"], } ) return pd.DataFrame(rows) def extract_redactions( doc: Document, page_sizes: List[Dict[str, Any]] = None ) -> List[Dict[str, Any]]: """ Extracts all redaction annotations from a PDF document and converts them to Gradio Annotation JSON format. Note: This function identifies the *markings* for redaction. It does not tell you if the redaction has been *applied* (i.e., the underlying content is permanently removed). Args: doc: The PyMuPDF document object. page_sizes: List of dictionaries containing page information with keys: 'page', 'image_path', 'image_width', 'image_height'. If None, will create placeholder structure. Returns: List of dictionaries suitable for Gradio Annotation output, one dict per image/page. Each dict has structure: {"image": image_path, "boxes": [list of annotation boxes]} """ # Helper function to generate unique IDs def _generate_unique_ids(num_ids: int, existing_ids: set = None) -> List[str]: if existing_ids is None: existing_ids = set() id_length = 12 character_set = string.ascii_letters + string.digits unique_ids = list() for _ in range(num_ids): while True: candidate_id = "".join(random.choices(character_set, k=id_length)) if candidate_id not in existing_ids: existing_ids.add(candidate_id) unique_ids.append(candidate_id) break return unique_ids # Extract redaction annotations from the document redactions_by_page = dict() existing_ids = set() for page_num, page in enumerate(doc): page_redactions = list() # The page.annots() method is a generator for all annotations on the page for annot in page.annots(): # The type of a redaction annotation is 8 if annot.type[0] == pymupdf.PDF_ANNOT_REDACT: # Get annotation info with fallbacks annot_info = annot.info or {} annot_colors = annot.colors or {} # Extract coordinates from the annotation rectangle rect = annot.rect x0, y0, x1, y1 = rect.x0, rect.y0, rect.x1, rect.y1 # Convert coordinates to relative (0-1 range) using mediabox dimensions if page_sizes: # Find the page size info for this page page_size_info = None for ps in page_sizes: if ps.get("page") == page_num + 1: page_size_info = ps break if page_size_info: mediabox_width = page_size_info.get("mediabox_width", 1) mediabox_height = page_size_info.get("mediabox_height", 1) # Convert to relative coordinates rel_x0 = x0 / mediabox_width rel_y0 = y0 / mediabox_height rel_x1 = x1 / mediabox_width rel_y1 = y1 / mediabox_height else: # Fallback to absolute coordinates if page size not found rel_x0, rel_y0, rel_x1, rel_y1 = x0, y0, x1, y1 else: # Fallback to absolute coordinates if no page_sizes provided rel_x0, rel_y0, rel_x1, rel_y1 = x0, y0, x1, y1 # Get color and convert from 0-1 range to 0-255 range fill_color = annot_colors.get( "fill", (0, 0, 0) ) # Default to black if no color if isinstance(fill_color, (tuple, list)) and len(fill_color) >= 3: # Convert from 0-1 range to 0-255 range color_255 = tuple( int(component * 255) if component <= 1 else int(component) for component in fill_color[:3] ) else: color_255 = (0, 0, 0) # Default to black # Create annotation box in the required format redaction_box = { "label": annot_info.get( "title", f"Redaction {len(page_redactions) + 1}" ), "color": str(color_255), "xmin": rel_x0, "ymin": rel_y0, "xmax": rel_x1, "ymax": rel_y1, "text": annot_info.get("content", ""), "id": None, # Will be filled after generating IDs } page_redactions.append(redaction_box) if page_redactions: redactions_by_page[page_num + 1] = page_redactions # Generate unique IDs for all redaction boxes all_boxes = list() for page_redactions in redactions_by_page.values(): all_boxes.extend(page_redactions) if all_boxes: unique_ids = _generate_unique_ids(len(all_boxes), existing_ids) # Assign IDs to boxes box_idx = 0 for page_num, page_redactions in redactions_by_page.items(): for box in page_redactions: box["id"] = unique_ids[box_idx] box_idx += 1 # Build JSON structure based on page_sizes or create placeholder structure json_data = list() if page_sizes: # Use provided page_sizes to build structure for page_info in page_sizes: page_num = page_info.get("page", 1) image_path = page_info.get( "image_path", f"placeholder_image_{page_num}.png" ) # Get redactions for this page annotation_boxes = redactions_by_page.get(page_num, []) json_data.append({"image": image_path, "boxes": annotation_boxes}) else: # Create placeholder structure based on document pages for page_num in range(1, doc.page_count + 1): image_path = f"placeholder_image_{page_num}.png" annotation_boxes = redactions_by_page.get(page_num, []) json_data.append({"image": image_path, "boxes": annotation_boxes}) total_redactions = sum(len(boxes) for boxes in redactions_by_page.values()) print(f"Found {total_redactions} redactions in the document") return json_data def prepare_image_or_pdf( file_paths: List[str], text_extract_method: str, all_line_level_ocr_results_df: pd.DataFrame = None, all_page_line_level_ocr_results_with_words_df: pd.DataFrame = None, latest_file_completed: int = 0, out_message: List[str] = list(), first_loop_state: bool = False, number_of_pages: int = 0, all_annotations_object: List = list(), prepare_for_review: bool = False, in_fully_redacted_list: List[int] = list(), output_folder: str = OUTPUT_FOLDER, input_folder: str = INPUT_FOLDER, prepare_images: bool = True, page_sizes: list[dict] = list(), pymupdf_doc: Document = list(), textract_output_found: bool = False, relevant_ocr_output_with_words_found: bool = False, page_min: int = 0, page_max: int = 0, progress: Progress = Progress(track_tqdm=True), ) -> tuple[List[str], List[str]]: """ Prepare and process image or text PDF files for redaction. This function takes a list of file paths, processes each file based on the specified redaction method, and returns the output messages and processed file paths. Args: file_paths (List[str]): List of file paths to process. text_extract_method (str): The redaction method to use. latest_file_completed (optional, int): Index of the last completed file. out_message (optional, List[str]): List to store output messages. first_loop_state (optional, bool): Flag indicating if this is the first iteration. number_of_pages (optional, int): integer indicating the number of pages in the document all_annotations_object(optional, List of annotation objects): All annotations for current document prepare_for_review(optional, bool): Is this preparation step preparing pdfs and json files to review current redactions? in_fully_redacted_list(optional, List of int): A list of pages to fully redact output_folder (optional, str): The output folder for file save prepare_images (optional, bool): A boolean indicating whether to create images for each PDF page. Defaults to True. page_sizes(optional, List[dict]): A list of dicts containing information about page sizes in various formats. pymupdf_doc(optional, Document): A pymupdf document object that indicates the existing PDF document object. textract_output_found (optional, bool): A boolean indicating whether Textract analysis output has already been found. Defaults to False. relevant_ocr_output_with_words_found (optional, bool): A boolean indicating whether local OCR analysis output has already been found. Defaults to False. page_min (optional, int): The minimum page number to process (0-indexed). If 0, uses the first page. Defaults to 0. page_max (optional, int): The maximum page number to process (0-indexed). If 0, uses the last page of the document. Defaults to 0. progress (optional, Progress): Progress tracker for the operation Returns: tuple[List[str], List[str]]: A tuple containing the output messages and processed file paths. """ tic = time.perf_counter() json_from_csv = False original_cropboxes = list() # Store original CropBox values converted_file_paths = list() image_file_paths = list() all_img_details = list() review_file_csv = pd.DataFrame() out_textract_path = "" combined_out_message = "" final_out_message = "" log_files_output_paths = list() if isinstance(in_fully_redacted_list, pd.DataFrame): if not in_fully_redacted_list.empty: in_fully_redacted_list = in_fully_redacted_list.iloc[:, 0].tolist() # If this is the first time around, set variables to 0/blank if first_loop_state is True: latest_file_completed = 0 out_message = list() all_annotations_object = list() else: print("Now redacting file", str(latest_file_completed)) # If combined out message or converted_file_paths are blank, change to a list so it can be appended to if isinstance(out_message, str): out_message = [out_message] if not file_paths: file_paths = list() if isinstance(file_paths, dict): file_paths = os.path.abspath(file_paths["name"]) if isinstance(file_paths, str): file_path_number = 1 else: file_path_number = len(file_paths) if file_path_number > MAX_SIMULTANEOUS_FILES: out_message = f"Number of files loaded is greater than {MAX_SIMULTANEOUS_FILES}. Please submit a smaller number of files." print(out_message) raise Exception(out_message) latest_file_completed = int(latest_file_completed) # If we have already redacted the last file, return the input out_message and file list to the relevant components if latest_file_completed >= file_path_number: print("Last file reached, returning files:", str(latest_file_completed)) if isinstance(out_message, list): final_out_message = "\n".join(out_message) else: final_out_message = out_message return ( final_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv, original_cropboxes, page_sizes, textract_output_found, all_img_details, all_line_level_ocr_results_df, relevant_ocr_output_with_words_found, all_page_line_level_ocr_results_with_words_df, ) progress(0.1, desc="Preparing file") if isinstance(file_paths, str): file_paths_list = [file_paths] file_paths_loop = file_paths_list else: file_paths_list = file_paths file_paths_loop = sorted( file_paths_list, key=lambda x: ( os.path.splitext(x)[1] != ".pdf", os.path.splitext(x)[1] != ".json", ), ) # Loop through files to load in for file in file_paths_loop: converted_file_path = list() image_file_path = list() if isinstance(file, str): file_path = file else: file_path = file.name file_path_without_ext = get_file_name_without_type(file_path) file_name_with_ext = os.path.basename(file_path) print("Loading file:", file_name_with_ext) if not file_path: out_message = "Please select at least one file." print(out_message) raise Warning(out_message) file_extension = os.path.splitext(file_path)[1].lower() # If a pdf, load as a pymupdf document if is_pdf(file_path): print(f"File {file_name_with_ext} is a PDF") pymupdf_doc = pymupdf.open(file_path) converted_file_path = file_path if prepare_images is True: ( image_file_paths, image_sizes_width, image_sizes_height, all_img_details, ) = process_file_for_image_creation( file_path, prepare_for_review, input_folder, create_images=True, page_min=page_min, page_max=page_max, ) else: ( image_file_paths, image_sizes_width, image_sizes_height, all_img_details, ) = process_file_for_image_creation( file_path, prepare_for_review, input_folder, create_images=False, page_min=page_min, page_max=page_max, ) page_sizes, original_cropboxes = create_page_size_objects( pymupdf_doc, image_sizes_width, image_sizes_height, image_file_paths, page_min, page_max, ) # Create base version of the annotation object that doesn't have any annotations in it if (not all_annotations_object) & (prepare_for_review is True): all_annotations_object = list() for image_path in image_file_paths: annotation = dict() annotation["image"] = image_path annotation["boxes"] = list() all_annotations_object.append(annotation) # If we are loading redactions from the pdf, extract the redactions if ( LOAD_REDACTION_ANNOTATIONS_FROM_PDF is True and prepare_for_review is True ): redactions_list = extract_redactions(pymupdf_doc, page_sizes) all_annotations_object = redactions_list elif is_pdf_or_image(file_path): # Alternatively, if it's an image print(f"File {file_name_with_ext} is an image") # Check if the file is an image type and the user selected text ocr option if ( file_extension in [".jpg", ".jpeg", ".png"] and text_extract_method == SELECTABLE_TEXT_EXTRACT_OPTION ): text_extract_method = TESSERACT_TEXT_EXTRACT_OPTION # Convert image to a pymupdf document pymupdf_doc = pymupdf.open() # Create a new empty document img = Image.open(file_path) # Open the image file rect = pymupdf.Rect( 0, 0, img.width, img.height ) # Create a rectangle for the image pymupdf_page = pymupdf_doc.new_page( width=img.width, height=img.height ) # Add a new page pymupdf_page.insert_image( rect, filename=file_path ) # Insert the image into the page pymupdf_page = pymupdf_doc.load_page(0) file_path_str = str(file_path) image_file_paths, image_sizes_width, image_sizes_height, all_img_details = ( process_file_for_image_creation( file_path_str, prepare_for_review, input_folder, create_images=True ) ) # Create a page_sizes_object page_sizes, original_cropboxes = create_page_size_objects( pymupdf_doc, image_sizes_width, image_sizes_height, image_file_paths ) converted_file_path = output_folder + file_name_with_ext pymupdf_doc.save(converted_file_path, garbage=4, deflate=True, clean=True) # Loading in review files, ocr_outputs, or ocr_outputs_with_words elif file_extension in [".csv"]: if "_review_file" in file_path_without_ext: review_file_csv = read_file(file_path) all_annotations_object = convert_review_df_to_annotation_json( review_file_csv, image_file_paths, page_sizes ) json_from_csv = True elif "_ocr_output" in file_path_without_ext: all_line_level_ocr_results_df = read_file(file_path) if "line" not in all_line_level_ocr_results_df.columns: all_line_level_ocr_results_df["line"] = "" json_from_csv = False elif "_ocr_results_with_words" in file_path_without_ext: all_page_line_level_ocr_results_with_words_df = read_file(file_path) json_from_csv = False # If the file name ends with .json, check if we are loading for review. If yes, assume it is an annotations object, overwrite the current annotations object. If false, assume this is a Textract object, load in to Textract if (file_extension in [".json"]) | (json_from_csv is True): if (file_extension in [".json"]) & (prepare_for_review is True): if isinstance(file_path, str): # Split the path into base directory and filename for security file_path_obj = Path(file_path) base_dir = file_path_obj.parent filename = file_path_obj.name json_content = secure_file_read(base_dir, filename) all_annotations_object = json.loads(json_content) else: # Assuming file_path is a NamedString or similar all_annotations_object = json.loads( file_path ) # Use loads for string content # Save Textract file to folder elif ( file_extension in [".json"] ) and "_textract" in file_path_without_ext: # (prepare_for_review != True): print("Saving Textract output") # Copy it to the output folder so it can be used later. # Check if file already has a textract suffix pattern (e.g., _sig_textract.json, _form_textract.json, etc.) # Pattern matches: _textract.json or _*_textract.json textract_pattern = re.compile( r"_[a-z_]+_textract\.json$|_textract\.json$" ) if textract_pattern.search(file_path): # File already has a textract suffix, preserve it output_textract_json_file_name = file_path_without_ext + ".json" elif file_path.endswith("_textract.json"): output_textract_json_file_name = file_path_without_ext + ".json" else: # No textract suffix found, add default one output_textract_json_file_name = ( file_path_without_ext + "_textract.json" ) out_textract_path = secure_join( output_folder, output_textract_json_file_name ) # Use shutil to copy the file directly shutil.copy2(file_path, out_textract_path) # Preserves metadata textract_output_found = True continue elif ( file_extension in [".json"] ) and "_ocr_results_with_words" in file_path_without_ext: # (prepare_for_review != True): print("Saving local OCR output with words") # Copy it to the output folder so it can be used later. output_ocr_results_with_words_json_file_name = ( file_path_without_ext + ".json" ) out_ocr_results_with_words_path = secure_join( output_folder, output_ocr_results_with_words_json_file_name ) # Use shutil to copy the file directly shutil.copy2( file_path, out_ocr_results_with_words_path ) # Preserves metadata if prepare_for_review is True: print("Converting local OCR output with words to csv") page_sizes_df = pd.DataFrame(page_sizes) ( all_page_line_level_ocr_results_with_words, is_missing, log_files_output_paths, ) = load_and_convert_ocr_results_with_words_json( out_ocr_results_with_words_path, log_files_output_paths, page_sizes_df, ) all_page_line_level_ocr_results_with_words_df = ( word_level_ocr_output_to_dataframe( all_page_line_level_ocr_results_with_words ) ) all_page_line_level_ocr_results_with_words_df = ( divide_coordinates_by_page_sizes( all_page_line_level_ocr_results_with_words_df, page_sizes_df, xmin="word_x0", xmax="word_x1", ymin="word_y0", ymax="word_y1", ) ) all_page_line_level_ocr_results_with_words_df = ( divide_coordinates_by_page_sizes( all_page_line_level_ocr_results_with_words_df, page_sizes_df, xmin="line_x0", xmax="line_x1", ymin="line_y0", ymax="line_y1", ) ) if ( text_extract_method == SELECTABLE_TEXT_EXTRACT_OPTION and file_path.endswith("_ocr_results_with_words_local_text.json") ): relevant_ocr_output_with_words_found = True if ( text_extract_method == TESSERACT_TEXT_EXTRACT_OPTION and file_path.endswith("_ocr_results_with_words_local_ocr.json") ): relevant_ocr_output_with_words_found = True if ( text_extract_method == TEXTRACT_TEXT_EXTRACT_OPTION and file_path.endswith("_ocr_results_with_words_textract.json") ): relevant_ocr_output_with_words_found = True continue # If you have an annotations object from the above code if all_annotations_object: image_file_paths_pages = [ safe_extract_page_number_from_path(s) for s in image_file_paths if safe_extract_page_number_from_path(s) is not None ] image_file_paths_pages = [int(i) for i in image_file_paths_pages] # If PDF pages have been converted to image files, replace the current image paths in the json to this. if image_file_paths: for i, image_file_path in enumerate(image_file_paths): if i < len(all_annotations_object): annotation = all_annotations_object[i] else: annotation = dict() all_annotations_object.append(annotation) try: if not annotation: annotation = {"image": "", "boxes": []} annotation_page_number = ( safe_extract_page_number_from_path(image_file_path) ) if annotation_page_number is None: continue else: annotation_page_number = ( safe_extract_page_number_from_path( annotation["image"] ) ) if annotation_page_number is None: continue except Exception as e: print("Extracting page number from image failed due to:", e) annotation_page_number = 0 # Check if the annotation page number exists in the image file paths pages if annotation_page_number in image_file_paths_pages: # Set the correct image page directly since we know it's in the list correct_image_page = annotation_page_number annotation["image"] = image_file_paths[correct_image_page] else: print( "Page", annotation_page_number, "image file not found." ) all_annotations_object[i] = annotation # Does not redact whole pages on load as user may not expect this behaviour # if isinstance(in_fully_redacted_list, list): # in_fully_redacted_list = pd.DataFrame( # data={"fully_redacted_pages_list": in_fully_redacted_list} # ) # # Get list of pages that are to be fully redacted and redact them # if not in_fully_redacted_list.empty: # print("Redacting whole pages") # for i, image in enumerate(image_file_paths): # page = pymupdf_doc.load_page(i) # rect_height = page.rect.height # rect_width = page.rect.width # whole_page_img_annotation_box = redact_whole_pymupdf_page( # rect_height, # rect_width, # image, # page, # custom_colours=False, # border=5, # image_dimensions={ # "image_width": image_sizes_width[i], # "image_height": image_sizes_height[i], # }, # ) # all_annotations_object.append(whole_page_img_annotation_box) # Write the response to a JSON file in output folder out_folder = output_folder + file_path_without_ext + ".json" # with open(out_folder, 'w') as json_file: # json.dump(all_annotations_object, json_file, separators=(",", ":")) continue # If it's a zip, it could be extract from a Textract bulk API call. Check it's this, and load in json if found if file_extension in [".zip"]: # Assume it's a Textract response object. Copy it to the output folder so it can be used later. out_folder = secure_join( output_folder, file_path_without_ext + "_textract.json" ) # Use shutil to copy the file directly # Open the ZIP file to check its contents with zipfile.ZipFile(file_path, "r") as zip_ref: json_files = [ f for f in zip_ref.namelist() if f.lower().endswith(".json") ] if len(json_files) == 1: # Ensure only one JSON file exists json_filename = json_files[0] # Extract the JSON file to the same directory as the ZIP file extracted_path = secure_join( os.path.dirname(file_path), json_filename ) zip_ref.extract(json_filename, os.path.dirname(file_path)) # Move the extracted JSON to the intended output location shutil.move(extracted_path, out_folder) textract_output_found = True else: print( f"Skipping {file_path}: Expected 1 JSON file, found {len(json_files)}" ) converted_file_paths.append(converted_file_path) image_file_paths.extend(image_file_path) toc = time.perf_counter() out_time = f"File '{file_name_with_ext}' prepared in {toc - tic:0.1f} seconds." print(out_time) out_message.append(out_time) combined_out_message = "\n".join(out_message) if not page_sizes: number_of_pages = 1 else: number_of_pages = len(page_sizes) print(f"Finished loading in {file_path_number} file(s)") return ( combined_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv, original_cropboxes, page_sizes, textract_output_found, all_img_details, all_line_level_ocr_results_df, relevant_ocr_output_with_words_found, all_page_line_level_ocr_results_with_words_df, ) def load_and_convert_ocr_results_with_words_json( ocr_results_with_words_json_file_path: str, log_files_output_paths: str, page_sizes_df: pd.DataFrame, ): """ Loads Textract JSON from a file, detects if conversion is needed, and converts if necessary. """ if not os.path.exists(ocr_results_with_words_json_file_path): print("No existing OCR results file found.") return ( [], True, log_files_output_paths, ) # Return empty dict and flag indicating missing file print("Found existing OCR results json results file.") # Track log files if ocr_results_with_words_json_file_path not in log_files_output_paths: log_files_output_paths.append(ocr_results_with_words_json_file_path) try: with open( ocr_results_with_words_json_file_path, "r", encoding="utf-8" ) as json_file: ocr_results_with_words_data = json.load(json_file) except json.JSONDecodeError: print("Error: Failed to parse OCR results JSON file. Returning empty data.") return [], True, log_files_output_paths # Indicate failure # Check if conversion is needed if "page" and "results" in ocr_results_with_words_data[0]: print("JSON already in the correct format for app. No changes needed.") return ( ocr_results_with_words_data, False, log_files_output_paths, ) # No conversion required else: print("Invalid OCR result JSON format: 'page' or 'results' key missing.") # print("OCR results with words data:", ocr_results_with_words_data) return ( [], True, log_files_output_paths, ) # Return empty data if JSON is not recognized def convert_text_pdf_to_img_pdf( in_file_path: str, out_text_file_path: List[str], image_dpi: float = image_dpi, output_folder: str = OUTPUT_FOLDER, input_folder: str = INPUT_FOLDER, ): file_path_without_ext = get_file_name_without_type(in_file_path) print( "In convert_text_pdf_to_img_pdf function, file_path_without_ext:", file_path_without_ext, ) out_file_paths = out_text_file_path # Convert annotated text pdf back to image to give genuine redactions pdf_text_image_paths, image_sizes_width, image_sizes_height, all_img_details = ( process_file_for_image_creation(out_file_paths[0], input_folder=input_folder) ) out_text_image_file_path = ( output_folder + file_path_without_ext + "_text_redacted_as_img.pdf" ) pdf_text_image_paths[0].save( out_text_image_file_path, "PDF", resolution=image_dpi, save_all=True, append_images=pdf_text_image_paths[1:], ) out_file_paths = [out_text_image_file_path] out_message = "PDF " + file_path_without_ext + " converted to image-based file." print(out_message) return out_message, out_file_paths def save_pdf_with_or_without_compression( pymupdf_doc: object, out_redacted_pdf_file_path, COMPRESS_REDACTED_PDF: bool = COMPRESS_REDACTED_PDF, ): """ Save a pymupdf document with basic cleaning or with full compression options. Can be useful for low memory systems to do minimal cleaning to avoid crashing with large PDFs. """ if COMPRESS_REDACTED_PDF is True: pymupdf_doc.save( out_redacted_pdf_file_path, garbage=4, deflate=True, clean=True ) else: pymupdf_doc.save(out_redacted_pdf_file_path, garbage=1, clean=True) def join_values_within_threshold(df1: pd.DataFrame, df2: pd.DataFrame): # Threshold for matching threshold = 5 # Perform a cross join df1["key"] = 1 df2["key"] = 1 merged = pd.merge(df1, df2, on="key").drop(columns=["key"]) # Apply conditions for all columns conditions = ( (abs(merged["xmin_x"] - merged["xmin_y"]) <= threshold) & (abs(merged["xmax_x"] - merged["xmax_y"]) <= threshold) & (abs(merged["ymin_x"] - merged["ymin_y"]) <= threshold) & (abs(merged["ymax_x"] - merged["ymax_y"]) <= threshold) ) # Filter rows that satisfy all conditions filtered = merged[conditions] # Drop duplicates if needed (e.g., keep only the first match for each row in df1) result = filtered.drop_duplicates(subset=["xmin_x", "xmax_x", "ymin_x", "ymax_x"]) # Merge back into the original DataFrame (if necessary) final_df = pd.merge( df1, result, left_on=["xmin", "xmax", "ymin", "ymax"], right_on=["xmin_x", "xmax_x", "ymin_x", "ymax_x"], how="left", ) # Clean up extra columns final_df = final_df.drop(columns=["key"]) def remove_duplicate_images_with_blank_boxes(data: List[dict]) -> List[dict]: """ Remove items from the annotator object where the same page exists twice. """ # Group items by 'image' image_groups = defaultdict(list) for item in data: image_groups[item["image"]].append(item) # Process each group to prioritize items with non-empty boxes result = list() for image, items in image_groups.items(): # Filter items with non-empty boxes non_empty_boxes = [item for item in items if item.get("boxes")] # Remove 'text' elements from boxes (deprecated) # for item in non_empty_boxes: # if 'boxes' in item: # item['boxes'] = [{k: v for k, v in box.items() if k != 'text'} for box in item['boxes']] if non_empty_boxes: # Keep the first entry with non-empty boxes result.append(non_empty_boxes[0]) else: # If all items have empty or missing boxes, keep the first item result.append(items[0]) return result def divide_coordinates_by_page_sizes( review_file_df: pd.DataFrame, page_sizes_df: pd.DataFrame, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax", ) -> pd.DataFrame: """ Optimized function to convert absolute image coordinates (>1) to relative coordinates (<=1). Identifies rows with absolute coordinates, merges page size information, divides coordinates by dimensions, and combines with already-relative rows. Args: review_file_df: Input DataFrame with potentially mixed coordinate systems. page_sizes_df: DataFrame with page dimensions ('page', 'image_width', 'image_height', 'mediabox_width', 'mediabox_height'). xmin, xmax, ymin, ymax: Names of the coordinate columns. Returns: DataFrame with coordinates converted to relative system, sorted. """ if review_file_df.empty or xmin not in review_file_df.columns: return review_file_df # Return early if empty or key column missing # --- Initial Type Conversion --- coord_cols = [xmin, xmax, ymin, ymax] cols_to_convert = coord_cols + ["page"] temp_df = review_file_df.copy() # Work on a copy initially for col in cols_to_convert: if col in temp_df.columns: temp_df[col] = pd.to_numeric(temp_df[col], errors="coerce") else: # If essential 'page' or coord column missing, cannot proceed meaningfully if col == "page" or col in coord_cols: print( f"Warning: Required column '{col}' not found in review_file_df. Returning original DataFrame." ) return review_file_df # --- Identify Absolute Coordinates --- # Create mask for rows where *all* coordinates are potentially absolute (> 1) # Handle potential NaNs introduced by to_numeric - treat NaN as not absolute. is_absolute_mask = ( (temp_df[xmin] > 1) & (temp_df[xmin].notna()) & (temp_df[xmax] > 1) & (temp_df[xmax].notna()) & (temp_df[ymin] > 1) & (temp_df[ymin].notna()) & (temp_df[ymax] > 1) & (temp_df[ymax].notna()) ) # --- Separate DataFrames --- df_rel = temp_df[ ~is_absolute_mask ] # Rows already relative or with NaN/mixed coords df_abs = temp_df[ is_absolute_mask ].copy() # Absolute rows - COPY here to allow modifications # --- Process Absolute Coordinates --- if not df_abs.empty: # Merge page sizes if necessary if "image_width" not in df_abs.columns and not page_sizes_df.empty: ps_df_copy = page_sizes_df.copy() # Work on a copy of page sizes # Ensure page is numeric for merge key matching ps_df_copy["page"] = pd.to_numeric(ps_df_copy["page"], errors="coerce") # Columns to merge from page_sizes merge_cols = [ "page", "image_width", "image_height", "mediabox_width", "mediabox_height", ] available_merge_cols = [ col for col in merge_cols if col in ps_df_copy.columns ] # Prepare dimension columns in the copy for col in [ "image_width", "image_height", "mediabox_width", "mediabox_height", ]: if col in ps_df_copy.columns: # Replace "" string if present if ps_df_copy[col].dtype == "object": ps_df_copy[col] = ps_df_copy[col].replace("", pd.NA) # Convert to numeric ps_df_copy[col] = pd.to_numeric(ps_df_copy[col], errors="coerce") # Perform the merge if "page" in available_merge_cols: # Check if page exists for merging df_abs = df_abs.merge( ps_df_copy[available_merge_cols], on="page", how="left" ) else: print( "Warning: 'page' column not found in page_sizes_df. Cannot merge dimensions." ) # Fallback to mediabox dimensions if image dimensions are missing if "image_width" in df_abs.columns and "mediabox_width" in df_abs.columns: # Check if image_width mostly missing - use .isna().all() or check percentage if df_abs["image_width"].isna().all(): # print("Falling back to mediabox dimensions as image_width is entirely missing.") df_abs["image_width"] = df_abs["image_width"].fillna( df_abs["mediabox_width"] ) df_abs["image_height"] = df_abs["image_height"].fillna( df_abs["mediabox_height"] ) else: # Optional: Fill only missing image dims if some exist? # df_abs["image_width"].fillna(df_abs["mediabox_width"], inplace=True) # df_abs["image_height"].fillna(df_abs["mediabox_height"], inplace=True) pass # Current logic only falls back if ALL image_width are NaN # Ensure divisor columns are numeric before division divisors_numeric = True for col in ["image_width", "image_height"]: if col in df_abs.columns: df_abs[col] = pd.to_numeric(df_abs[col], errors="coerce") else: print( f"Warning: Dimension column '{col}' missing. Cannot perform division." ) divisors_numeric = False # Perform division if dimensions are available and numeric if ( divisors_numeric and "image_width" in df_abs.columns and "image_height" in df_abs.columns ): # Use np.errstate to suppress warnings about division by zero or NaN if desired with np.errstate(divide="ignore", invalid="ignore"): df_abs[xmin] = round(df_abs[xmin] / df_abs["image_width"], 6) df_abs[xmax] = round(df_abs[xmax] / df_abs["image_width"], 6) df_abs[ymin] = round(df_abs[ymin] / df_abs["image_height"], 6) df_abs[ymax] = round(df_abs[ymax] / df_abs["image_height"], 6) # Replace potential infinities with NaN (optional, depending on desired outcome) df_abs.replace([np.inf, -np.inf], np.nan, inplace=True) else: print( "Skipping coordinate division due to missing or non-numeric dimension columns." ) # --- Combine Relative and Processed Absolute DataFrames --- dfs_to_concat = [df for df in [df_rel, df_abs] if not df.empty] if dfs_to_concat: final_df = pd.concat(dfs_to_concat, ignore_index=True) else: # If both splits were empty, return an empty DF with original columns print( "Warning: Both relative and absolute splits resulted in empty DataFrames." ) final_df = pd.DataFrame(columns=review_file_df.columns) # --- Final Sort --- required_sort_columns = {"page", xmin, ymin} if not final_df.empty and required_sort_columns.issubset(final_df.columns): # Ensure sort columns are numeric before sorting final_df["page"] = pd.to_numeric(final_df["page"], errors="coerce") final_df[ymin] = pd.to_numeric(final_df[ymin], errors="coerce") final_df[xmin] = pd.to_numeric(final_df[xmin], errors="coerce") # Sort by page, ymin, xmin (note order compared to multiply function) final_df.sort_values(["page", ymin, xmin], inplace=True, na_position="last") # --- Clean Up Columns --- # Correctly drop columns and reassign the result cols_to_drop = ["image_width", "image_height", "mediabox_width", "mediabox_height"] final_df = final_df.drop(columns=cols_to_drop, errors="ignore") return final_df def multiply_coordinates_by_page_sizes( review_file_df: pd.DataFrame, page_sizes_df: pd.DataFrame, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax", ): """ Optimized function to convert relative coordinates to absolute based on page sizes. Separates relative (<=1) and absolute (>1) coordinates, merges page sizes for relative coordinates, calculates absolute pixel values, and recombines. """ if review_file_df.empty or xmin not in review_file_df.columns: return review_file_df # Return early if empty or key column missing coord_cols = [xmin, xmax, ymin, ymax] # Initial type conversion for coordinates and page for col in coord_cols + ["page"]: if col in review_file_df.columns: # Use astype for potentially faster conversion if confident, # but to_numeric is safer for mixed types/errors review_file_df[col] = pd.to_numeric(review_file_df[col], errors="coerce") # --- Identify relative coordinates --- # Create mask for rows where *all* coordinates are potentially relative (<= 1) # Handle potential NaNs introduced by to_numeric - treat NaN as not relative here. is_relative_mask = ( (review_file_df[xmin].le(1) & review_file_df[xmin].notna()) & (review_file_df[xmax].le(1) & review_file_df[xmax].notna()) & (review_file_df[ymin].le(1) & review_file_df[ymin].notna()) & (review_file_df[ymax].le(1) & review_file_df[ymax].notna()) ) # Separate DataFrames (minimal copies) df_abs = review_file_df[~is_relative_mask].copy() # Keep absolute rows separately df_rel = review_file_df[is_relative_mask].copy() # Work only with relative rows if df_rel.empty: # If no relative coordinates, just sort and return absolute ones (if any) if not df_abs.empty and {"page", xmin, ymin}.issubset(df_abs.columns): df_abs.sort_values(["page", xmin, ymin], inplace=True, na_position="last") return df_abs # --- Process relative coordinates --- if "image_width" not in df_rel.columns and not page_sizes_df.empty: # Prepare page_sizes_df for merge page_sizes_df = page_sizes_df.copy() # Avoid modifying original page_sizes_df page_sizes_df["page"] = pd.to_numeric(page_sizes_df["page"], errors="coerce") # Ensure proper NA handling for image dimensions page_sizes_df[["image_width", "image_height"]] = page_sizes_df[ ["image_width", "image_height"] ].replace("", pd.NA) page_sizes_df["image_width"] = pd.to_numeric( page_sizes_df["image_width"], errors="coerce" ) page_sizes_df["image_height"] = pd.to_numeric( page_sizes_df["image_height"], errors="coerce" ) # Merge page sizes df_rel = df_rel.merge( page_sizes_df[["page", "image_width", "image_height"]], on="page", how="left", ) # Multiply coordinates where image dimensions are available if "image_width" in df_rel.columns: # Create mask for rows in df_rel that have valid image dimensions has_size_mask = df_rel["image_width"].notna() & df_rel["image_height"].notna() # Apply multiplication using .loc and the mask (vectorized and efficient) # Ensure columns are numeric before multiplication (might be redundant if types are good) # df_rel.loc[has_size_mask, coord_cols + ['image_width', 'image_height']] = df_rel.loc[has_size_mask, coord_cols + ['image_width', 'image_height']].apply(pd.to_numeric, errors='coerce') df_rel.loc[has_size_mask, xmin] *= df_rel.loc[has_size_mask, "image_width"] df_rel.loc[has_size_mask, xmax] *= df_rel.loc[has_size_mask, "image_width"] df_rel.loc[has_size_mask, ymin] *= df_rel.loc[has_size_mask, "image_height"] df_rel.loc[has_size_mask, ymax] *= df_rel.loc[has_size_mask, "image_height"] # --- Combine absolute and processed relative DataFrames --- # Use list comprehension to handle potentially empty DataFrames dfs_to_concat = [df for df in [df_abs, df_rel] if not df.empty] if not dfs_to_concat: return pd.DataFrame() # Return empty if both are empty final_df = pd.concat( dfs_to_concat, ignore_index=True ) # ignore_index is good practice after filtering/concat # --- Final Sort --- required_sort_columns = {"page", xmin, ymin} if not final_df.empty and required_sort_columns.issubset(final_df.columns): # Handle potential NaNs in sort columns gracefully final_df.sort_values(["page", xmin, ymin], inplace=True, na_position="last") return final_df def do_proximity_match_by_page_for_text(df1: pd.DataFrame, df2: pd.DataFrame): """ Match text from one dataframe to another based on proximity matching of coordinates page by page. """ if "text" not in df2.columns: df2["text"] = "" if "text" not in df1.columns: df1["text"] = "" # Create a unique key based on coordinates and label for exact merge merge_keys = ["xmin", "ymin", "xmax", "ymax", "label", "page"] df1["key"] = df1[merge_keys].astype(str).agg("_".join, axis=1) df2["key"] = df2[merge_keys].astype(str).agg("_".join, axis=1) # Attempt exact merge first merged_df = df1.merge( df2[["key", "text"]], on="key", how="left", suffixes=("", "_duplicate") ) # If a match is found, keep that text; otherwise, keep the original df1 text merged_df["text"] = np.where( merged_df["text"].isna() | (merged_df["text"] == ""), merged_df.pop("text_duplicate"), merged_df["text"], ) # Define tolerance for proximity matching tolerance = 0.02 # Precompute KDTree for each page in df2 page_trees = dict() for page in df2["page"].unique(): df2_page = df2[df2["page"] == page] coords = df2_page[["xmin", "ymin", "xmax", "ymax"]].values if np.all(np.isfinite(coords)) and len(coords) > 0: page_trees[page] = (cKDTree(coords), df2_page) # Perform proximity matching for i, row in df1.iterrows(): page_number = row["page"] if page_number in page_trees: tree, df2_page = page_trees[page_number] # Query KDTree for nearest neighbor dist, idx = tree.query( [row[["xmin", "ymin", "xmax", "ymax"]].values], distance_upper_bound=tolerance, ) if dist[0] < tolerance and idx[0] < len(df2_page): merged_df.at[i, "text"] = df2_page.iloc[idx[0]]["text"] # Drop the temporary key column merged_df.drop(columns=["key"], inplace=True) return merged_df def do_proximity_match_all_pages_for_text( df1: pd.DataFrame, df2: pd.DataFrame, threshold: float = 0.03 ): """ Match text from one dataframe to another based on proximity matching of coordinates across all pages. """ if "text" not in df2.columns: df2["text"] = "" if "text" not in df1.columns: df1["text"] = "" for col in ["xmin", "ymin", "xmax", "ymax"]: df1[col] = pd.to_numeric(df1[col], errors="coerce") for col in ["xmin", "ymin", "xmax", "ymax"]: df2[col] = pd.to_numeric(df2[col], errors="coerce") # Create a unique key based on coordinates and label for exact merge merge_keys = ["xmin", "ymin", "xmax", "ymax", "label", "page"] df1["key"] = df1[merge_keys].astype(str).agg("_".join, axis=1) df2["key"] = df2[merge_keys].astype(str).agg("_".join, axis=1) # Attempt exact merge first, renaming df2['text'] to avoid suffixes merged_df = df1.merge( df2[["key", "text"]], on="key", how="left", suffixes=("", "_duplicate") ) # If a match is found, keep that text; otherwise, keep the original df1 text merged_df["text"] = np.where( merged_df["text"].isna() | (merged_df["text"] == ""), merged_df.pop("text_duplicate"), merged_df["text"], ) # Handle missing matches using a proximity-based approach # Convert coordinates to numpy arrays for KDTree lookup query_coords = np.array(df1[["xmin", "ymin", "xmax", "ymax"]].values, dtype=float) # Check for NaN or infinite values in query_coords and filter them out finite_mask = np.isfinite(query_coords).all(axis=1) if not finite_mask.all(): # print("Warning: query_coords contains non-finite values. Filtering out non-finite entries.") query_coords = query_coords[ finite_mask ] # Filter out rows with NaN or infinite values else: pass # Proceed only if query_coords is not empty if query_coords.size > 0: # Ensure df2 is filtered for finite values before creating the KDTree finite_mask_df2 = np.isfinite(df2[["xmin", "ymin", "xmax", "ymax"]].values).all( axis=1 ) df2_finite = df2[finite_mask_df2] # Create the KDTree with the filtered data tree = cKDTree(df2_finite[["xmin", "ymin", "xmax", "ymax"]].values) # Find nearest neighbors within a reasonable tolerance (e.g., 1% of page) tolerance = threshold distances, indices = tree.query(query_coords, distance_upper_bound=tolerance) # Assign text values where matches are found for i, (dist, idx) in enumerate(zip(distances, indices)): if dist < tolerance and idx < len(df2_finite): merged_df.at[i, "text"] = df2_finite.iloc[idx]["text"] # Drop the temporary key column merged_df.drop(columns=["key"], inplace=True) return merged_df def _extract_page_number(image_path: Any) -> int: """Helper function to safely extract page number.""" if not isinstance(image_path, str): return 1 match = IMAGE_NUM_REGEX.search(image_path) if match: try: return int(match.group(1)) + 1 except (ValueError, TypeError): return 1 return 1 def convert_annotation_data_to_dataframe(all_annotations: List[Dict[str, Any]]): """ Convert annotation list to DataFrame using Pandas explode and json_normalize. """ if not all_annotations: # Return an empty DataFrame with the expected schema if input is empty print("No annotations found, returning empty dataframe") return pd.DataFrame( columns=[ "image", "page", "label", "color", "xmin", "xmax", "ymin", "ymax", "text", "id", ] ) # 1. Create initial DataFrame from the list of annotations # Use list comprehensions with .get() for robustness df = pd.DataFrame( { "image": [anno.get("image") for anno in all_annotations], # Ensure 'boxes' defaults to an empty list if missing or None "boxes": [ ( anno.get("boxes") if isinstance(anno.get("boxes"), list) else ( [anno.get("boxes")] if isinstance(anno.get("boxes"), dict) else [] ) ) for anno in all_annotations ], } ) # 2. Calculate the page number using the helper function df["page"] = df["image"].apply(_extract_page_number) # 3. Handle empty 'boxes' lists *before* exploding. # Explode removes rows where the list is empty. We want to keep them # as rows with NA values. Replace empty lists with a list containing # a single placeholder dictionary. placeholder_box = { "xmin": pd.NA, "xmax": pd.NA, "ymin": pd.NA, "ymax": pd.NA, "text": pd.NA, "id": pd.NA, } df["boxes"] = df["boxes"].apply(lambda x: x if x else [placeholder_box]) # 4. Explode the 'boxes' column. Each item in the list becomes a new row. df_exploded = df.explode("boxes", ignore_index=True) # 5. Normalize the 'boxes' column (which now contains dictionaries or the placeholder) # This turns the dictionaries into separate columns. # Check for NaNs or non-dict items just in case, though placeholder handles most cases. mask = df_exploded["boxes"].notna() & df_exploded["boxes"].apply( isinstance, args=(dict,) ) normalized_boxes = pd.json_normalize(df_exploded.loc[mask, "boxes"]) # 6. Combine the base data (image, page) with the normalized box data # Use the index of the exploded frame (where mask is True) to ensure correct alignment final_df = ( df_exploded.loc[mask, ["image", "page"]] .reset_index(drop=True) .join(normalized_boxes) ) # --- Optional: Handle rows that might have had non-dict items in 'boxes' --- # If there were rows filtered out by 'mask', you might want to add them back # with NA values for box columns. However, the placeholder strategy usually # prevents this from being necessary. # 7. Ensure essential columns exist and set column order essential_box_cols = ["xmin", "xmax", "ymin", "ymax", "text", "id", "label"] for col in essential_box_cols: if col not in final_df.columns: final_df[col] = pd.NA # Add column with NA if it wasn't present in any box final_df[col] = final_df[col].replace({None: pd.NA}) base_cols = ["image"] extra_box_cols = [ col for col in final_df.columns if col not in base_cols and col not in essential_box_cols ] final_col_order = base_cols + essential_box_cols + sorted(extra_box_cols) # Reindex to ensure consistent column order and presence of essential columns # Using fill_value=pd.NA isn't strictly needed here as we added missing columns above, # but it's good practice if columns could be missing for other reasons. final_df = final_df.reindex(columns=final_col_order, fill_value=pd.NA) final_df = final_df.dropna( subset=["xmin", "xmax", "ymin", "ymax", "text", "id", "label"], how="all" ) final_df.replace({None: pd.NA}) return final_df def create_annotation_dicts_from_annotation_df( all_image_annotations_df: pd.DataFrame, page_sizes: List[Dict[str, Any]] ) -> List[Dict[str, Any]]: """ Convert annotation DataFrame back to list of dicts using dictionary lookup. Ensures all images from page_sizes are present without duplicates. """ # 1. Create a dictionary keyed by image path for efficient lookup & update # Initialize with all images from page_sizes. Use .get for safety. image_dict: Dict[str, Dict[str, Any]] = dict() for item in page_sizes: image_path = item.get("image_path") if image_path: # Only process if image_path exists and is not None/empty image_dict[image_path] = {"image": image_path, "boxes": []} # Check if the DataFrame is empty or lacks necessary columns if ( all_image_annotations_df.empty or "image" not in all_image_annotations_df.columns ): # print("Warning: Annotation DataFrame is empty or missing 'image' column.") return list(image_dict.values()) # Return based on page_sizes only # 2. Define columns to extract for boxes and check availability # Make sure these columns actually exist in the DataFrame box_cols = ["xmin", "ymin", "xmax", "ymax", "color", "label", "text", "id"] available_cols = [ col for col in box_cols if col in all_image_annotations_df.columns ] if "text" in all_image_annotations_df.columns: all_image_annotations_df["text"] = all_image_annotations_df["text"].fillna("") # all_image_annotations_df.loc[all_image_annotations_df['text'].isnull(), 'text'] = '' if not available_cols: print( f"Warning: None of the expected box columns ({box_cols}) found in DataFrame." ) return list(image_dict.values()) # Return based on page_sizes only # 3. Group the DataFrame by image and update the dictionary # Drop rows where essential coordinates might be NA (adjust if NA is meaningful) coord_cols = ["xmin", "ymin", "xmax", "ymax"] valid_box_df = all_image_annotations_df.dropna( subset=[col for col in coord_cols if col in available_cols] ).copy() # Use .copy() to avoid SettingWithCopyWarning if modifying later # Check if any valid boxes remain after dropping NAs if valid_box_df.empty: print( "Warning: No valid annotation rows found in DataFrame after dropping NA coordinates." ) return list(image_dict.values()) # Process groups try: for image_path, group in valid_box_df.groupby( "image", observed=True, sort=False ): # Check if this image path exists in our target dictionary (from page_sizes) if image_path in image_dict: # Convert the relevant columns of the group to a list of dicts # Using only columns that are actually available boxes = group[available_cols].to_dict(orient="records") # Update the 'boxes' list in the dictionary image_dict[image_path]["boxes"] = boxes # Else: Image found in DataFrame but not required by page_sizes; ignore it. except KeyError: # This shouldn't happen due to the 'image' column check above, but handle defensively print("Error: Issue grouping DataFrame by 'image'.") return list(image_dict.values()) # 4. Convert the dictionary values back into the final list format result = list(image_dict.values()) return result def convert_annotation_json_to_review_df( all_annotations: List[dict], redaction_decision_output: pd.DataFrame = pd.DataFrame(), page_sizes: List[dict] = list(), do_proximity_match: bool = True, ) -> pd.DataFrame: """ Convert the annotation json data to a dataframe format. Add on any text from the initial review_file dataframe by joining based on 'id' if available in both sources, otherwise falling back to joining on pages/co-ordinates (if option selected). Refactored for improved efficiency, prioritizing ID-based join and conditionally applying coordinate division and proximity matching. """ # 1. Convert annotations to DataFrame review_file_df = convert_annotation_data_to_dataframe(all_annotations) # Only keep rows in review_df where there are coordinates (assuming xmin is representative) # Use .notna() for robustness with potential None or NaN values review_file_df.dropna( subset=["xmin", "ymin", "xmax", "ymax"], how="any", inplace=True ) # Exit early if the initial conversion results in an empty DataFrame if review_file_df.empty: # Define standard columns for an empty return DataFrame # Ensure 'id' is included if it was potentially expected based on input structure # We don't know the columns from convert_annotation_data_to_dataframe without seeing it, # but let's assume a standard set and add 'id' if it appeared. standard_cols = [ "image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax", "text", ] if "id" in review_file_df.columns: standard_cols.append("id") return pd.DataFrame(columns=standard_cols) # Ensure 'id' column exists for logic flow, even if empty if "id" not in review_file_df.columns: review_file_df["id"] = "" # Do the same for redaction_decision_output if it's not empty if ( not redaction_decision_output.empty and "id" not in redaction_decision_output.columns ): redaction_decision_output["id"] = "" # 2. Process page sizes if provided - needed potentially for coordinate division later # Process this once upfront if the data is available page_sizes_df = pd.DataFrame() # Initialize as empty if page_sizes: page_sizes_df = pd.DataFrame(page_sizes) if not page_sizes_df.empty: # Safely convert page column to numeric and then int page_sizes_df["page"] = pd.to_numeric( page_sizes_df["page"], errors="coerce" ) page_sizes_df.dropna(subset=["page"], inplace=True) if not page_sizes_df.empty: # Check again after dropping NaNs page_sizes_df["page"] = page_sizes_df["page"].astype(int) else: print( "Warning: Page sizes DataFrame became empty after processing, coordinate division will be skipped." ) # 3. Join additional data from redaction_decision_output if provided text_added_successfully = False # Flag to track if text was added by any method if not redaction_decision_output.empty: # --- Attempt to join data based on 'id' column first --- # Check if 'id' columns are present and have non-null values in *both* dataframes id_col_exists_in_review = ( "id" in review_file_df.columns and not review_file_df["id"].isnull().all() and not (review_file_df["id"] == "").all() ) id_col_exists_in_redaction = ( "id" in redaction_decision_output.columns and not redaction_decision_output["id"].isnull().all() and not (redaction_decision_output["id"] == "").all() ) if id_col_exists_in_review and id_col_exists_in_redaction: # print("Attempting to join data based on 'id' column.") try: # Ensure 'id' columns are of string type for robust merging review_file_df["id"] = review_file_df["id"].astype(str) # Make a copy if needed, but try to avoid if redaction_decision_output isn't modified later # Let's use a copy for safety as in the original code redaction_copy = redaction_decision_output.copy() redaction_copy["id"] = redaction_copy["id"].astype(str) # Select columns to merge from redaction output. Prioritize 'text'. cols_to_merge = ["id"] if "text" in redaction_copy.columns: cols_to_merge.append("text") else: print( "Warning: 'text' column not found in redaction_decision_output. Cannot merge text using 'id'." ) # Perform a left merge to keep all annotations and add matching text # Use a suffix for the text column from the right DataFrame original_text_col_exists = "text" in review_file_df.columns merge_suffix = "_redaction" if original_text_col_exists else "" merged_df = pd.merge( review_file_df, redaction_copy[cols_to_merge], on="id", how="left", suffixes=("", merge_suffix), ) # Update the 'text' column if a new one was brought in if "text" + merge_suffix in merged_df.columns: redaction_text_col = "text" + merge_suffix if original_text_col_exists: # Combine: Use text from redaction where available, otherwise keep original merged_df["text"] = merged_df[redaction_text_col].combine_first( merged_df["text"] ) # Drop the temporary column merged_df = merged_df.drop(columns=[redaction_text_col]) else: # Redaction output had text, but review_file_df didn't. Rename the new column. merged_df = merged_df.rename( columns={redaction_text_col: "text"} ) text_added_successfully = ( True # Indicate text was potentially added ) review_file_df = merged_df # Update the main DataFrame # print("Successfully attempted to join data using 'id'.") # Note: Text might not have been in redaction data except Exception as e: print( f"Error during 'id'-based merge: {e}. Checking for proximity match fallback." ) # Fall through to proximity match logic below # --- Fallback to proximity match if ID join wasn't possible/successful and enabled --- # Note: If id_col_exists_in_review or id_col_exists_in_redaction was False, # the block above was skipped, and we naturally fall here. # If an error occurred in the try block, joined_by_id would implicitly be False # because text_added_successfully wasn't set to True. # Only attempt proximity match if text wasn't added by ID join and proximity is requested if not text_added_successfully and do_proximity_match: # print("Attempting proximity match to add text data.") # Ensure 'page' columns are numeric before coordinate division and proximity match # (Assuming divide_coordinates_by_page_sizes and do_proximity_match_all_pages_for_text need this) if "page" in review_file_df.columns: review_file_df["page"] = ( pd.to_numeric(review_file_df["page"], errors="coerce") .fillna(-1) .astype(int) ) # Use -1 for NaN pages review_file_df = review_file_df[ review_file_df["page"] != -1 ] # Drop rows where page conversion failed if ( not redaction_decision_output.empty and "page" in redaction_decision_output.columns ): redaction_decision_output["page"] = ( pd.to_numeric(redaction_decision_output["page"], errors="coerce") .fillna(-1) .astype(int) ) redaction_decision_output = redaction_decision_output[ redaction_decision_output["page"] != -1 ] # Perform coordinate division IF page_sizes were processed and DataFrame is not empty if not page_sizes_df.empty: # Apply coordinate division *before* proximity match review_file_df = divide_coordinates_by_page_sizes( review_file_df, page_sizes_df ) if not redaction_decision_output.empty: redaction_decision_output = divide_coordinates_by_page_sizes( redaction_decision_output, page_sizes_df ) # Now perform the proximity match # Note: Potential DataFrame copies happen inside do_proximity_match based on its implementation if not redaction_decision_output.empty: try: review_file_df = do_proximity_match_all_pages_for_text( df1=review_file_df, # Pass directly, avoid caller copy if possible by modifying function signature df2=redaction_decision_output, # Pass directly ) # Assuming do_proximity_match_all_pages_for_text adds/updates the 'text' column if "text" in review_file_df.columns: text_added_successfully = True # print("Proximity match completed.") except Exception as e: print( f"Error during proximity match: {e}. Text data may not be added." ) elif not text_added_successfully and not do_proximity_match: print( "Skipping joining text data (ID join not possible/failed, proximity match disabled)." ) # 4. Ensure required columns exist and are ordered # Define base required columns. 'id' and 'text' are conditionally added. required_columns_base = [ "image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax", ] final_columns = required_columns_base[:] # Start with base columns # Add 'id' and 'text' if they exist in the DataFrame at this point if "id" in review_file_df.columns: final_columns.append("id") if "text" in review_file_df.columns: final_columns.append("text") # Add text column if it was created/merged # Add any missing required columns with a default value (e.g., blank string) for col in final_columns: if col not in review_file_df.columns: # Use appropriate default based on expected type, '' for text/id, np.nan for coords? # Sticking to '' as in original for simplicity, but consider data types. review_file_df[col] = ( "" # Or np.nan for numerical, but coords already checked by dropna ) # Select and order the final set of columns # Ensure all selected columns actually exist after adding defaults review_file_df = review_file_df[ [col for col in final_columns if col in review_file_df.columns] ] # 5. Final processing and sorting # Convert colours from list to tuple if necessary - apply is okay here unless lists are vast if "color" in review_file_df.columns: # Check if the column actually contains lists before applying lambda if review_file_df["color"].apply(lambda x: isinstance(x, list)).any(): review_file_df.loc[:, "color"] = review_file_df.loc[:, "color"].apply( lambda x: tuple(x) if isinstance(x, list) else x ) # Sort the results # Ensure sort columns exist before sorting sort_columns = ["page", "ymin", "xmin", "label"] valid_sort_columns = [col for col in sort_columns if col in review_file_df.columns] if valid_sort_columns and not review_file_df.empty: # Only sort non-empty df # Convert potential numeric sort columns to appropriate types if necessary # (e.g., 'page', 'ymin', 'xmin') to ensure correct sorting. # dropna(subset=[...], inplace=True) earlier should handle NaNs in coords. # page conversion already done before proximity match. try: review_file_df = review_file_df.sort_values(valid_sort_columns) except TypeError as e: print( f"Warning: Could not sort DataFrame due to type error in sort columns: {e}" ) # Proceed without sorting base_cols = ["xmin", "xmax", "ymin", "ymax", "text", "id", "label"] for col in base_cols: if col not in review_file_df.columns: review_file_df[col] = pd.NA review_file_df = review_file_df.dropna(subset=base_cols, how="all") return review_file_df def fill_missing_ids_in_list(data_list: list) -> list: """ Generates unique alphanumeric IDs for dictionaries in a list where the 'id' is missing, blank, or not a 12-character string. Args: data_list (list): A list of dictionaries, each potentially with an 'id' key. Returns: list: The input list with missing/invalid IDs filled. Note: The function modifies the input list in place. """ # --- Input Validation --- if not isinstance(data_list, list): raise TypeError("Input 'data_list' must be a list.") if not data_list: return data_list # Return empty list as-is id_length = 12 character_set = string.ascii_letters + string.digits # a-z, A-Z, 0-9 # --- Get Existing IDs to Ensure Uniqueness --- # Collect all valid existing IDs first existing_ids = set() for item in data_list: if not isinstance(item, dict): continue # Skip non-dictionary items item_id = item.get("id") if isinstance(item_id, str) and len(item_id) == id_length: existing_ids.add(item_id) # --- Identify and Fill Items Needing IDs --- generated_ids_set = set() # Keep track of IDs generated *in this run* num_filled = 0 for item in data_list: if not isinstance(item, dict): continue # Skip non-dictionary items item_id = item.get("id") # Check if ID needs to be generated # Needs ID if: key is missing, value is None, value is not a string, # value is an empty string after stripping whitespace, or value is a string # but not of the correct length. needs_new_id = ( item_id is None or not isinstance(item_id, str) or item_id.strip() == "" or len(item_id) != id_length ) if needs_new_id: # Generate a unique ID attempts = 0 while True: candidate_id = "".join(random.choices(character_set, k=id_length)) # Check against *all* existing valid IDs and *newly* generated ones in this run if ( candidate_id not in existing_ids and candidate_id not in generated_ids_set ): generated_ids_set.add(candidate_id) item["id"] = ( candidate_id # Assign the new ID directly to the item dict ) num_filled += 1 break # Found a unique ID attempts += 1 # Safety break for unlikely infinite loop (though highly improbable with 12 chars) if attempts > len(data_list) * 100 + 1000: raise RuntimeError( f"Failed to generate a unique ID after {attempts} attempts. Check ID length or existing IDs." ) if num_filled > 0: pass # print(f"Successfully filled {num_filled} missing or invalid IDs.") else: pass # print("No missing or invalid IDs found.") # The input list 'data_list' has been modified in place return data_list def fill_missing_box_ids(data_input: dict) -> dict: """ Generates unique alphanumeric IDs for bounding boxes in an input dictionary where the 'id' is missing, blank, or not a 12-character string. Args: data_input (dict): The input dictionary containing 'image' and 'boxes' keys. 'boxes' should be a list of dictionaries, each potentially with an 'id' key. Returns: dict: The input dictionary with missing/invalid box IDs filled. Note: The function modifies the input dictionary in place. """ # --- Input Validation --- if not isinstance(data_input, dict): raise TypeError("Input 'data_input' must be a dictionary.") # if 'boxes' not in data_input or not isinstance(data_input.get('boxes'), list): # raise ValueError("Input dictionary must contain a 'boxes' key with a list value.") boxes = data_input # ['boxes'] id_length = 12 character_set = string.ascii_letters + string.digits # a-z, A-Z, 0-9 # --- Get Existing IDs to Ensure Uniqueness --- # Collect all valid existing IDs first existing_ids = set() # for box in boxes: # Check if 'id' exists, is a string, and is the correct length box_id = boxes.get("id") if isinstance(box_id, str) and len(box_id) == id_length: existing_ids.add(box_id) # --- Identify and Fill Rows Needing IDs --- generated_ids_set = set() # Keep track of IDs generated *in this run* num_filled = 0 # for box in boxes: box_id = boxes.get("id") # Check if ID needs to be generated # Needs ID if: key is missing, value is None, value is not a string, # value is an empty string after stripping whitespace, or value is a string # but not of the correct length. needs_new_id = ( box_id is None or not isinstance(box_id, str) or box_id.strip() == "" or len(box_id) != id_length ) if needs_new_id: # Generate a unique ID attempts = 0 while True: candidate_id = "".join(random.choices(character_set, k=id_length)) # Check against *all* existing valid IDs and *newly* generated ones in this run if ( candidate_id not in existing_ids and candidate_id not in generated_ids_set ): generated_ids_set.add(candidate_id) boxes["id"] = candidate_id # Assign the new ID directly to the box dict num_filled += 1 break # Found a unique ID attempts += 1 # Safety break for unlikely infinite loop (though highly improbable with 12 chars) if attempts > len(boxes) * 100 + 1000: raise RuntimeError( f"Failed to generate a unique ID after {attempts} attempts. Check ID length or existing IDs." ) if num_filled > 0: pass # print(f"Successfully filled {num_filled} missing or invalid box IDs.") else: pass # print("No missing or invalid box IDs found.") # The input dictionary 'data_input' has been modified in place return data_input def fill_missing_box_ids_each_box(data_input: Dict) -> Dict: """ Generates unique alphanumeric IDs for bounding boxes in a list where the 'id' is missing, blank, or not a 12-character string. Args: data_input (Dict): The input dictionary containing 'image' and 'boxes' keys. 'boxes' should be a list of dictionaries, each potentially with an 'id' key. Returns: Dict: The input dictionary with missing/invalid box IDs filled. Note: The function modifies the input dictionary in place. """ # --- Input Validation --- if not isinstance(data_input, dict): raise TypeError("Input 'data_input' must be a dictionary.") if "boxes" not in data_input or not isinstance(data_input.get("boxes"), list): # If there are no boxes, there's nothing to do. return data_input boxes_list = data_input["boxes"] id_length = 12 character_set = string.ascii_letters + string.digits # --- 1. Get ALL Existing IDs to Ensure Uniqueness --- # Collect all valid existing IDs from the entire list first. existing_ids = set() for box in boxes_list: if isinstance(box, dict): box_id = box.get("id") if isinstance(box_id, str) and len(box_id) == id_length: existing_ids.add(box_id) # --- 2. Iterate and Fill IDs for each box --- generated_ids_this_run = set() # Keep track of IDs generated in this run num_filled = 0 for box in boxes_list: if not isinstance(box, dict): continue # Skip items in the list that are not dictionaries box_id = box.get("id") # Check if this specific box needs a new ID needs_new_id = ( box_id is None or not isinstance(box_id, str) or box_id.strip() == "" or len(box_id) != id_length ) if needs_new_id: # Generate a truly unique ID while True: candidate_id = "".join(random.choices(character_set, k=id_length)) # Check against original IDs and newly generated IDs if ( candidate_id not in existing_ids and candidate_id not in generated_ids_this_run ): generated_ids_this_run.add(candidate_id) box["id"] = candidate_id # Assign the ID to the individual box num_filled += 1 break # Move to the next box if num_filled > 0: print(f"Successfully filled {num_filled} missing or invalid box IDs.") # The input dictionary 'data_input' has been modified in place return data_input def fill_missing_ids( df: pd.DataFrame, column_name: str = "id", length: int = 12 ) -> pd.DataFrame: """ Optimized: Generates unique alphanumeric IDs for rows in a DataFrame column where the value is missing (NaN, None) or an empty/whitespace string. Args: df (pd.DataFrame): The input Pandas DataFrame. column_name (str): The name of the column to check and fill (defaults to 'id'). This column will be added if it doesn't exist. length (int): The desired length of the generated IDs (defaults to 12). Returns: pd.DataFrame: The DataFrame with missing/empty IDs filled in the specified column. Note: The function modifies the DataFrame directly (in-place). """ # --- Input Validation --- if not isinstance(df, pd.DataFrame): raise TypeError("Input 'df' must be a Pandas DataFrame.") if not isinstance(column_name, str) or not column_name: raise ValueError("'column_name' must be a non-empty string.") if not isinstance(length, int) or length <= 0: raise ValueError("'length' must be a positive integer.") # --- Ensure Column Exists --- original_dtype = None if column_name not in df.columns: # print(f"Column '{column_name}' not found. Adding it to the DataFrame.") # Initialize with None (which Pandas often treats as NaN but allows object dtype) df[column_name] = None # Set original_dtype to object so it likely becomes string later original_dtype = object else: original_dtype = df[column_name].dtype # --- Identify Rows Needing IDs --- # 1. Check for actual null values (NaN, None, NaT) is_null = df[column_name].isna() # 2. Check for empty or whitespace-only strings AFTER converting potential values to string # Only apply string checks on rows that are *not* null to avoid errors/warnings # Fill NaN temporarily for string operations, then check length or equality is_empty_str = pd.Series(False, index=df.index) # Default to False if not is_null.all(): # Only check strings if there are non-null values temp_str_col = df.loc[~is_null, column_name].astype(str).str.strip() is_empty_str.loc[~is_null] = temp_str_col == "" # Combine the conditions is_missing_or_empty = is_null | is_empty_str rows_to_fill_index = df.index[is_missing_or_empty] num_needed = len(rows_to_fill_index) if num_needed == 0: # Ensure final column type is consistent if nothing was done if pd.api.types.is_object_dtype(original_dtype) or pd.api.types.is_string_dtype( original_dtype ): pass # Likely already object or string else: # If original was numeric/etc., but might contain strings now? Unlikely here. pass # Or convert to object: df[column_name] = df[column_name].astype(object) # print(f"No missing or empty values found requiring IDs in column '{column_name}'.") return df # print(f"Found {num_needed} rows requiring a unique ID in column '{column_name}'.") # --- Get Existing IDs to Ensure Uniqueness --- # Consider only rows that are *not* missing/empty valid_rows = df.loc[~is_missing_or_empty, column_name] # Drop any remaining nulls (shouldn't be any based on mask, but belts and braces) valid_rows = valid_rows.dropna() # Convert to string *only* if not already string/object, then filter out empty strings again if not pd.api.types.is_object_dtype( valid_rows.dtype ) and not pd.api.types.is_string_dtype(valid_rows.dtype): existing_ids = set(valid_rows.astype(str).str.strip()) else: # Already string or object, just strip and convert to set existing_ids = set( valid_rows.astype(str).str.strip() ) # astype(str) handles mixed types in object column # Remove empty string from existing IDs if it's there after stripping existing_ids.discard("") # --- Generate Unique IDs --- character_set = string.ascii_letters + string.digits # a-z, A-Z, 0-9 generated_ids_set = set() # Keep track of IDs generated *in this run* new_ids_list = list() # Store the generated IDs in order max_possible_ids = len(character_set) ** length if num_needed > max_possible_ids: raise ValueError( f"Cannot generate {num_needed} unique IDs with length {length}. Maximum possible is {max_possible_ids}." ) # Pre-calculate safety break limit max_attempts_per_id = max(1000, num_needed * 10) # Adjust multiplier as needed # print(f"Generating {num_needed} unique IDs of length {length}...") for i in range(num_needed): attempts = 0 while True: candidate_id = "".join(random.choices(character_set, k=length)) # Check against *all* known existing IDs and *newly* generated ones if ( candidate_id not in existing_ids and candidate_id not in generated_ids_set ): generated_ids_set.add(candidate_id) new_ids_list.append(candidate_id) break # Found a unique ID attempts += 1 if attempts > max_attempts_per_id: # Safety break raise RuntimeError( f"Failed to generate a unique ID after {attempts} attempts. Check length, character set, or density of existing IDs." ) # Optional progress update # if (i + 1) % 1000 == 0: # print(f"Generated {i+1}/{num_needed} IDs...") # --- Assign New IDs --- # Use the previously identified index to assign the new IDs correctly # Assigning string IDs might change the column's dtype to 'object' if not pd.api.types.is_object_dtype( original_dtype ) and not pd.api.types.is_string_dtype(original_dtype): df["id"] = df["id"].astype(str, errors="ignore") # warnings.warn(f"Column '{column_name}' dtype might change from '{original_dtype}' to 'object' due to string ID assignment.", UserWarning) df.loc[rows_to_fill_index, column_name] = new_ids_list # print( # f"Successfully assigned {len(new_ids_list)} new unique IDs to column '{column_name}'." # ) return df def convert_review_df_to_annotation_json( review_file_df: pd.DataFrame, image_paths: List[str], # List of image file paths page_sizes: List[ Dict ], # List of dicts like [{'page': 1, 'image_path': '...', 'image_width': W, 'image_height': H}, ...] xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax", # Coordinate column names ) -> List[Dict]: """ Optimized function to convert review DataFrame to Gradio Annotation JSON format. Ensures absolute coordinates, handles missing IDs, deduplicates based on key fields, selects final columns, and structures data per image/page based on page_sizes. Args: review_file_df: Input DataFrame with annotation data. image_paths: List of image file paths (Note: currently unused if page_sizes provides paths). page_sizes: REQUIRED list of dictionaries, each containing 'page', 'image_path', 'image_width', and 'image_height'. Defines output structure and dimensions for coordinate conversion. xmin, xmax, ymin, ymax: Names of the coordinate columns. Returns: List of dictionaries suitable for Gradio Annotation output, one dict per image/page. """ base_cols = ["xmin", "xmax", "ymin", "ymax", "text", "id", "label"] for col in base_cols: if col not in review_file_df.columns: review_file_df[col] = pd.NA review_file_df = review_file_df.dropna( subset=["xmin", "xmax", "ymin", "ymax", "text", "id", "label"], how="all" ) if not page_sizes: raise ValueError("page_sizes argument is required and cannot be empty.") # --- Prepare Page Sizes DataFrame --- try: page_sizes_df = pd.DataFrame(page_sizes) required_ps_cols = {"page", "image_path", "image_width", "image_height"} if not required_ps_cols.issubset(page_sizes_df.columns): missing = required_ps_cols - set(page_sizes_df.columns) raise ValueError(f"page_sizes is missing required keys: {missing}") # Convert page sizes columns to appropriate numeric types early page_sizes_df["page"] = pd.to_numeric(page_sizes_df["page"], errors="coerce") page_sizes_df["image_width"] = pd.to_numeric( page_sizes_df["image_width"], errors="coerce" ) page_sizes_df["image_height"] = pd.to_numeric( page_sizes_df["image_height"], errors="coerce" ) # Use nullable Int64 for page number consistency page_sizes_df["page"] = page_sizes_df["page"].astype("Int64") except Exception as e: raise ValueError(f"Error processing page_sizes: {e}") from e # Handle empty input DataFrame gracefully if review_file_df.empty: print( "Input review_file_df is empty. Proceeding to generate JSON structure with empty boxes." ) # Ensure essential columns exist even if empty for later steps for col in [xmin, xmax, ymin, ymax, "page", "label", "color", "id", "text"]: if col not in review_file_df.columns: review_file_df[col] = pd.NA else: # --- Coordinate Conversion (if needed) --- coord_cols_to_check = [ c for c in [xmin, xmax, ymin, ymax] if c in review_file_df.columns ] needs_multiplication = False if coord_cols_to_check: temp_df_numeric = review_file_df[coord_cols_to_check].apply( pd.to_numeric, errors="coerce" ) if ( temp_df_numeric.le(1).any().any() ): # Check if any numeric coord <= 1 exists needs_multiplication = True if needs_multiplication: # print("Relative coordinates detected or suspected, running multiplication...") review_file_df = multiply_coordinates_by_page_sizes( review_file_df.copy(), # Pass a copy to avoid modifying original outside function page_sizes_df, xmin, xmax, ymin, ymax, ) else: # print("No relative coordinates detected or required columns missing, skipping multiplication.") # Still ensure essential coordinate/page columns are numeric if they exist cols_to_convert = [ c for c in [xmin, xmax, ymin, ymax, "page"] if c in review_file_df.columns ] for col in cols_to_convert: review_file_df[col] = pd.to_numeric( review_file_df[col], errors="coerce" ) # Handle potential case where multiplication returns an empty DF if review_file_df.empty: print("DataFrame became empty after coordinate processing.") # Re-add essential columns if they were lost for col in [xmin, xmax, ymin, ymax, "page", "label", "color", "id", "text"]: if col not in review_file_df.columns: review_file_df[col] = pd.NA # --- Fill Missing IDs --- review_file_df = fill_missing_ids(review_file_df.copy()) # Pass a copy # --- Deduplicate Based on Key Fields --- base_dedupe_cols = ["page", xmin, ymin, xmax, ymax, "label", "id"] # Identify which deduplication columns actually exist in the DataFrame cols_for_dedupe = [ col for col in base_dedupe_cols if col in review_file_df.columns ] # Add 'image' column for deduplication IF it exists (matches original logic intent) if "image" in review_file_df.columns: cols_for_dedupe.append("image") # Ensure placeholder columns exist if they are needed for deduplication # (e.g., 'label', 'id' should be present after fill_missing_ids) for col in ["label", "id"]: if col in cols_for_dedupe and col not in review_file_df.columns: # This might indicate an issue in fill_missing_ids or prior steps print( f"Warning: Column '{col}' needed for dedupe but not found. Adding NA." ) review_file_df[col] = "" # Add default empty string if cols_for_dedupe: # Only attempt dedupe if we have columns to check # print(f"Deduplicating based on columns: {cols_for_dedupe}") # Convert relevant columns to string before dedupe to avoid type issues with mixed data (optional, depends on data) # for col in cols_for_dedupe: # review_file_df[col] = review_file_df[col].astype(str) review_file_df = review_file_df.drop_duplicates(subset=cols_for_dedupe) else: print("Skipping deduplication: No valid columns found to deduplicate by.") # --- Select and Prepare Final Output Columns --- required_final_cols = [ "page", "label", "color", xmin, ymin, xmax, ymax, "id", "text", ] # Identify which of the desired final columns exist in the (now potentially deduplicated) DataFrame available_final_cols = [ col for col in required_final_cols if col in review_file_df.columns ] # Ensure essential output columns exist, adding defaults if missing AFTER deduplication for col in required_final_cols: if col not in review_file_df.columns: print(f"Adding missing final column '{col}' with default value.") if col in ["label", "id", "text"]: review_file_df[col] = "" # Default empty string elif col == "color": review_file_df[col] = None # Default None or a default color tuple else: # page, coordinates review_file_df[col] = pd.NA # Default NA for numeric/page available_final_cols.append(col) # Add to list of available columns # Select only the final desired columns in the correct order review_file_df = review_file_df[available_final_cols] # --- Final Formatting --- if not review_file_df.empty: # Convert list colors to tuples (important for some downstream uses) if "color" in review_file_df.columns: review_file_df["color"] = review_file_df["color"].apply( lambda x: tuple(x) if isinstance(x, list) else x ) # Ensure page column is nullable integer type for reliable grouping if "page" in review_file_df.columns: review_file_df["page"] = review_file_df["page"].astype("Int64") # --- Group Annotations by Page --- if "page" in review_file_df.columns: grouped_annotations = review_file_df.groupby("page") group_keys = set( grouped_annotations.groups.keys() ) # Use set for faster lookups else: # Cannot group if page column is missing print("Error: 'page' column missing, cannot group annotations.") grouped_annotations = None group_keys = set() # --- Build JSON Structure --- json_data = list() output_cols_for_boxes = [ col for col in ["label", "color", xmin, ymin, xmax, ymax, "id", "text"] if col in review_file_df.columns ] # Iterate through page_sizes_df to define the structure (one entry per image path) for _, row in page_sizes_df.iterrows(): page_num = row["page"] # Already Int64 pdf_image_path = row["image_path"] annotation_boxes = list() # Default to empty list # Check if the page exists in the grouped annotations (using the faster set lookup) # Check pd.notna because page_num could be if conversion failed if pd.notna(page_num) and page_num in group_keys and grouped_annotations: try: page_group_df = grouped_annotations.get_group(page_num) # Convert the group to list of dicts, selecting only needed box properties # Handle potential NaN coordinates before conversion to JSON annotation_boxes = ( page_group_df[output_cols_for_boxes] .replace({np.nan: None}) .to_dict(orient="records") ) # Optional: Round coordinates here if needed AFTER potential multiplication # for box in annotation_boxes: # for coord in [xmin, ymin, xmax, ymax]: # if coord in box and box[coord] is not None: # box[coord] = round(float(box[coord]), 2) # Example: round to 2 decimals except KeyError: print( f"Warning: Group key {page_num} not found despite being in group_keys (should not happen)." ) annotation_boxes = list() # Keep empty # Append the structured data for this image/page json_data.append({"image": pdf_image_path, "boxes": annotation_boxes}) return json_data