File size: 6,511 Bytes
0fe7d00
f70ee56
 
0fe7d00
ee25239
f70ee56
 
0984c49
f70ee56
0fe7d00
 
ee25239
 
0fe7d00
ee25239
 
f70ee56
 
0fe7d00
ee25239
 
f70ee56
0fe7d00
 
f70ee56
ee25239
f70ee56
 
ee25239
 
 
f70ee56
 
0fe7d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f70ee56
 
0fe7d00
 
ee25239
 
f70ee56
0fe7d00
f70ee56
ee25239
 
 
0fe7d00
ee25239
f70ee56
 
0fe7d00
ee25239
0fe7d00
ee25239
 
f70ee56
0fe7d00
f70ee56
ee25239
 
0fe7d00
f70ee56
 
0fe7d00
ee25239
 
f70ee56
0fe7d00
f70ee56
ee25239
 
 
f70ee56
 
 
0fe7d00
f70ee56
 
0fe7d00
f70ee56
0fe7d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee25239
 
f70ee56
0fe7d00
ee25239
 
0fe7d00
ee25239
 
0fe7d00
ee25239
 
0fe7d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f70ee56
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""Database for conversations and distillation data"""

import sqlite3
from datetime import datetime
from typing import List, Dict
from config import DATABASE_PATH


class VedaDatabase:
    """Database handler with distillation support"""

    def __init__(self):
        self._init_db()

    def _get_conn(self):
        conn = sqlite3.connect(DATABASE_PATH)
        conn.row_factory = sqlite3.Row
        return conn

    def _init_db(self):
        conn = self._get_conn()
        cursor = conn.cursor()

        # Regular conversations table
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS conversations (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
                user_input TEXT NOT NULL,
                assistant_response TEXT NOT NULL,
                feedback INTEGER DEFAULT 0
            )
        ''')

        # Distillation data table (teacher responses)
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS distillation_data (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
                user_input TEXT NOT NULL,
                teacher_response TEXT NOT NULL,
                student_response TEXT,
                used_for_training BOOLEAN DEFAULT 0,
                quality_score REAL DEFAULT 0
            )
        ''')

        # Training history
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS training_history (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
                training_type TEXT,
                samples_used INTEGER,
                epochs INTEGER,
                final_loss REAL
            )
        ''')

        conn.commit()
        conn.close()

    # ===== Conversations =====
    def save_conversation(self, user_input: str, response: str) -> int:
        conn = self._get_conn()
        cursor = conn.cursor()

        cursor.execute('''
            INSERT INTO conversations (user_input, assistant_response)
            VALUES (?, ?)
        ''', (user_input, response))

        conv_id = cursor.lastrowid
        conn.commit()
        conn.close()

        return conv_id

    def update_feedback(self, conv_id: int, feedback: int):
        conn = self._get_conn()
        cursor = conn.cursor()

        cursor.execute('''
            UPDATE conversations SET feedback = ? WHERE id = ?
        ''', (feedback, conv_id))

        conn.commit()
        conn.close()

    def get_good_conversations(self, limit: int = 100) -> List[Dict]:
        conn = self._get_conn()
        cursor = conn.cursor()

        cursor.execute('''
            SELECT user_input, assistant_response
            FROM conversations
            WHERE feedback > 0
            ORDER BY timestamp DESC
            LIMIT ?
        ''', (limit,))

        rows = cursor.fetchall()
        conn.close()

        return [dict(row) for row in rows]

    # ===== Distillation =====
    def save_distillation_data(
        self,
        user_input: str,
        teacher_response: str,
        student_response: str = None,
        quality_score: float = 0.0
    ) -> int:
        conn = self._get_conn()
        cursor = conn.cursor()

        cursor.execute('''
            INSERT INTO distillation_data 
            (user_input, teacher_response, student_response, quality_score)
            VALUES (?, ?, ?, ?)
        ''', (user_input, teacher_response, student_response, quality_score))

        data_id = cursor.lastrowid
        conn.commit()
        conn.close()

        return data_id

    def get_unused_distillation_data(self, limit: int = 500) -> List[Dict]:
        """Get teacher responses not yet used for training"""
        conn = self._get_conn()
        cursor = conn.cursor()

        cursor.execute('''
            SELECT id, user_input, teacher_response
            FROM distillation_data
            WHERE used_for_training = 0
            ORDER BY timestamp DESC
            LIMIT ?
        ''', (limit,))

        rows = cursor.fetchall()
        conn.close()

        return [dict(row) for row in rows]

    def mark_distillation_used(self, ids: List[int]):
        """Mark distillation data as used for training"""
        conn = self._get_conn()
        cursor = conn.cursor()

        placeholders = ",".join("?" * len(ids))
        cursor.execute(f'''
            UPDATE distillation_data
            SET used_for_training = 1
            WHERE id IN ({placeholders})
        ''', ids)

        conn.commit()
        conn.close()

    def get_distillation_count(self) -> Dict:
        """Get count of distillation data"""
        conn = self._get_conn()
        cursor = conn.cursor()

        cursor.execute('SELECT COUNT(*) FROM distillation_data')
        total = cursor.fetchone()[0]

        cursor.execute('SELECT COUNT(*) FROM distillation_data WHERE used_for_training = 0')
        unused = cursor.fetchone()[0]

        cursor.execute('SELECT COUNT(*) FROM distillation_data WHERE used_for_training = 1')
        used = cursor.fetchone()[0]

        conn.close()

        return {"total": total, "unused": unused, "used": used}

    # ===== Stats =====
    def get_stats(self) -> Dict:
        conn = self._get_conn()
        cursor = conn.cursor()

        cursor.execute('SELECT COUNT(*) FROM conversations')
        total = cursor.fetchone()[0]

        cursor.execute('SELECT COUNT(*) FROM conversations WHERE feedback > 0')
        positive = cursor.fetchone()[0]

        cursor.execute('SELECT COUNT(*) FROM conversations WHERE feedback < 0')
        negative = cursor.fetchone()[0]

        distill = self.get_distillation_count()

        conn.close()

        return {
            "total": total,
            "positive": positive,
            "negative": negative,
            "distillation_total": distill["total"],
            "distillation_unused": distill["unused"],
        }

    def save_training_history(
        self,
        training_type: str,
        samples_used: int,
        epochs: int,
        final_loss: float
    ):
        conn = self._get_conn()
        cursor = conn.cursor()

        cursor.execute('''
            INSERT INTO training_history (training_type, samples_used, epochs, final_loss)
            VALUES (?, ?, ?, ?)
        ''', (training_type, samples_used, epochs, final_loss))

        conn.commit()
        conn.close()


db = VedaDatabase()