File size: 8,549 Bytes
c4cd8de
89d56eb
44c948e
 
c4cd8de
ffd2cda
44c948e
c4cd8de
 
 
 
44c948e
89d56eb
44c948e
89d56eb
 
c4cd8de
 
 
 
 
 
 
 
 
89d56eb
 
ffd2cda
 
89d56eb
 
 
 
 
 
c4cd8de
89d56eb
c4cd8de
89d56eb
 
c4cd8de
 
 
 
44c948e
c4cd8de
 
 
 
 
 
 
89d56eb
44c948e
c4cd8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c948e
c4cd8de
 
 
 
 
89d56eb
44c948e
c4cd8de
 
89d56eb
c4cd8de
 
 
 
 
 
 
44c948e
c4cd8de
8eda8fc
c4cd8de
 
 
89d56eb
c4cd8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c948e
c4cd8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c948e
c4cd8de
 
 
89d56eb
 
c4cd8de
 
 
89d56eb
c4cd8de
 
 
 
44c948e
c4cd8de
44c948e
c4cd8de
44c948e
c4cd8de
 
89d56eb
44c948e
 
89d56eb
ffd2cda
c4cd8de
89d56eb
c4cd8de
 
 
 
 
 
44c948e
c4cd8de
44c948e
 
ffd2cda
c4cd8de
 
 
 
 
 
 
44c948e
c4cd8de
44c948e
 
ffd2cda
44c948e
 
 
89d56eb
 
 
c4cd8de
 
 
 
 
 
 
 
44c948e
 
 
89d56eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""Subword Tokenizer (BPE-like) for Veda Programming Assistant"""

import json
import re
from typing import List, Dict, Optional, Tuple

class VedaTokenizer:
    """
    Subword tokenizer that learns common subwords/phrases.
    Better than word-level or char-level tokenization.
    """
    
    def __init__(self, vocab_size: int = 8000):
        self.vocab_size = vocab_size
        self.token_to_idx: Dict[str, int] = {}
        self.idx_to_token: Dict[int, str] = {}
        
        # Base vocabulary (special tokens + ASCII)
        self._init_base_vocab()
        
        # Merges for subwords (pair -> new_token)
        self.merges: Dict[Tuple[str, str], str] = {}
        
    def _init_base_vocab(self):
        """Initialize base vocabulary"""
        special = [
            "<PAD>", "<UNK>", "<START>", "<END>",
            "<CODE>", "<ENDCODE>",
            "<USER>", "<ASSISTANT>"
        ]
        
        for idx, token in enumerate(special):
            self.token_to_idx[token] = idx
            self.idx_to_token[idx] = token
        
        # ASCII characters as base tokens
        idx = len(special)
        # Printable ASCII range
        for i in range(32, 127):
            char = chr(i)
            if char not in self.token_to_idx:
                self.token_to_idx[char] = idx
                self.idx_to_token[idx] = char
                idx += 1
        
        # Common whitespace
        for char in ["\n", "\t", "    "]:  # spaces for indentation
            if char not in self.token_to_idx:
                self.token_to_idx[char] = idx
                self.idx_to_token[idx] = char
                idx += 1
                
        self.base_vocab_size = idx
    
    def _get_stats(self, vocab: Dict[Tuple[str, ...], int]) -> Dict[Tuple[str, str], int]:
        """Count frequency of adjacent pairs"""
        pairs = {}
        for word_tuple, freq in vocab.items():
            for i in range(len(word_tuple) - 1):
                pair = (word_tuple[i], word_tuple[i+1])
                pairs[pair] = pairs.get(pair, 0) + freq
        return pairs
    
    def _merge_vocab(self, pair: Tuple[str, str], vocab: Dict[Tuple[str, ...], int]) -> Dict[Tuple[str, ...], int]:
        """Merge all occurrences of pair in vocabulary"""
        new_vocab = {}
        bigram = pair
        new_token = "".join(pair)
        
        for word, freq in vocab.items():
            new_word = []
            i = 0
            while i < len(word):
                if i < len(word) - 1 and word[i] == bigram[0] and word[i+1] == bigram[1]:
                    new_word.append(new_token)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_vocab[tuple(new_word)] = freq
            
        return new_vocab

    def fit(self, texts: List[str]):
        """Train BPE tokenizer on texts"""
        # Pre-tokenize into words to avoid merging across word boundaries
        # This regex splits by whitespace but keeps punctuation
        # Also handles code symbols better
        word_counts = {}
        
        for text in texts:
            # Simple pre-tokenization for code
            words = re.findall(r'[a-zA-Z0-9_]+|[^\s\w]', text)
            for word in words:
                # Convert word to tuple of characters
                token_tuple = tuple(c for c in word)
                word_counts[token_tuple] = word_counts.get(token_tuple, 0) + 1
        
        # BPE training loop
        vocab = word_counts
        num_merges = self.vocab_size - self.base_vocab_size
        
        print(f"Training BPE tokenizer (target vocab: {self.vocab_size})...")
        
        for i in range(num_merges):
            pairs = self._get_stats(vocab)
            if not pairs:
                break
                
            # Find most frequent pair
            best_pair = max(pairs, key=pairs.get)
            
            # Stop if pair frequency is too low (e.g., 1)
            if pairs[best_pair] < 2:
                break
                
            # Merge pair
            vocab = self._merge_vocab(best_pair, vocab)
            
            # Add new token to vocabulary
            new_token = "".join(best_pair)
            self.merges[best_pair] = new_token
            
            idx = len(self.token_to_idx)
            self.token_to_idx[new_token] = idx
            self.idx_to_token[idx] = new_token
            
            if (i + 1) % 100 == 0:
                print(f"BPE merge {i+1}/{num_merges}: '{best_pair[0]}' + '{best_pair[1]}' -> '{new_token}'")
        
        print(f"BPE training complete. Final vocab size: {len(self.token_to_idx)}")

    def _tokenize_word(self, word: str) -> List[str]:
        """Tokenize a single word using learned merges"""
        if word in self.token_to_idx:
            return [word]
            
        # Start with characters
        tokens = list(word)
        
        # Apply merges iteratively
        # Note: In a real BPE implementation we would apply in order of priority
        # Here we do a simpler greedy application based on length
        while True:
            merged = False
            i = 0
            new_tokens = []
            
            while i < len(tokens) - 1:
                pair = (tokens[i], tokens[i+1])
                pair_str = "".join(pair)
                
                # Check if this pair forms a known token
                if pair_str in self.token_to_idx:
                    new_tokens.append(pair_str)
                    i += 2
                    merged = True
                else:
                    new_tokens.append(tokens[i])
                    i += 1
            
            if i < len(tokens):
                new_tokens.append(tokens[i])
                
            if not merged:
                break
                
            tokens = new_tokens
            
        return tokens

    def encode(self, text: str, max_length: Optional[int] = None) -> List[int]:
        """Encode text to token indices"""
        # Pre-tokenize same way as training
        words = re.findall(r'[a-zA-Z0-9_]+|[^\s\w]|\s+', text)
        encoded = []
        
        for word in words:
            if word in self.token_to_idx:
                encoded.append(self.token_to_idx[word])
            else:
                # Apply BPE
                subwords = self._tokenize_word(word)
                for sw in subwords:
                    encoded.append(self.token_to_idx.get(sw, self.token_to_idx["<UNK>"]))
        
        # Truncate or Pad
        if max_length:
            if len(encoded) > max_length:
                encoded = encoded[:max_length]
            elif len(encoded) < max_length:
                encoded += [self.token_to_idx["<PAD>"]] * (max_length - len(encoded))
        
        return encoded
    
    def decode(self, indices: List[int]) -> str:
        """Decode indices to text"""
        tokens = []
        for idx in indices:
            # Skip special tokens if needed, but usually we decode them
            # and let post-processing handle cleanup
            if idx in self.idx_to_token:
                token = self.idx_to_token[idx]
                if token not in ["<PAD>", "<UNK>", "<START>", "<END>"]:
                    tokens.append(token)
        
        return "".join(tokens)
    
    def save(self, path: str):
        """Save tokenizer"""
        data = {
            'vocab_size': self.vocab_size,
            'token_to_idx': self.token_to_idx,
            'idx_to_token': {str(k): v for k, v in self.idx_to_token.items()},
            'base_vocab_size': self.base_vocab_size,
            'merges': {f"{p[0]}|{p[1]}": m for p, m in self.merges.items()}
        }
        with open(path, 'w') as f:
            json.dump(data, f, indent=2)
    
    def load(self, path: str):
        """Load tokenizer"""
        with open(path, 'r') as f:
            data = json.load(f)
        self.vocab_size = data['vocab_size']
        self.token_to_idx = data['token_to_idx']
        self.idx_to_token = {int(k): v for k, v in data['idx_to_token'].items()}
        self.base_vocab_size = data.get('base_vocab_size', 100)
        
        # Load merges
        if 'merges' in data:
            self.merges = {}
            for k, v in data['merges'].items():
                p = k.split('|')
                if len(p) == 2:
                    self.merges[(p[0], p[1])] = v
    
    @property
    def vocabulary_size(self) -> int:
        return len(self.token_to_idx)