File size: 29,970 Bytes
199f9c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Script to fine-tune Stable Video Diffusion."""

from datetime import datetime
import logging
import math
import os
import shutil
from pathlib import Path

import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import RandomSampler
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from tqdm.auto import tqdm
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from validation import valid_net
import diffusers
from svd_pipeline import StableVideoDiffusionPipeline
from diffusers.models.lora import LoRALinearLayer
from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler, UNetSpatioTemporalConditionModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate, is_wandb_available, load_image
from diffusers.utils.import_utils import is_xformers_available
from utils import parse_args, FocalStackDataset, OutsidePhotosDataset, rand_log_normal, tensor_to_vae_latent, load_image, _resize_with_antialiasing, encode_image, get_add_time_ids
import wandb
import random
from random import choices
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.24.0.dev0")

logger = get_logger(__name__, log_level="INFO")

import numpy as np
import PIL.Image
import torch
from typing import Callable, Dict, List, Optional, Union
import os


    
def main():
    args = parse_args()

    #SETUP PYTORCH CUDA - Without this I have memory overflow
    #pytorch 2.4.1 is important for this to work
    os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

    if not is_wandb_available():
        raise ImportError(
            "Make sure to install wandb if you want to use it for logging during training.")
    import wandb


    currentSecond= datetime.now().second
    currentMinute = datetime.now().minute
    currentHour = datetime.now().hour
    currentDay = datetime.now().day
    currentMonth = datetime.now().month
    currentYear = datetime.now().year


    if args.non_ema_revision is not None:
        deprecate(
            "non_ema_revision!=None",
            "0.15.0",
            message=(
                "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
                " use `--variant=non_ema` instead."
            ),
        )
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
    accelerator_project_config = ProjectConfiguration(
        project_dir=args.output_dir, logging_dir=logging_dir)
    ddp_kwargs = accelerate.DistributedDataParallelKwargs(find_unused_parameters=True)
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
        kwargs_handlers=[ddp_kwargs]
    )

    accelerator.init_trackers(
        project_name=args.wandb_project,
        init_kwargs={"wandb": { "name" : args.run_name}}
    )

    generator = torch.Generator(
        device=accelerator.device).manual_seed(args.seed)

  


    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Load img encoder, tokenizer and models.
    feature_extractor = CLIPImageProcessor.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="feature_extractor", revision=args.revision
    )
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="image_encoder", revision=args.revision
    )
    vae = AutoencoderKLTemporalDecoder.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant="fp16")
    unet = UNetSpatioTemporalConditionModel.from_pretrained(
        args.pretrained_model_name_or_path if args.pretrain_unet is None else args.pretrain_unet,
        subfolder="unet",
        low_cpu_mem_usage=True,
        variant="fp16"
    )

    #unet= UNetSpatioTemporalConditionModel()

    # Freeze vae and image_encoder
    vae.requires_grad_(False)
    image_encoder.requires_grad_(False)

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move image_encoder and vae to gpu and cast to weight_dtype
    image_encoder.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)

        # Create EMA for the unet.
    if args.use_ema:
        ema_unet = EMAModel(unet.parameters(
        ), model_cls=UNetSpatioTemporalConditionModel, model_config=unet.config, use_ema_warmup=True, inv_gamma=1, ower=3/4)



    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError(
                "xformers is not available. Make sure it is installed correctly")

    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if args.use_ema:
                ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))

            for i, model in enumerate(models):
                model.save_pretrained(os.path.join(output_dir, "unet"))
                

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):

            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(
                    input_dir, "unet_ema"), UNetSpatioTemporalConditionModel)
                ema_unet.load_state_dict(load_model.state_dict())
                ema_unet.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNetSpatioTemporalConditionModel.from_pretrained(
                    input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model
            
        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps *
            args.per_gpu_batch_size * accelerator.num_processes
        )

    optimizer_cls = torch.optim.AdamW

    parameters_list = []


    # Customize the parameters that need to be trained; if necessary, you can uncomment them yourself.
    for name, param in unet.named_parameters():
        parameters_list.append(param)
        if 'temporal_transformer_block' in name: #or 'conv_norm_out' in name or 'conv_out' in name or 'conv_in' in name or 'spatial_res_block' in name or 'up_block' in name:
            parameters_list.append(param)
            param.requires_grad = True
        else:
            param.requires_grad = False
    zero_latent = 0



    optimizer = optimizer_cls(
        parameters_list,
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
    
    # DataLoaders creation:
    args.global_batch_size = args.per_gpu_batch_size * accelerator.num_processes

    if args.photos:
        train_dataset = OutsidePhotosDataset(data_folder=args.data_folder, sample_frames=args.num_frames)
        val_dataset = OutsidePhotosDataset(data_folder=args.data_folder, sample_frames=args.num_frames)
    else:
        train_dataset = FocalStackDataset(args.data_folder,  args.splits_dir, sample_frames=args.num_frames, split="train")
        val_dataset = FocalStackDataset(args.data_folder, args.splits_dir, sample_frames=args.num_frames, split="val" if not args.test else "test")
    sampler = RandomSampler(train_dataset)
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        sampler=sampler,
        batch_size=args.per_gpu_batch_size,
        num_workers=args.num_workers,
        drop_last=True
    )
    val_dataloader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=args.per_gpu_batch_size,
        num_workers=args.num_workers,
        shuffle=False,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
    )




    # Prepare everything with our `accelerator`.
    unet, optimizer, lr_scheduler, train_dataloader, val_dataloader = accelerator.prepare(
     unet, optimizer, lr_scheduler, train_dataloader, val_dataloader
    )

    if args.use_ema:
        ema_unet.to(accelerator.device)
        

        
    # attribute handling for models using DDP
    if isinstance(unet, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)):
        unet = unet.module

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(
        args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("SVDXtend", config=vars(args))

    # Train!
    total_batch_size = args.per_gpu_batch_size * \
        accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_gpu_batch_size}")
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0


    # Potentially load in the weights and states from a previous save
    if args.load_from_checkpoint:

        path = args.load_from_checkpoint
#
        if path is None:
            accelerator.print(
                f"Checkpoint '{args.load_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.load_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(path, strict=False)
            global_step = int(os.path.basename(path).split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch

            resume_step = resume_global_step % (
                num_update_steps_per_epoch * args.gradient_accumulation_steps)

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(global_step, args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    progress_bar.set_description("Steps")

    # print("ARGS PHOTOS: ", args.photos)
    # if args.photos:
    #     print("MAKING OUTSIDE PHOTOS DATASET")
    #     train_dataset = OutsidePhotosDataset(data_folder=args.data_folder, sample_frames=args.num_frames)
    #     val_dataset = OutsidePhotosDataset(data_folder=args.data_folder, sample_frames=args.num_frames)

    #     sampler = RandomSampler(train_dataset)
    #     train_dataloader = torch.utils.data.DataLoader(
    #         train_dataset,
    #         sampler=sampler,
    #         batch_size=args.per_gpu_batch_size,
    #         num_workers=args.num_workers,
    #         drop_last=True
    #     )
    #     val_dataloader = torch.utils.data.DataLoader(
    #         val_dataset,
    #         batch_size=args.per_gpu_batch_size,
    #         num_workers=args.num_workers,
    #         shuffle=False,
    #     )

    #     train_dataloader, val_dataloader = accelerator.prepare(
    #         train_dataloader, val_dataloader)
    if args.test:
        first_epoch = 0 #just so I enter loop for test (regardless of training iterations)

    for epoch in range(first_epoch, args.num_train_epochs):
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            unet.train()
            if not args.test:
                with accelerator.accumulate(unet):
                    # first, convert images to latent space.
                    pixel_values = batch["pixel_values"].to(weight_dtype).to(
                        accelerator.device, non_blocking=True
                    )

        
                    conditional_pixel_values = pixel_values
                    latents = tensor_to_vae_latent(pixel_values, vae, otype="sample")

                    noise = torch.randn_like(latents)
                    bsz = latents.shape[0]

                    cond_sigmas = rand_log_normal(shape=[bsz,], loc=-3.0, scale=0.5).to(latents)
                    noise_aug_strength = cond_sigmas[0] # TODO: support batch > 1
                    cond_sigmas = cond_sigmas[:, None, None, None, None]

                    conditional_pixel_values = \
                    torch.randn_like(conditional_pixel_values) * cond_sigmas + conditional_pixel_values #- Comment this out as I don't want to add noise to the cond
                    conditional_latents = tensor_to_vae_latent(conditional_pixel_values, vae, otype="sample")
                    conditional_latents = conditional_latents / vae.config.scaling_factor #

                    ##you do noisy conditioning for the

                    # Sample a random timestep for each image
                    # P_mean=0.7 P_std=1.6
                    sigmas = rand_log_normal(shape=[bsz,], loc=0.7, scale=1.6).to(latents.device)
                    # Add noise to the latents according to the noise magnitude at each timestep
                    # (this is the forward diffusion process)
                    sigmas = sigmas[:, None, None, None, None]
                    noisy_latents = latents + noise * sigmas
                    timesteps = torch.Tensor(
                        [0.25 * sigma.log() for sigma in sigmas]).to(accelerator.device)

                    inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5)


                    conditioning = args.conditioning
                    # Create a tensor of zeros with the same shape as the repeated conditional_latents
                    if conditioning == "zero":
                        random_frames = [0]
                    elif conditioning == "random":
                        #choose a random number between 0 and 8 inclusive
                        random_frames = [np.random.randint(0, args.num_frames)]
                    elif conditioning in ["ablate_position", "ablate_time"] :
                        random_frames = [np.random.randint(0, args.num_frames)]
                    elif conditioning == "ablate_single_frame":
                        input_random_frame = np.random.randint(0, args.num_frames)
                        output_random_frame = np.random.randint(0, args.num_frames)
                    elif conditioning == "random_single_double_triple":
                        num_imgs = random.randint(1, 3)
                        random_frames = choices(range(args.num_frames), k=num_imgs)

                    # Get the text embedding for conditioning.
                    encoder_hidden_states = encode_image(
                        pixel_values[:, random_frames[0], :, :, :].float(),
                        feature_extractor, image_encoder, weight_dtype, accelerator)

                    # Here I input a fixed numerical value for 'motion_bucket_id', which is not reasonable.
                    # However, I am unable to fully align with the calculation method of the motion score,
                    # so I adopted this approach. The same applies to the 'fps' (frames per second).
                    conditioning_num = 0

                    if conditioning != "ablate_time":
                        conditioning_num = 0
                    else:
                        conditioning_num = random_frames[0]

                        

                    added_time_ids = get_add_time_ids(
                        7, # fixed
                        conditioning_num, # motion_bucket_id = 127, fixed
                        noise_aug_strength, # noise_aug_strength == cond_sigmas
                        encoder_hidden_states.dtype,
                        bsz,
                        unet
                    )
                    added_time_ids = added_time_ids.to(latents.device)


    
                    # Conditioning dropout to support classifier-free guidance during inference. For more details
                    # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.0args.num_frames800.
                    if args.conditioning_dropout_prob is not None:
                        random_p = torch.rand(
                            bsz, device=latents.device, generator=generator)
                        # Sample masks for the edit prompts. - I'm not sure if prompts are used in this model. Sam ewith the text conditioning that comes next.

                        #oh encoder_hidden_states is derived form the image.

                        prompt_mask = random_p < 2 * args.conditioning_dropout_prob
                        prompt_mask = prompt_mask.reshape(bsz, 1, 1)
                        # Final text conditioning.
                        null_conditioning = torch.zeros_like(encoder_hidden_states)
                        encoder_hidden_states = torch.where(
                            prompt_mask, null_conditioning.unsqueeze(1), encoder_hidden_states.unsqueeze(1))
                        # Sample masks for the original images.
                        image_mask_dtype = conditional_latents.dtype
                        image_mask = 1 - (
                            (random_p >= args.conditioning_dropout_prob).to(
                                image_mask_dtype)
                            * (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype)
                        )
                        image_mask = image_mask.reshape(bsz, 1, 1, 1)
                        # Final image conditioning.
                        conditional_latents = image_mask * conditional_latents #this basically 0s out some of the image latents

                    # Concatenate the `conditional_latents` with the `noisy_latents`.
                    # conditional_latents = conditional_latents.unsqueeze(
                    #     1).repeat(1, noisy_latents.shape[1], 1, 1, 1)
                    if conditioning == "ablate_single_frame":
                        #put input frame at first frame
                        conditional_latents = conditional_latents[:, 0:1].repeat(1, args.num_frames, 1, 1, 1)
                    elif conditioning in ["ablate_position", "ablate_time"]:

                        conditional_latents = conditional_latents[:, random_frames[0]:random_frames[0]+1].repeat(1,args.num_frames, 1, 1, 1)
                    else:
                        mask = torch.zeros_like(conditional_latents)
                        #choose a random frame to allow for the model to learn to focus on different frames (set mask to 1 for that frame)
                        mask[:, random_frames] = 1
                        conditional_latents = conditional_latents * mask


                    inp_noisy_latents = torch.cat(
                        [inp_noisy_latents, conditional_latents], dim=2)

                    # check https://arxiv.org/abs/2206.00364(the EDM-framework) for more details.
                    target = latents
                    model_pred = unet(
                        inp_noisy_latents, timesteps, encoder_hidden_states, added_time_ids=added_time_ids).sample

                    # Denoise the latents
                    c_out = -sigmas / ((sigmas**2 + 1)**0.5)
                    c_skip = 1 / (sigmas**2 + 1)
                    denoised_latents = model_pred * c_out + c_skip * noisy_latents
                    weighing = (1 + sigmas ** 2) * (sigmas**-2.0)

                    # MSE loss
                    loss = torch.mean(
                        (weighing.float() * (denoised_latents.float() -
                        target.float()) ** 2).reshape(target.shape[0], -1),
                        dim=1,
                    )
                    loss = loss.mean()

                    # Gather the losses across all processes for logging (if we use distributed training).
                    avg_loss = accelerator.gather(
                        loss.repeat(args.per_gpu_batch_size)).mean()
                    train_loss += avg_loss.item() / args.gradient_accumulation_steps

                    # Backpropagate
                    accelerator.backward(loss)
                    lr_scheduler.step()
                    optimizer.zero_grad()
            

            

                # Checks if the accelerator has performed an optimization step behind the scenes
                if accelerator.sync_gradients:

                    if args.use_ema:
                        ema_unet.step(unet.parameters())
                    progress_bar.update(1)
                    global_step += 1
                    accelerator.log({"train_loss": train_loss}, step=global_step)
                    train_loss = 0.0
                    
                    if accelerator.is_main_process:

                        # save checkpoints!
                        if global_step % args.checkpointing_steps == 0:
                            # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                            if args.checkpoints_total_limit is not None:
                                checkpoints = os.listdir(args.output_dir)
                                checkpoints = [
                                    d for d in checkpoints if d.startswith("checkpoint")]
                                checkpoints = sorted(
                                    checkpoints, key=lambda x: int(x.split("-")[1]))

                                # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                                if len(checkpoints) >= args.checkpoints_total_limit:
                                    num_to_remove = len(
                                        checkpoints) - args.checkpoints_total_limit + 1
                                    removing_checkpoints = checkpoints[0:num_to_remove]

                                    logger.info(
                                        f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                    )
                                    logger.info(
                                        f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                    for removing_checkpoint in removing_checkpoints:
                                        removing_checkpoint = os.path.join(
                                            args.output_dir, removing_checkpoint)
                                        shutil.rmtree(removing_checkpoint)

                            save_path = os.path.join(
                                args.output_dir, f"checkpoint-{global_step}")
                            accelerator.save_state(save_path)
                            logger.info(f"Saved state to {save_path}")
            # sample images!
            if args.test or (global_step % args.validation_steps == 0) or (global_step == 1):
                if args.use_ema:
                    # Store the UNet parameters temporarily and load the EMA parameters to perform inference.
                    ema_unet.store(unet.parameters())
                    ema_unet.copy_to(unet.parameters())

                valid_net(args, val_dataset, val_dataloader, unet, image_encoder, vae, zero_latent, accelerator, global_step, weight_dtype)
                if args.use_ema:
                    # Switch back to the original UNet parameters.
                    ema_unet.restore(unet.parameters())
                if args.test:
                    break
                
                torch.cuda.empty_cache()

                
        

            logs = {"step_loss": loss.detach().item(
            ), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= args.max_train_steps:
                break
        if args.test:
            break
    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process and not args.test:

        pipeline = StableVideoDiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            image_encoder=accelerator.unwrap_model(image_encoder),
            vae=accelerator.unwrap_model(vae),
            unet=accelerator.unwrap_model(ema_unet) if args.use_ema else unet,
            revision=args.revision,
        )
        pipeline.save_pretrained(args.output_dir)

        if args.use_ema:
            ema_unet.copy_to(unet.parameters())
        
        if args.push_to_hub:
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
    accelerator.end_training()


if __name__ == "__main__":
    main()