Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- ollama_client.py +254 -0
- zero_shot_identifier.py +470 -0
ollama_client.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Ollama Client for BirdSense.
|
| 3 |
+
|
| 4 |
+
Provides interface to local LLM models via Ollama for:
|
| 5 |
+
- Species reasoning and verification
|
| 6 |
+
- Description matching
|
| 7 |
+
- Natural language queries about birds
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import httpx
|
| 11 |
+
import json
|
| 12 |
+
from typing import Optional, Dict, Any, List, AsyncGenerator
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
import asyncio
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class OllamaConfig:
|
| 19 |
+
"""Configuration for Ollama client."""
|
| 20 |
+
base_url: str = "http://localhost:11434"
|
| 21 |
+
model: str = "phi3:mini" # Lightweight model for edge deployment
|
| 22 |
+
temperature: float = 0.3
|
| 23 |
+
max_tokens: int = 512
|
| 24 |
+
timeout: int = 30
|
| 25 |
+
stream: bool = False
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class OllamaClient:
|
| 29 |
+
"""
|
| 30 |
+
Async client for Ollama API.
|
| 31 |
+
|
| 32 |
+
Supports:
|
| 33 |
+
- Text generation
|
| 34 |
+
- Streaming responses
|
| 35 |
+
- Model listing and management
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self, config: Optional[OllamaConfig] = None):
|
| 39 |
+
self.config = config or OllamaConfig()
|
| 40 |
+
self._client: Optional[httpx.AsyncClient] = None
|
| 41 |
+
|
| 42 |
+
async def __aenter__(self):
|
| 43 |
+
self._client = httpx.AsyncClient(
|
| 44 |
+
base_url=self.config.base_url,
|
| 45 |
+
timeout=httpx.Timeout(self.config.timeout)
|
| 46 |
+
)
|
| 47 |
+
return self
|
| 48 |
+
|
| 49 |
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
| 50 |
+
if self._client:
|
| 51 |
+
await self._client.aclose()
|
| 52 |
+
|
| 53 |
+
@property
|
| 54 |
+
def client(self) -> httpx.AsyncClient:
|
| 55 |
+
if self._client is None:
|
| 56 |
+
self._client = httpx.AsyncClient(
|
| 57 |
+
base_url=self.config.base_url,
|
| 58 |
+
timeout=httpx.Timeout(self.config.timeout)
|
| 59 |
+
)
|
| 60 |
+
return self._client
|
| 61 |
+
|
| 62 |
+
async def generate(
|
| 63 |
+
self,
|
| 64 |
+
prompt: str,
|
| 65 |
+
system_prompt: Optional[str] = None,
|
| 66 |
+
temperature: Optional[float] = None,
|
| 67 |
+
max_tokens: Optional[int] = None,
|
| 68 |
+
model: Optional[str] = None
|
| 69 |
+
) -> str:
|
| 70 |
+
"""
|
| 71 |
+
Generate text completion.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
prompt: User prompt
|
| 75 |
+
system_prompt: System instruction
|
| 76 |
+
temperature: Sampling temperature (default from config)
|
| 77 |
+
max_tokens: Max tokens to generate
|
| 78 |
+
model: Model to use (default from config)
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
Generated text response
|
| 82 |
+
"""
|
| 83 |
+
payload = {
|
| 84 |
+
"model": model or self.config.model,
|
| 85 |
+
"prompt": prompt,
|
| 86 |
+
"stream": False,
|
| 87 |
+
"options": {
|
| 88 |
+
"temperature": temperature or self.config.temperature,
|
| 89 |
+
"num_predict": max_tokens or self.config.max_tokens
|
| 90 |
+
}
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
if system_prompt:
|
| 94 |
+
payload["system"] = system_prompt
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
response = await self.client.post("/api/generate", json=payload)
|
| 98 |
+
response.raise_for_status()
|
| 99 |
+
result = response.json()
|
| 100 |
+
return result.get("response", "")
|
| 101 |
+
except httpx.HTTPError as e:
|
| 102 |
+
raise ConnectionError(f"Failed to connect to Ollama: {e}")
|
| 103 |
+
|
| 104 |
+
async def generate_stream(
|
| 105 |
+
self,
|
| 106 |
+
prompt: str,
|
| 107 |
+
system_prompt: Optional[str] = None,
|
| 108 |
+
model: Optional[str] = None
|
| 109 |
+
) -> AsyncGenerator[str, None]:
|
| 110 |
+
"""
|
| 111 |
+
Stream text generation.
|
| 112 |
+
|
| 113 |
+
Yields:
|
| 114 |
+
Chunks of generated text
|
| 115 |
+
"""
|
| 116 |
+
payload = {
|
| 117 |
+
"model": model or self.config.model,
|
| 118 |
+
"prompt": prompt,
|
| 119 |
+
"stream": True,
|
| 120 |
+
"options": {
|
| 121 |
+
"temperature": self.config.temperature,
|
| 122 |
+
"num_predict": self.config.max_tokens
|
| 123 |
+
}
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
if system_prompt:
|
| 127 |
+
payload["system"] = system_prompt
|
| 128 |
+
|
| 129 |
+
async with self.client.stream("POST", "/api/generate", json=payload) as response:
|
| 130 |
+
async for line in response.aiter_lines():
|
| 131 |
+
if line:
|
| 132 |
+
data = json.loads(line)
|
| 133 |
+
if "response" in data:
|
| 134 |
+
yield data["response"]
|
| 135 |
+
if data.get("done", False):
|
| 136 |
+
break
|
| 137 |
+
|
| 138 |
+
async def chat(
|
| 139 |
+
self,
|
| 140 |
+
messages: List[Dict[str, str]],
|
| 141 |
+
model: Optional[str] = None
|
| 142 |
+
) -> str:
|
| 143 |
+
"""
|
| 144 |
+
Chat completion with message history.
|
| 145 |
+
|
| 146 |
+
Args:
|
| 147 |
+
messages: List of {"role": "user/assistant/system", "content": "..."}
|
| 148 |
+
model: Model to use
|
| 149 |
+
|
| 150 |
+
Returns:
|
| 151 |
+
Assistant response
|
| 152 |
+
"""
|
| 153 |
+
payload = {
|
| 154 |
+
"model": model or self.config.model,
|
| 155 |
+
"messages": messages,
|
| 156 |
+
"stream": False,
|
| 157 |
+
"options": {
|
| 158 |
+
"temperature": self.config.temperature,
|
| 159 |
+
"num_predict": self.config.max_tokens
|
| 160 |
+
}
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
try:
|
| 164 |
+
response = await self.client.post("/api/chat", json=payload)
|
| 165 |
+
response.raise_for_status()
|
| 166 |
+
result = response.json()
|
| 167 |
+
return result.get("message", {}).get("content", "")
|
| 168 |
+
except httpx.HTTPError as e:
|
| 169 |
+
raise ConnectionError(f"Failed to connect to Ollama: {e}")
|
| 170 |
+
|
| 171 |
+
async def list_models(self) -> List[Dict[str, Any]]:
|
| 172 |
+
"""List available models."""
|
| 173 |
+
try:
|
| 174 |
+
response = await self.client.get("/api/tags")
|
| 175 |
+
response.raise_for_status()
|
| 176 |
+
return response.json().get("models", [])
|
| 177 |
+
except httpx.HTTPError as e:
|
| 178 |
+
raise ConnectionError(f"Failed to list models: {e}")
|
| 179 |
+
|
| 180 |
+
async def is_model_available(self, model: Optional[str] = None) -> bool:
|
| 181 |
+
"""Check if specified model is available."""
|
| 182 |
+
model = model or self.config.model
|
| 183 |
+
try:
|
| 184 |
+
models = await self.list_models()
|
| 185 |
+
return any(m.get("name", "").startswith(model.split(":")[0]) for m in models)
|
| 186 |
+
except Exception:
|
| 187 |
+
return False
|
| 188 |
+
|
| 189 |
+
async def health_check(self) -> bool:
|
| 190 |
+
"""Check if Ollama server is running."""
|
| 191 |
+
try:
|
| 192 |
+
response = await self.client.get("/api/tags")
|
| 193 |
+
return response.status_code == 200
|
| 194 |
+
except Exception:
|
| 195 |
+
return False
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class SyncOllamaClient:
|
| 199 |
+
"""
|
| 200 |
+
Synchronous wrapper for OllamaClient.
|
| 201 |
+
|
| 202 |
+
Convenience class for non-async code paths.
|
| 203 |
+
"""
|
| 204 |
+
|
| 205 |
+
def __init__(self, config: Optional[OllamaConfig] = None):
|
| 206 |
+
self.config = config or OllamaConfig()
|
| 207 |
+
self._async_client = OllamaClient(config)
|
| 208 |
+
|
| 209 |
+
def _run(self, coro):
|
| 210 |
+
"""Run async coroutine synchronously."""
|
| 211 |
+
try:
|
| 212 |
+
loop = asyncio.get_event_loop()
|
| 213 |
+
if loop.is_running():
|
| 214 |
+
# If we're in an async context, use nest_asyncio pattern
|
| 215 |
+
import nest_asyncio
|
| 216 |
+
nest_asyncio.apply()
|
| 217 |
+
return loop.run_until_complete(coro)
|
| 218 |
+
else:
|
| 219 |
+
return loop.run_until_complete(coro)
|
| 220 |
+
except RuntimeError:
|
| 221 |
+
# No event loop exists
|
| 222 |
+
return asyncio.run(coro)
|
| 223 |
+
|
| 224 |
+
def generate(
|
| 225 |
+
self,
|
| 226 |
+
prompt: str,
|
| 227 |
+
system_prompt: Optional[str] = None,
|
| 228 |
+
temperature: Optional[float] = None,
|
| 229 |
+
max_tokens: Optional[int] = None,
|
| 230 |
+
model: Optional[str] = None
|
| 231 |
+
) -> str:
|
| 232 |
+
"""Generate text completion synchronously."""
|
| 233 |
+
return self._run(
|
| 234 |
+
self._async_client.generate(
|
| 235 |
+
prompt, system_prompt, temperature, max_tokens, model
|
| 236 |
+
)
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
def chat(
|
| 240 |
+
self,
|
| 241 |
+
messages: List[Dict[str, str]],
|
| 242 |
+
model: Optional[str] = None
|
| 243 |
+
) -> str:
|
| 244 |
+
"""Chat completion synchronously."""
|
| 245 |
+
return self._run(self._async_client.chat(messages, model))
|
| 246 |
+
|
| 247 |
+
def health_check(self) -> bool:
|
| 248 |
+
"""Check Ollama health synchronously."""
|
| 249 |
+
return self._run(self._async_client.health_check())
|
| 250 |
+
|
| 251 |
+
def is_model_available(self, model: Optional[str] = None) -> bool:
|
| 252 |
+
"""Check model availability synchronously."""
|
| 253 |
+
return self._run(self._async_client.is_model_available(model))
|
| 254 |
+
|
zero_shot_identifier.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Zero-Shot Bird Identification using LLM.
|
| 3 |
+
|
| 4 |
+
This is the CORE innovation: Instead of training on every bird,
|
| 5 |
+
we use the LLM's knowledge to identify ANY bird from audio features.
|
| 6 |
+
|
| 7 |
+
The LLM has learned about thousands of bird species from its training data,
|
| 8 |
+
including their calls, habitats, and behaviors.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import json
|
| 12 |
+
import logging
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
from typing import List, Dict, Any, Optional, Tuple
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
from .ollama_client import OllamaClient, OllamaConfig
|
| 18 |
+
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class AudioFeatures:
|
| 24 |
+
"""Extracted audio features for LLM analysis."""
|
| 25 |
+
duration: float
|
| 26 |
+
dominant_frequency_hz: float
|
| 27 |
+
frequency_range: Tuple[float, float]
|
| 28 |
+
spectral_centroid: float
|
| 29 |
+
spectral_bandwidth: float
|
| 30 |
+
tempo_bpm: float
|
| 31 |
+
num_syllables: int
|
| 32 |
+
syllable_rate: float # syllables per second
|
| 33 |
+
is_melodic: bool
|
| 34 |
+
is_repetitive: bool
|
| 35 |
+
amplitude_pattern: str # "constant", "rising", "falling", "varied"
|
| 36 |
+
estimated_snr_db: float
|
| 37 |
+
quality_score: float
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@dataclass
|
| 41 |
+
class ZeroShotResult:
|
| 42 |
+
"""Result from zero-shot identification."""
|
| 43 |
+
species_name: str
|
| 44 |
+
scientific_name: str
|
| 45 |
+
confidence: float # 0.0 to 1.0
|
| 46 |
+
confidence_label: str # "high", "medium", "low"
|
| 47 |
+
reasoning: str
|
| 48 |
+
key_features_matched: List[str]
|
| 49 |
+
alternative_species: List[Dict[str, Any]]
|
| 50 |
+
is_indian_bird: bool
|
| 51 |
+
is_unusual_sighting: bool
|
| 52 |
+
unusual_reason: Optional[str]
|
| 53 |
+
call_description: str
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class ZeroShotBirdIdentifier:
|
| 57 |
+
"""
|
| 58 |
+
Zero-shot bird identification using LLM.
|
| 59 |
+
|
| 60 |
+
This approach:
|
| 61 |
+
1. Extracts audio features (frequency, pattern, duration)
|
| 62 |
+
2. Sends features to LLM with expert prompt
|
| 63 |
+
3. LLM identifies bird from its knowledge base
|
| 64 |
+
4. Returns species with confidence and reasoning
|
| 65 |
+
|
| 66 |
+
Benefits:
|
| 67 |
+
- No training required
|
| 68 |
+
- Can identify ANY of 10,000+ bird species
|
| 69 |
+
- Works for non-Indian birds too (with novelty flag)
|
| 70 |
+
- Explainable results
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
def __init__(self, ollama_config: Optional[OllamaConfig] = None):
|
| 74 |
+
self.ollama = OllamaClient(ollama_config or OllamaConfig(model="qwen2.5:3b"))
|
| 75 |
+
self.is_ready = False
|
| 76 |
+
|
| 77 |
+
def initialize(self) -> bool:
|
| 78 |
+
"""Check if LLM is available."""
|
| 79 |
+
try:
|
| 80 |
+
import asyncio
|
| 81 |
+
|
| 82 |
+
async def _check():
|
| 83 |
+
return await self.ollama.health_check()
|
| 84 |
+
|
| 85 |
+
try:
|
| 86 |
+
loop = asyncio.get_event_loop()
|
| 87 |
+
if loop.is_running():
|
| 88 |
+
import nest_asyncio
|
| 89 |
+
nest_asyncio.apply()
|
| 90 |
+
self.is_ready = loop.run_until_complete(_check())
|
| 91 |
+
except RuntimeError:
|
| 92 |
+
self.is_ready = asyncio.run(_check())
|
| 93 |
+
|
| 94 |
+
return self.is_ready
|
| 95 |
+
except Exception as e:
|
| 96 |
+
logger.warning(f"Failed to initialize LLM: {e}")
|
| 97 |
+
return False
|
| 98 |
+
|
| 99 |
+
def extract_features(
|
| 100 |
+
self,
|
| 101 |
+
audio: np.ndarray,
|
| 102 |
+
sample_rate: int = 32000,
|
| 103 |
+
mel_spec: Optional[np.ndarray] = None
|
| 104 |
+
) -> AudioFeatures:
|
| 105 |
+
"""Extract audio features for LLM analysis."""
|
| 106 |
+
import scipy.signal as signal
|
| 107 |
+
|
| 108 |
+
duration = len(audio) / sample_rate
|
| 109 |
+
|
| 110 |
+
# Frequency analysis
|
| 111 |
+
freqs, psd = signal.welch(audio, sample_rate, nperseg=2048)
|
| 112 |
+
|
| 113 |
+
# Dominant frequency
|
| 114 |
+
dominant_idx = np.argmax(psd)
|
| 115 |
+
dominant_freq = freqs[dominant_idx]
|
| 116 |
+
|
| 117 |
+
# Frequency range (where 90% of energy is)
|
| 118 |
+
cumsum = np.cumsum(psd) / np.sum(psd)
|
| 119 |
+
freq_low = freqs[np.searchsorted(cumsum, 0.05)]
|
| 120 |
+
freq_high = freqs[np.searchsorted(cumsum, 0.95)]
|
| 121 |
+
|
| 122 |
+
# Spectral centroid
|
| 123 |
+
spectral_centroid = np.sum(freqs * psd) / (np.sum(psd) + 1e-10)
|
| 124 |
+
|
| 125 |
+
# Spectral bandwidth
|
| 126 |
+
spectral_bandwidth = np.sqrt(np.sum(((freqs - spectral_centroid) ** 2) * psd) / (np.sum(psd) + 1e-10))
|
| 127 |
+
|
| 128 |
+
# Amplitude envelope analysis
|
| 129 |
+
envelope = np.abs(signal.hilbert(audio))
|
| 130 |
+
envelope_smooth = signal.medfilt(envelope, 1001)
|
| 131 |
+
|
| 132 |
+
# Detect syllables (peaks in envelope)
|
| 133 |
+
peaks, _ = signal.find_peaks(envelope_smooth, height=0.1 * np.max(envelope_smooth), distance=sample_rate // 10)
|
| 134 |
+
num_syllables = len(peaks)
|
| 135 |
+
syllable_rate = num_syllables / duration if duration > 0 else 0
|
| 136 |
+
|
| 137 |
+
# Amplitude pattern
|
| 138 |
+
if len(envelope_smooth) > 100:
|
| 139 |
+
start_amp = np.mean(envelope_smooth[:len(envelope_smooth)//4])
|
| 140 |
+
end_amp = np.mean(envelope_smooth[-len(envelope_smooth)//4:])
|
| 141 |
+
amp_var = np.std(envelope_smooth) / (np.mean(envelope_smooth) + 1e-10)
|
| 142 |
+
|
| 143 |
+
if amp_var > 0.5:
|
| 144 |
+
amp_pattern = "varied"
|
| 145 |
+
elif end_amp > start_amp * 1.3:
|
| 146 |
+
amp_pattern = "rising"
|
| 147 |
+
elif end_amp < start_amp * 0.7:
|
| 148 |
+
amp_pattern = "falling"
|
| 149 |
+
else:
|
| 150 |
+
amp_pattern = "constant"
|
| 151 |
+
else:
|
| 152 |
+
amp_pattern = "constant"
|
| 153 |
+
|
| 154 |
+
# Melodic detection (frequency variation)
|
| 155 |
+
if len(audio) > sample_rate:
|
| 156 |
+
chunks = np.array_split(audio, 10)
|
| 157 |
+
chunk_freqs = []
|
| 158 |
+
for chunk in chunks:
|
| 159 |
+
if len(chunk) > 512:
|
| 160 |
+
f, p = signal.welch(chunk, sample_rate, nperseg=512)
|
| 161 |
+
chunk_freqs.append(f[np.argmax(p)])
|
| 162 |
+
freq_variation = np.std(chunk_freqs) / (np.mean(chunk_freqs) + 1e-10)
|
| 163 |
+
is_melodic = freq_variation > 0.1
|
| 164 |
+
else:
|
| 165 |
+
is_melodic = False
|
| 166 |
+
|
| 167 |
+
# Repetitiveness detection
|
| 168 |
+
if num_syllables >= 3:
|
| 169 |
+
if syllable_rate > 1.5 and syllable_rate < 10: # Regular pattern
|
| 170 |
+
is_repetitive = True
|
| 171 |
+
else:
|
| 172 |
+
is_repetitive = False
|
| 173 |
+
else:
|
| 174 |
+
is_repetitive = num_syllables >= 2
|
| 175 |
+
|
| 176 |
+
# SNR estimation
|
| 177 |
+
noise_floor = np.percentile(np.abs(audio), 10)
|
| 178 |
+
signal_peak = np.percentile(np.abs(audio), 95)
|
| 179 |
+
snr_db = 20 * np.log10((signal_peak + 1e-10) / (noise_floor + 1e-10))
|
| 180 |
+
|
| 181 |
+
# Quality score
|
| 182 |
+
quality_score = min(1.0, max(0.0, (snr_db - 5) / 25))
|
| 183 |
+
|
| 184 |
+
# Tempo (for rhythmic calls)
|
| 185 |
+
if num_syllables >= 2:
|
| 186 |
+
tempo_bpm = syllable_rate * 60
|
| 187 |
+
else:
|
| 188 |
+
tempo_bpm = 0
|
| 189 |
+
|
| 190 |
+
return AudioFeatures(
|
| 191 |
+
duration=duration,
|
| 192 |
+
dominant_frequency_hz=float(dominant_freq),
|
| 193 |
+
frequency_range=(float(freq_low), float(freq_high)),
|
| 194 |
+
spectral_centroid=float(spectral_centroid),
|
| 195 |
+
spectral_bandwidth=float(spectral_bandwidth),
|
| 196 |
+
tempo_bpm=float(tempo_bpm),
|
| 197 |
+
num_syllables=num_syllables,
|
| 198 |
+
syllable_rate=float(syllable_rate),
|
| 199 |
+
is_melodic=is_melodic,
|
| 200 |
+
is_repetitive=is_repetitive,
|
| 201 |
+
amplitude_pattern=amp_pattern,
|
| 202 |
+
estimated_snr_db=float(snr_db),
|
| 203 |
+
quality_score=float(quality_score)
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
def identify(
|
| 207 |
+
self,
|
| 208 |
+
features: AudioFeatures,
|
| 209 |
+
location: Optional[str] = None,
|
| 210 |
+
month: Optional[int] = None,
|
| 211 |
+
user_description: Optional[str] = None
|
| 212 |
+
) -> ZeroShotResult:
|
| 213 |
+
"""
|
| 214 |
+
Identify bird species using zero-shot LLM inference.
|
| 215 |
+
|
| 216 |
+
This is the NOVEL approach - using LLM's knowledge to identify
|
| 217 |
+
any bird without needing to train on that specific species.
|
| 218 |
+
"""
|
| 219 |
+
|
| 220 |
+
# Build expert prompt
|
| 221 |
+
prompt = self._build_identification_prompt(features, location, month, user_description)
|
| 222 |
+
|
| 223 |
+
# Call LLM (synchronously using asyncio)
|
| 224 |
+
try:
|
| 225 |
+
import asyncio
|
| 226 |
+
|
| 227 |
+
async def _generate():
|
| 228 |
+
return await self.ollama.generate(
|
| 229 |
+
prompt,
|
| 230 |
+
system_prompt=self._get_expert_system_prompt(),
|
| 231 |
+
temperature=0.3, # Lower for more deterministic
|
| 232 |
+
max_tokens=1000
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Run async in sync context
|
| 236 |
+
try:
|
| 237 |
+
loop = asyncio.get_event_loop()
|
| 238 |
+
if loop.is_running():
|
| 239 |
+
# Use nest_asyncio for nested event loops
|
| 240 |
+
import nest_asyncio
|
| 241 |
+
nest_asyncio.apply()
|
| 242 |
+
response = loop.run_until_complete(_generate())
|
| 243 |
+
except RuntimeError:
|
| 244 |
+
# No event loop running
|
| 245 |
+
response = asyncio.run(_generate())
|
| 246 |
+
|
| 247 |
+
# Parse response
|
| 248 |
+
return self._parse_identification_response(response, features)
|
| 249 |
+
|
| 250 |
+
except Exception as e:
|
| 251 |
+
logger.error(f"LLM identification failed: {e}")
|
| 252 |
+
return self._fallback_result(features)
|
| 253 |
+
|
| 254 |
+
def _get_expert_system_prompt(self) -> str:
|
| 255 |
+
"""Expert ornithologist system prompt."""
|
| 256 |
+
return """You are an expert ornithologist with deep knowledge of bird vocalizations worldwide.
|
| 257 |
+
You can identify birds by their calls based on frequency, pattern, duration, and context.
|
| 258 |
+
|
| 259 |
+
Your expertise includes:
|
| 260 |
+
- 10,000+ bird species globally
|
| 261 |
+
- Detailed knowledge of Indian birds (1,300+ species)
|
| 262 |
+
- Ability to distinguish similar-sounding species
|
| 263 |
+
- Understanding of seasonal and geographic variations
|
| 264 |
+
|
| 265 |
+
When identifying birds:
|
| 266 |
+
1. Consider the audio characteristics carefully
|
| 267 |
+
2. Match against known bird call patterns
|
| 268 |
+
3. Account for regional variations
|
| 269 |
+
4. Flag unusual or rare sightings
|
| 270 |
+
5. Provide confidence based on how well features match
|
| 271 |
+
|
| 272 |
+
Always respond in the exact JSON format requested."""
|
| 273 |
+
|
| 274 |
+
def _build_identification_prompt(
|
| 275 |
+
self,
|
| 276 |
+
features: AudioFeatures,
|
| 277 |
+
location: Optional[str],
|
| 278 |
+
month: Optional[int],
|
| 279 |
+
user_description: Optional[str]
|
| 280 |
+
) -> str:
|
| 281 |
+
"""Build identification prompt from audio features."""
|
| 282 |
+
|
| 283 |
+
# Describe frequency in bird call terms
|
| 284 |
+
freq_desc = self._describe_frequency(features.dominant_frequency_hz)
|
| 285 |
+
|
| 286 |
+
# Season
|
| 287 |
+
season = self._get_season(month) if month else "unknown"
|
| 288 |
+
|
| 289 |
+
prompt = f"""Identify this bird based on its call characteristics:
|
| 290 |
+
|
| 291 |
+
## Audio Features
|
| 292 |
+
- **Duration**: {features.duration:.1f} seconds
|
| 293 |
+
- **Dominant Frequency**: {features.dominant_frequency_hz:.0f} Hz ({freq_desc})
|
| 294 |
+
- **Frequency Range**: {features.frequency_range[0]:.0f} - {features.frequency_range[1]:.0f} Hz
|
| 295 |
+
- **Call Pattern**: {"Melodic/varied" if features.is_melodic else "Monotone"}, {"Repetitive" if features.is_repetitive else "Non-repetitive"}
|
| 296 |
+
- **Syllables**: {features.num_syllables} syllables at {features.syllable_rate:.1f}/second
|
| 297 |
+
- **Rhythm**: {features.tempo_bpm:.0f} BPM (beats per minute)
|
| 298 |
+
- **Amplitude**: {features.amplitude_pattern} pattern
|
| 299 |
+
|
| 300 |
+
## Context
|
| 301 |
+
- **Location**: {location or "India (unspecified)"}
|
| 302 |
+
- **Season**: {season}
|
| 303 |
+
- **Recording Quality**: {self._quality_label(features.quality_score)} (SNR: {features.estimated_snr_db:.0f}dB)
|
| 304 |
+
"""
|
| 305 |
+
|
| 306 |
+
if user_description:
|
| 307 |
+
prompt += f"- **Observer Notes**: {user_description}\n"
|
| 308 |
+
|
| 309 |
+
prompt += """
|
| 310 |
+
## Task
|
| 311 |
+
Based on these audio features, identify the most likely bird species.
|
| 312 |
+
|
| 313 |
+
Respond in this exact JSON format:
|
| 314 |
+
{
|
| 315 |
+
"species_name": "Common Name",
|
| 316 |
+
"scientific_name": "Genus species",
|
| 317 |
+
"confidence": 0.85,
|
| 318 |
+
"reasoning": "Detailed explanation of why this species matches...",
|
| 319 |
+
"key_features_matched": ["feature1", "feature2"],
|
| 320 |
+
"alternatives": [
|
| 321 |
+
{"name": "Alternative 1", "scientific": "Genus species", "confidence": 0.1},
|
| 322 |
+
{"name": "Alternative 2", "scientific": "Genus species", "confidence": 0.05}
|
| 323 |
+
],
|
| 324 |
+
"is_indian_bird": true,
|
| 325 |
+
"is_unusual": false,
|
| 326 |
+
"unusual_reason": null,
|
| 327 |
+
"typical_call": "Description of what this bird typically sounds like"
|
| 328 |
+
}"""
|
| 329 |
+
|
| 330 |
+
return prompt
|
| 331 |
+
|
| 332 |
+
def _describe_frequency(self, freq: float) -> str:
|
| 333 |
+
"""Describe frequency in bird call terms."""
|
| 334 |
+
if freq < 500:
|
| 335 |
+
return "very low (large bird or booming call)"
|
| 336 |
+
elif freq < 1000:
|
| 337 |
+
return "low (owl, dove, or large bird)"
|
| 338 |
+
elif freq < 2000:
|
| 339 |
+
return "low-medium (cuckoo, crow, or medium bird)"
|
| 340 |
+
elif freq < 4000:
|
| 341 |
+
return "medium (most songbirds)"
|
| 342 |
+
elif freq < 6000:
|
| 343 |
+
return "medium-high (warbler, sunbird)"
|
| 344 |
+
elif freq < 8000:
|
| 345 |
+
return "high (small passerine)"
|
| 346 |
+
else:
|
| 347 |
+
return "very high (insect-like or whistle)"
|
| 348 |
+
|
| 349 |
+
def _get_season(self, month: int) -> str:
|
| 350 |
+
"""Get Indian season from month."""
|
| 351 |
+
if month in [12, 1, 2]:
|
| 352 |
+
return "winter (Dec-Feb) - winter migrants present"
|
| 353 |
+
elif month in [3, 4, 5]:
|
| 354 |
+
return "summer/pre-monsoon (Mar-May) - breeding season"
|
| 355 |
+
elif month in [6, 7, 8, 9]:
|
| 356 |
+
return "monsoon (Jun-Sep)"
|
| 357 |
+
else:
|
| 358 |
+
return "post-monsoon (Oct-Nov) - migration period"
|
| 359 |
+
|
| 360 |
+
def _quality_label(self, score: float) -> str:
|
| 361 |
+
"""Convert quality score to label."""
|
| 362 |
+
if score > 0.8:
|
| 363 |
+
return "excellent"
|
| 364 |
+
elif score > 0.6:
|
| 365 |
+
return "good"
|
| 366 |
+
elif score > 0.4:
|
| 367 |
+
return "fair"
|
| 368 |
+
else:
|
| 369 |
+
return "poor"
|
| 370 |
+
|
| 371 |
+
def _parse_identification_response(
|
| 372 |
+
self,
|
| 373 |
+
response: str,
|
| 374 |
+
features: AudioFeatures
|
| 375 |
+
) -> ZeroShotResult:
|
| 376 |
+
"""Parse LLM response into structured result."""
|
| 377 |
+
try:
|
| 378 |
+
# Try to extract JSON from response
|
| 379 |
+
json_start = response.find('{')
|
| 380 |
+
json_end = response.rfind('}') + 1
|
| 381 |
+
|
| 382 |
+
if json_start >= 0 and json_end > json_start:
|
| 383 |
+
json_str = response[json_start:json_end]
|
| 384 |
+
data = json.loads(json_str)
|
| 385 |
+
|
| 386 |
+
confidence = float(data.get('confidence', 0.5))
|
| 387 |
+
|
| 388 |
+
return ZeroShotResult(
|
| 389 |
+
species_name=data.get('species_name', 'Unknown'),
|
| 390 |
+
scientific_name=data.get('scientific_name', ''),
|
| 391 |
+
confidence=confidence,
|
| 392 |
+
confidence_label=self._confidence_label(confidence),
|
| 393 |
+
reasoning=data.get('reasoning', ''),
|
| 394 |
+
key_features_matched=data.get('key_features_matched', []),
|
| 395 |
+
alternative_species=data.get('alternatives', []),
|
| 396 |
+
is_indian_bird=data.get('is_indian_bird', True),
|
| 397 |
+
is_unusual_sighting=data.get('is_unusual', False),
|
| 398 |
+
unusual_reason=data.get('unusual_reason'),
|
| 399 |
+
call_description=data.get('typical_call', '')
|
| 400 |
+
)
|
| 401 |
+
except json.JSONDecodeError as e:
|
| 402 |
+
logger.warning(f"Failed to parse LLM JSON: {e}")
|
| 403 |
+
|
| 404 |
+
# Fallback: try to extract species name from text
|
| 405 |
+
return self._fallback_result(features, response)
|
| 406 |
+
|
| 407 |
+
def _confidence_label(self, confidence: float) -> str:
|
| 408 |
+
"""Convert confidence to label."""
|
| 409 |
+
if confidence >= 0.8:
|
| 410 |
+
return "high"
|
| 411 |
+
elif confidence >= 0.6:
|
| 412 |
+
return "medium"
|
| 413 |
+
else:
|
| 414 |
+
return "low"
|
| 415 |
+
|
| 416 |
+
def _fallback_result(
|
| 417 |
+
self,
|
| 418 |
+
features: AudioFeatures,
|
| 419 |
+
llm_response: str = ""
|
| 420 |
+
) -> ZeroShotResult:
|
| 421 |
+
"""Generate fallback result when LLM parsing fails."""
|
| 422 |
+
|
| 423 |
+
# Try to guess based on frequency
|
| 424 |
+
if features.dominant_frequency_hz < 1000:
|
| 425 |
+
if features.is_repetitive:
|
| 426 |
+
species = "Spotted Owlet"
|
| 427 |
+
scientific = "Athene brama"
|
| 428 |
+
else:
|
| 429 |
+
species = "Indian Cuckoo"
|
| 430 |
+
scientific = "Cuculus micropterus"
|
| 431 |
+
elif features.dominant_frequency_hz < 3000:
|
| 432 |
+
if features.is_melodic:
|
| 433 |
+
species = "Oriental Magpie-Robin"
|
| 434 |
+
scientific = "Copsychus saularis"
|
| 435 |
+
else:
|
| 436 |
+
species = "Asian Koel"
|
| 437 |
+
scientific = "Eudynamys scolopaceus"
|
| 438 |
+
else:
|
| 439 |
+
if features.syllable_rate > 3:
|
| 440 |
+
species = "Coppersmith Barbet"
|
| 441 |
+
scientific = "Psilopogon haemacephalus"
|
| 442 |
+
else:
|
| 443 |
+
species = "Common Tailorbird"
|
| 444 |
+
scientific = "Orthotomus sutorius"
|
| 445 |
+
|
| 446 |
+
return ZeroShotResult(
|
| 447 |
+
species_name=species,
|
| 448 |
+
scientific_name=scientific,
|
| 449 |
+
confidence=0.4,
|
| 450 |
+
confidence_label="low",
|
| 451 |
+
reasoning="Identification based on audio frequency and pattern analysis. LLM analysis unavailable.",
|
| 452 |
+
key_features_matched=["frequency range", "call pattern"],
|
| 453 |
+
alternative_species=[],
|
| 454 |
+
is_indian_bird=True,
|
| 455 |
+
is_unusual_sighting=False,
|
| 456 |
+
unusual_reason=None,
|
| 457 |
+
call_description=""
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
# Global instance for quick access
|
| 462 |
+
_identifier: Optional[ZeroShotBirdIdentifier] = None
|
| 463 |
+
|
| 464 |
+
def get_zero_shot_identifier() -> ZeroShotBirdIdentifier:
|
| 465 |
+
"""Get or create global zero-shot identifier."""
|
| 466 |
+
global _identifier
|
| 467 |
+
if _identifier is None:
|
| 468 |
+
_identifier = ZeroShotBirdIdentifier()
|
| 469 |
+
return _identifier
|
| 470 |
+
|