Non_binary_ / app.py
vargar's picture
Update app.py
6be9476 verified
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
# Load the model
model = tf.keras.models.load_model("vgg19_binary_nonbinary.h5")
def preprocess_image(image):
# Convert RGBA to RGB if the image has an alpha channel
if image.mode == "RGBA":
image = image.convert("RGB")
# Resize and normalize the image
image = image.resize((224, 224)) # Resize to match model input size
image = np.array(image) / 255.0 # Normalize pixel values
image = np.expand_dims(image, axis=0) # Add batch dimension
return image
# Streamlit app
st.title("Binary vs Non-Binary Image Classification")
st.write("Upload an image to classify it as 'binary' or 'non-binary'.")
# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Classifying...")
# Preprocess and predict
processed_image = preprocess_image(image)
predictions = model.predict(processed_image)
class_names = ["binary", "non-binary"]
confidence = {class_names[i]: float(predictions[0][i]) for i in range(2)}
# Display the prediction
st.write("Prediction:")
st.write(confidence)