Spaces:
Running
Running
File size: 28,340 Bytes
0a61dee aaf8e92 e1d82cf 0a61dee e1d82cf 0a61dee aaf8e92 b2f9387 0e96d6b 3c71765 61f077c a4ffd78 aaf8e92 a4ffd78 6997211 3c71765 2c0435e a4ffd78 3c71765 1b9459c 403d0e5 e1d82cf 1b9459c 403d0e5 e1d82cf 1b9459c e1d82cf 1b9459c e1d82cf 1b9459c e1d82cf 1b9459c 403d0e5 e1d82cf 1b9459c e1d82cf 1b9459c e1d82cf 1b9459c e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 1b9459c e1d82cf 4dece68 0e96d6b 403d0e5 e1d82cf 34ad9f3 a4ffd78 403d0e5 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf 34ad9f3 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf 1b9459c a4ffd78 403d0e5 e1d82cf 403d0e5 1b9459c e1d82cf a4ffd78 e1d82cf 4dece68 1b9459c 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf a4ffd78 e1d82cf a4ffd78 1b9459c a4ffd78 1b9459c e1d82cf 403d0e5 e1d82cf 1b9459c 403d0e5 a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 403d0e5 a4ffd78 403d0e5 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf 1b9459c a4ffd78 1b9459c e1d82cf 403d0e5 a4ffd78 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 a4ffd78 403d0e5 1b9459c 403d0e5 a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 403d0e5 a4ffd78 403d0e5 a4ffd78 aaf8e92 e1d82cf 2c0435e e1d82cf a4ffd78 1b9459c e1d82cf 403d0e5 e1d82cf a4ffd78 e1d82cf a4ffd78 403d0e5 e1d82cf 403d0e5 e1d82cf a4ffd78 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf a4ffd78 e1d82cf 403d0e5 a4ffd78 403d0e5 e1d82cf a4ffd78 e1d82cf b2f9387 6997211 a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 403d0e5 0a61dee a88abcd e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 a4ffd78 403d0e5 0e96d6b e1d82cf aaf8e92 e1d82cf 34ad9f3 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 34ad9f3 e1d82cf b2f9387 e1d82cf 0a61dee aaf8e92 403d0e5 a4ffd78 403d0e5 e1d82cf 61f077c 403d0e5 a4ffd78 e1d82cf 403d0e5 a4ffd78 403d0e5 a4ffd78 403d0e5 a4ffd78 e1d82cf 403d0e5 a4ffd78 403d0e5 a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 403d0e5 e1d82cf 61f077c a4ffd78 e1d82cf a4ffd78 e1d82cf 1b9459c 0a61dee a88abcd a4ffd78 61f077c a4ffd78 e1d82cf 61f077c 0e96d6b a4ffd78 6997211 e1d82cf 3c71765 403d0e5 e1d82cf 403d0e5 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf 3c71765 e1d82cf a88abcd 34ad9f3 e1d82cf 1b9459c e1d82cf 1b9459c 3c71765 e1d82cf a4ffd78 e1d82cf 6997211 34ad9f3 e1d82cf 34ad9f3 e1d82cf 6997211 a88abcd a4ffd78 e1d82cf b2f9387 403d0e5 a4ffd78 403d0e5 e1d82cf 1b9459c b2f9387 2c0435e e1d82cf 3c71765 e1d82cf a4ffd78 0e96d6b b2f9387 e1d82cf a4ffd78 e1d82cf 403d0e5 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf 3c71765 e1d82cf 34ad9f3 e1d82cf 1b9459c 3c71765 e1d82cf 1b9459c e1d82cf 34ad9f3 e1d82cf 34ad9f3 e1d82cf 2c0435e e1d82cf 0a61dee e1d82cf 0a61dee e1d82cf a4ffd78 e1d82cf a4ffd78 e1d82cf 3c71765 e1d82cf a4ffd78 e1d82cf 0e96d6b e1d82cf 403d0e5 e1d82cf 0a61dee 6997211 e1d82cf 403d0e5 e1d82cf 6997211 e1d82cf 0e96d6b e1d82cf 403d0e5 e1d82cf 0a61dee 6997211 e1d82cf 6997211 e1d82cf 0a61dee e1d82cf 6997211 e1d82cf 0a61dee 6997211 e1d82cf 6997211 e1d82cf a4ffd78 e1d82cf 0a61dee a4ffd78 0a61dee a4ffd78 e1d82cf a4ffd78 e1d82cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
"""
π¦ BirdSense Pro - AI Bird Identification
- Local: Ollama LLaVA (vision) + Llama3.2 (text/audio)
- Cloud: HuggingFace BLIP-2 + Text models
NO HARDCODED BIRDS - Pure AI identification
"""
import gradio as gr
import numpy as np
import scipy.signal as signal
from typing import Tuple, List, Dict, Optional
import json
import requests
import re
import urllib.parse
import os
import traceback
from PIL import Image
import io
import base64
# ================== CONFIG ==================
OLLAMA_URL = os.environ.get("OLLAMA_URL", "http://localhost:11434")
HF_TOKEN = os.environ.get("HF_TOKEN", "")
DEBUG = True
def log(msg):
if DEBUG:
print(f"[BirdSense] {msg}")
# ================== CSS ==================
CSS = """
.gradio-container {
background: linear-gradient(135deg, #f0f4f8 0%, #d9e2ec 100%) !important;
font-family: 'Inter', sans-serif !important;
}
.header {
background: linear-gradient(135deg, #1a365d 0%, #2c5282 50%, #3182ce 100%);
color: white; padding: 35px 20px; border-radius: 16px;
text-align: center; margin-bottom: 16px;
box-shadow: 0 10px 30px rgba(26, 54, 93, 0.25);
}
.header h1 { font-size: 2.2rem; font-weight: 800; margin: 0 0 8px 0; }
.header .subtitle { font-size: 1rem; opacity: 0.9; margin-bottom: 10px; }
.header .status {
display: inline-flex; align-items: center; gap: 6px;
background: rgba(255,255,255,0.15); padding: 6px 16px; border-radius: 50px;
font-weight: 600; font-size: 0.85rem;
}
.status-dot { width: 8px; height: 8px; border-radius: 50%; }
.status-green { background: #48bb78; }
.status-yellow { background: #ecc94b; }
.status-red { background: #fc8181; }
.info-box {
background: linear-gradient(135deg, #ebf4ff 0%, #c3dafe 100%);
border: 1px solid #90cdf4; border-radius: 10px; padding: 14px; margin-bottom: 14px;
}
.info-box h3 { color: #2b6cb0; margin: 0 0 4px 0; font-size: 0.95rem; }
.info-box p { color: #4299e1; margin: 0; font-size: 0.85rem; }
.bird-card {
background: white; border: 1px solid #e2e8f0; border-radius: 14px;
padding: 16px; margin: 10px 0; display: flex; gap: 14px;
box-shadow: 0 3px 10px rgba(0,0,0,0.04);
}
.bird-card img { width: 100px; height: 100px; object-fit: cover; border-radius: 10px; flex-shrink: 0; }
.bird-info { flex: 1; min-width: 0; }
.bird-info h3 { color: #1a202c; margin: 0 0 3px 0; font-size: 1.1rem; font-weight: 700; }
.bird-info .scientific { color: #718096; font-style: italic; font-size: 0.8rem; margin-bottom: 8px; }
.confidence { display: inline-block; padding: 3px 10px; border-radius: 16px; font-weight: 700; font-size: 0.75rem; }
.conf-high { background: #c6f6d5; color: #22543d; }
.conf-med { background: #fefcbf; color: #744210; }
.conf-low { background: #fed7d7; color: #742a2a; }
.reason { color: #4a5568; margin-top: 8px; line-height: 1.5; font-size: 0.85rem; }
.error { background: #fff5f5; border: 1px solid #fc8181; border-radius: 10px; padding: 16px; color: #c53030; }
.success { background: #f0fff4; border: 1px solid #68d391; border-radius: 10px; padding: 16px; color: #276749; }
.processing { background: #ebf8ff; border: 1px solid #63b3ed; border-radius: 10px; padding: 16px; color: #2b6cb0; }
.features-box { background: #f7fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 12px; margin: 8px 0; font-size: 0.8rem; }
"""
# ================== OLLAMA FUNCTIONS ==================
def check_ollama_models() -> Dict:
"""Check available Ollama models."""
result = {"available": False, "vision_model": None, "text_model": None}
try:
response = requests.get(f"{OLLAMA_URL}/api/tags", timeout=3)
if response.status_code == 200:
models = [m["name"] for m in response.json().get("models", [])]
log(f"Ollama models: {models}")
result["available"] = True
# Find vision model
for m in models:
if "llava" in m.lower() or "bakllava" in m.lower():
result["vision_model"] = m
break
# Find text model
for m in models:
if any(t in m.lower() for t in ["llama", "qwen", "mistral", "phi"]):
if "llava" not in m.lower(): # Exclude vision models
result["text_model"] = m
break
except Exception as e:
log(f"Ollama check failed: {e}")
return result
def call_llava(image: Image.Image, prompt: str, model: str) -> str:
"""Call LLaVA vision model."""
try:
# Resize image
max_size = 768
if max(image.size) > max_size:
ratio = max_size / max(image.size)
image = image.resize((int(image.size[0]*ratio), int(image.size[1]*ratio)), Image.Resampling.LANCZOS)
# Convert to base64
buffer = io.BytesIO()
image.save(buffer, format="JPEG", quality=85)
img_b64 = base64.b64encode(buffer.getvalue()).decode()
log(f"Calling LLaVA ({model}) with {len(img_b64)} bytes image...")
response = requests.post(
f"{OLLAMA_URL}/api/generate",
json={
"model": model,
"prompt": prompt,
"images": [img_b64],
"stream": False,
"options": {"temperature": 0.1, "num_predict": 1200}
},
timeout=120
)
if response.status_code == 200:
result = response.json().get("response", "")
log(f"LLaVA response ({len(result)} chars): {result[:300]}...")
return result
else:
log(f"LLaVA error: {response.status_code} - {response.text[:200]}")
except Exception as e:
log(f"LLaVA call failed: {traceback.format_exc()}")
return ""
def call_ollama_text(prompt: str, model: str) -> str:
"""Call Ollama text model (for audio/description)."""
try:
log(f"Calling text model ({model})...")
response = requests.post(
f"{OLLAMA_URL}/api/generate",
json={
"model": model,
"prompt": prompt,
"stream": False,
"options": {"temperature": 0.2, "num_predict": 800}
},
timeout=60
)
if response.status_code == 200:
return response.json().get("response", "")
except Exception as e:
log(f"Text model error: {e}")
return ""
# ================== HUGGINGFACE FUNCTIONS ==================
def call_hf_image_caption(image: Image.Image) -> str:
"""Get image caption from HuggingFace BLIP."""
if not HF_TOKEN:
log("No HF_TOKEN")
return ""
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
# Resize
max_size = 512
if max(image.size) > max_size:
ratio = max_size / max(image.size)
image = image.resize((int(image.size[0]*ratio), int(image.size[1]*ratio)), Image.Resampling.LANCZOS)
buffer = io.BytesIO()
image.save(buffer, format="JPEG", quality=80)
models = [
"Salesforce/blip-image-captioning-large",
"Salesforce/blip-image-captioning-base",
]
for model in models:
try:
log(f"Trying HF caption model: {model}")
response = requests.post(
f"https://api-inference.huggingface.co/models/{model}",
headers=headers,
data=buffer.getvalue(),
timeout=45
)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and result:
caption = result[0].get("generated_text", "")
if caption:
log(f"HF caption: {caption}")
return caption
elif response.status_code == 503:
log(f"{model} loading, trying next...")
else:
log(f"HF error {response.status_code}: {response.text[:100]}")
except Exception as e:
log(f"HF caption error: {e}")
return ""
def call_hf_text(prompt: str) -> str:
"""Call HuggingFace text model."""
if not HF_TOKEN:
return ""
headers = {"Authorization": f"Bearer {HF_TOKEN}", "Content-Type": "application/json"}
models = [
"mistralai/Mistral-7B-Instruct-v0.2",
"HuggingFaceH4/zephyr-7b-beta",
"google/flan-t5-xl",
]
for model in models:
try:
log(f"Trying HF text model: {model}")
response = requests.post(
f"https://api-inference.huggingface.co/models/{model}",
headers=headers,
json={"inputs": prompt, "parameters": {"max_new_tokens": 600, "temperature": 0.3}},
timeout=45
)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and result:
text = result[0].get("generated_text", "")
if text:
log(f"HF text ({len(text)} chars)")
return text
elif response.status_code == 503:
continue
except Exception as e:
log(f"HF text error: {e}")
return ""
# ================== PARSING ==================
def parse_bird_response(text: str) -> Tuple[List[Dict], str]:
"""Parse LLM response to extract bird identifications. NO HARDCODED FALLBACKS."""
birds = []
summary = ""
if not text:
return [], ""
log(f"Parsing response: {text[:500]}...")
# Try JSON first
try:
json_match = re.search(r'\{[\s\S]*"birds"[\s\S]*\}', text)
if json_match:
json_str = json_match.group()
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str) # Fix trailing commas
data = json.loads(json_str)
raw_birds = data.get("birds", [])
summary = data.get("summary", "")
for b in raw_birds:
name = b.get("name", "").strip()
# Filter out garbage
if name and len(name) > 2 and name.lower() not in ["the bird", "bird", "unknown", "the image", "image"]:
birds.append({
"name": name,
"scientific_name": b.get("scientific_name", ""),
"confidence": min(99, max(1, int(b.get("confidence", 70)))),
"reason": b.get("reason", "Identified by AI")
})
if birds:
return birds, summary
except json.JSONDecodeError as e:
log(f"JSON parse error: {e}")
# Fallback: Extract from text using patterns
# Look for "This is a/an [Bird Name]" or "[Bird Name] (Scientific name)"
patterns = [
r"(?:this is|identified as|appears to be|looks like|most likely)\s+(?:a|an|the)?\s*([A-Z][a-z]+(?:[-\s][A-Za-z]+){0,3})",
r"([A-Z][a-z]+(?:\s[A-Za-z]+)?)\s*\(([A-Z][a-z]+\s[a-z]+)\)", # Name (Scientific name)
r"species[:\s]+([A-Z][a-z]+(?:\s[A-Za-z]+)?)",
]
for pattern in patterns:
matches = re.findall(pattern, text)
for match in matches:
if isinstance(match, tuple):
name = match[0].strip()
else:
name = match.strip()
# Validate it looks like a bird name
if name and len(name) > 3 and name.lower() not in ["the bird", "bird", "unknown"]:
# Check it's not a common non-bird word
skip_words = ["the", "this", "that", "image", "photo", "picture", "bird", "species"]
if name.lower() not in skip_words:
birds.append({
"name": name,
"scientific_name": "",
"confidence": 65,
"reason": "Extracted from AI analysis"
})
break
if birds:
break
return birds[:3], summary # Max 3 birds
def get_bird_image(bird_name: str) -> str:
"""Get bird image from Wikipedia."""
if not bird_name or len(bird_name) < 3:
return ""
try:
# Clean name for Wikipedia
clean = bird_name.strip().replace(" ", "_")
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{urllib.parse.quote(clean)}"
response = requests.get(url, timeout=5)
if response.status_code == 200:
data = response.json()
if "thumbnail" in data:
img_url = data["thumbnail"]["source"]
log(f"Got Wikipedia image for {bird_name}")
return img_url
elif "originalimage" in data:
return data["originalimage"]["source"]
except Exception as e:
log(f"Wikipedia image error: {e}")
# Fallback placeholder with bird name
return f"https://via.placeholder.com/120x120/4299e1/ffffff?text={urllib.parse.quote(bird_name[:10])}"
def format_bird_card(bird: Dict, index: int) -> str:
"""Format bird as HTML card."""
name = bird.get("name", "Unknown")
scientific = bird.get("scientific_name", "")
confidence = bird.get("confidence", 50)
reason = bird.get("reason", "")
img_url = get_bird_image(name)
conf_class = "conf-high" if confidence >= 80 else "conf-med" if confidence >= 60 else "conf-low"
return f"""
<div class="bird-card">
<img src="{img_url}" alt="{name}" onerror="this.style.display='none'">
<div class="bird-info">
<h3>{index}. {name}</h3>
{f'<div class="scientific">{scientific}</div>' if scientific else ''}
<span class="confidence {conf_class}">{confidence}% confidence</span>
<p class="reason">{reason}</p>
</div>
</div>"""
# ================== IDENTIFICATION FUNCTIONS ==================
IMAGE_PROMPT = """Look at this bird image carefully. Identify the bird species.
You MUST respond with valid JSON in this exact format:
{
"birds": [
{
"name": "Blue-and-yellow Macaw",
"scientific_name": "Ara ararauna",
"confidence": 95,
"reason": "Large parrot with bright blue wings and yellow underparts, characteristic of this species"
}
],
"summary": "This is a Blue-and-yellow Macaw, a large South American parrot."
}
Look for:
- Beak shape and color
- Body colors and patterns
- Size and shape
- Any distinctive markings
Give the ACTUAL species name (not "bird" or "unknown"). If unsure, give your best guess with lower confidence.
Return ONLY the JSON."""
def identify_image_stream(image):
"""Identify bird from image."""
if image is None:
yield '<div class="error">β οΈ Please upload an image</div>'
return
try:
if not isinstance(image, Image.Image):
image = Image.fromarray(np.array(image))
image = image.convert("RGB")
yield '<div class="processing">π Analyzing image...</div>'
models = check_ollama_models()
response = ""
method = ""
# Try LLaVA first (best for images)
if models["vision_model"]:
yield f'<div class="processing">π¦ Using LLaVA vision model...</div>'
response = call_llava(image, IMAGE_PROMPT, models["vision_model"])
method = "LLaVA Vision"
# Fallback to HuggingFace
if not response:
yield '<div class="processing">βοΈ Using HuggingFace AI...</div>'
# Get caption first
caption = call_hf_image_caption(image)
if caption:
yield f'<div class="processing">π Identifying from caption...</div><div class="features-box"><b>AI sees:</b> {caption}</div>'
# Use text model to identify
text_prompt = f"""Based on this image description, identify the bird species:
"{caption}"
Respond with JSON:
{{"birds": [{{"name": "Species Name", "scientific_name": "...", "confidence": 80, "reason": "..."}}], "summary": "..."}}
Give the ACTUAL bird species name. Return ONLY JSON."""
if models["text_model"]:
response = call_ollama_text(text_prompt, models["text_model"])
if not response:
response = call_hf_text(text_prompt)
method = "HuggingFace BLIP + Text"
else:
yield '<div class="error">β Could not analyze image. HuggingFace API may be unavailable.</div>'
return
# Parse response
birds, summary = parse_bird_response(response)
if not birds:
yield f'''<div class="error">
<b>β Could not identify bird species</b>
<p>The AI response couldn't be parsed. Try a clearer image.</p>
<div class="features-box"><b>Raw AI response:</b><br>{response[:500] if response else "No response"}</div>
</div>'''
return
# Success
result = f'''<div class="success">
<h3>π¦ {len(birds)} Bird(s) Identified!</h3>
<p>{summary or f"Identified using {method}"}</p>
</div>'''
for i, bird in enumerate(birds, 1):
result += format_bird_card(bird, i)
yield result
except Exception as e:
log(f"Image error: {traceback.format_exc()}")
yield f'<div class="error">β Error: {str(e)}</div>'
# ================== AUDIO IDENTIFICATION ==================
def process_audio(audio_data: np.ndarray, sr: int) -> Dict:
"""Extract audio features for bird identification."""
try:
audio = audio_data.astype(np.float64)
if np.max(np.abs(audio)) > 0:
audio = audio / np.max(np.abs(audio))
# Bandpass filter (500Hz - 10kHz for birds)
nyq = sr / 2
low, high = max(500/nyq, 0.01), min(10000/nyq, 0.99)
if low < high:
b, a = signal.butter(4, [low, high], btype='band')
audio = signal.filtfilt(b, a, audio)
duration = len(audio_data) / sr
# Peak frequency
fft = np.fft.rfft(audio)
freqs = np.fft.rfftfreq(len(audio), 1/sr)
peak_freq = freqs[np.argmax(np.abs(fft))] if len(freqs) > 0 else 0
# Count syllables
envelope = np.abs(signal.hilbert(audio))
threshold = np.mean(envelope) + 0.5 * np.std(envelope)
syllables = np.sum(np.diff((envelope > threshold).astype(int)) > 0)
return {
"duration": round(duration, 2),
"peak_freq": int(peak_freq),
"syllables": int(syllables),
"freq_range": "high" if peak_freq > 3000 else "medium" if peak_freq > 1000 else "low"
}
except:
return {"duration": 0, "peak_freq": 0, "syllables": 0, "freq_range": "unknown"}
AUDIO_PROMPT = """You are an expert ornithologist. Identify the bird from these audio features:
- Duration: {duration} seconds
- Peak Frequency: {peak_freq} Hz ({freq_range} range)
- Syllables/notes detected: {syllables}
{extra}
Based on these acoustic features, identify possible bird species.
High frequency (>3000 Hz) = small birds like warblers, finches
Medium frequency (1000-3000 Hz) = thrushes, bulbuls, mynas
Low frequency (<1000 Hz) = larger birds like crows, doves
Respond with JSON ONLY:
{{"birds": [{{"name": "Species Name", "scientific_name": "...", "confidence": 70, "reason": "Matches because..."}}], "summary": "..."}}
Give ACTUAL species names, not generic terms."""
def identify_audio_stream(audio_input, location: str = "", month: str = ""):
"""Identify bird from audio - uses TEXT model, not vision."""
if audio_input is None:
yield '<div class="error">β οΈ Please upload or record audio</div>'
return
try:
if isinstance(audio_input, tuple):
sr, audio_data = audio_input
else:
yield '<div class="error">β οΈ Invalid audio format</div>'
return
if len(audio_data) == 0:
yield '<div class="error">β οΈ Empty audio</div>'
return
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
yield '<div class="processing">π Analyzing audio features...</div>'
features = process_audio(audio_data, sr)
features_html = f'''<div class="features-box">
<b>π΅ Audio Analysis</b><br>
β’ Duration: {features["duration"]}s | Peak: {features["peak_freq"]} Hz ({features["freq_range"]})<br>
β’ Syllables: {features["syllables"]}
</div>'''
yield f'<div class="processing">π€ Identifying bird...</div>{features_html}'
extra = ""
if location: extra += f"\n- Location: {location}"
if month: extra += f"\n- Month: {month}"
prompt = AUDIO_PROMPT.format(**features, extra=extra)
models = check_ollama_models()
response = ""
# Use TEXT model for audio (NOT vision!)
if models["text_model"]:
yield f'<div class="processing">π¦ Using {models["text_model"]}...</div>{features_html}'
response = call_ollama_text(prompt, models["text_model"])
if not response:
yield f'<div class="processing">βοΈ Using HuggingFace...</div>{features_html}'
response = call_hf_text(prompt)
birds, summary = parse_bird_response(response)
if not birds:
yield f'''<div class="error">
<b>Could not identify bird from audio</b>
<p>Try a clearer recording with less background noise.</p>
{features_html}
</div>'''
return
result = f'''<div class="success">
<h3>π¦ {len(birds)} Bird(s) Identified!</h3>
<p>{summary}</p>
</div>{features_html}'''
for i, bird in enumerate(birds, 1):
result += format_bird_card(bird, i)
yield result
except Exception as e:
log(f"Audio error: {traceback.format_exc()}")
yield f'<div class="error">β Error: {str(e)}</div>'
# ================== DESCRIPTION IDENTIFICATION ==================
def identify_description_stream(description: str):
"""Identify bird from text description."""
if not description or len(description.strip()) < 5:
yield '<div class="error">β οΈ Please enter a description</div>'
return
try:
yield '<div class="processing">π Analyzing description...</div>'
prompt = f"""Identify the bird species from this description:
"{description}"
Respond with JSON:
{{"birds": [{{"name": "Species Name", "scientific_name": "...", "confidence": 80, "reason": "..."}}], "summary": "..."}}
Use ACTUAL species names. Return ONLY JSON."""
models = check_ollama_models()
response = ""
if models["text_model"]:
yield '<div class="processing">π¦ Using local AI...</div>'
response = call_ollama_text(prompt, models["text_model"])
if not response:
yield '<div class="processing">βοΈ Using HuggingFace...</div>'
response = call_hf_text(prompt)
birds, summary = parse_bird_response(response)
if not birds:
yield '<div class="error"><b>Could not identify bird</b><p>Try adding more details.</p></div>'
return
result = f'''<div class="success">
<h3>π¦ {len(birds)} Bird(s) Match!</h3>
<p>{summary}</p>
</div>'''
for i, bird in enumerate(birds, 1):
result += format_bird_card(bird, i)
yield result
except Exception as e:
yield f'<div class="error">β Error: {str(e)}</div>'
# ================== UI ==================
def get_status_html():
"""Get status indicator."""
models = check_ollama_models()
if models["vision_model"]:
return f'<span class="status-dot status-green"></span> LLaVA + {models["text_model"] or "HF"}'
elif models["text_model"]:
return f'<span class="status-dot status-yellow"></span> {models["text_model"]} (no vision)'
elif HF_TOKEN:
return '<span class="status-dot status-yellow"></span> HuggingFace Cloud'
else:
return '<span class="status-dot status-red"></span> Limited Mode'
def create_app():
with gr.Blocks(title="BirdSense Pro") as demo:
gr.HTML(f"<style>{CSS}</style>")
gr.HTML(f"""
<div class="header">
<h1>π¦ BirdSense Pro</h1>
<p class="subtitle">AI Bird Identification β’ Audio β’ Image β’ Description</p>
<div class="status">{get_status_html()}</div>
</div>""")
# AUDIO FIRST
with gr.Tab("π΅ Audio"):
gr.HTML('<div class="info-box"><h3>π΅ Audio Identification</h3><p>Upload or record bird calls. Uses text AI to analyze acoustic features.</p></div>')
with gr.Row():
with gr.Column():
audio_in = gr.Audio(sources=["upload", "microphone"], type="numpy", label="π€ Audio")
with gr.Row():
loc = gr.Textbox(label="π Location", placeholder="e.g., Mumbai")
mon = gr.Dropdown(label="π
Month", choices=[""] + ["January","February","March","April","May","June","July","August","September","October","November","December"])
audio_btn = gr.Button("π Identify", variant="primary", size="lg")
with gr.Column():
audio_out = gr.HTML('<div style="padding:40px;text-align:center;color:#a0aec0">π΅ Upload audio to identify</div>')
audio_btn.click(identify_audio_stream, [audio_in, loc, mon], audio_out)
# IMAGE
with gr.Tab("π· Image"):
gr.HTML('<div class="info-box"><h3>π· Image Identification</h3><p>Upload a photo. Uses LLaVA vision AI to analyze the actual image.</p></div>')
with gr.Row():
with gr.Column():
img_in = gr.Image(sources=["upload", "webcam"], type="pil", label="πΈ Photo")
img_btn = gr.Button("π Identify", variant="primary", size="lg")
with gr.Column():
img_out = gr.HTML('<div style="padding:40px;text-align:center;color:#a0aec0">π· Upload image to identify</div>')
img_btn.click(identify_image_stream, [img_in], img_out)
# DESCRIPTION
with gr.Tab("π Description"):
gr.HTML('<div class="info-box"><h3>π Text Description</h3><p>Describe the bird - colors, size, behavior, sounds.</p></div>')
with gr.Row():
with gr.Column():
desc_in = gr.Textbox(label="βοΈ Description", lines=3, placeholder="e.g., Large blue and yellow parrot with long tail")
desc_btn = gr.Button("π Identify", variant="primary", size="lg")
with gr.Column():
desc_out = gr.HTML('<div style="padding:40px;text-align:center;color:#a0aec0">π Describe a bird</div>')
desc_btn.click(identify_description_stream, [desc_in], desc_out)
gr.HTML('<div style="text-align:center;padding:10px;color:#718096;font-size:0.8rem"><b>BirdSense Pro</b> β’ Local: LLaVA (image) + Llama3.2 (audio/text) β’ Cloud: HuggingFace BLIP</div>')
return demo
if __name__ == "__main__":
log("Starting BirdSense Pro...")
models = check_ollama_models()
log(f"Vision: {models['vision_model']}, Text: {models['text_model']}, HF: {bool(HF_TOKEN)}")
app = create_app()
app.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|