Spaces:
Runtime error
Runtime error
| import subprocess | |
| import sys | |
| def install(package): | |
| subprocess.check_call([sys.executable, "-m", "pip", "install", package]) | |
| libraries = ["transformers", "diffusers", "accelerate", "ftfy", "safetensors"] | |
| for library in libraries: | |
| try: | |
| install(library) | |
| print(f"{library} 安装成功") | |
| except subprocess.CalledProcessError as e: | |
| print(f"安装 {library} 时出错: {e}") | |
| from prompt_to_prompt import prompt_to_prompt | |
| from prompt_to_image import prompt_to_image | |
| # 用户提供的简短文本描述 | |
| user_description = "a cute cat" | |
| # 将简短描述转换为适合Stable Diffusion的提示词 | |
| generated_prompt = prompt_to_prompt(user_description) | |
| print(f"Generated Prompt: {generated_prompt}") | |
| # 使用提示词生成图像 | |
| image = prompt_to_image(generated_prompt) | |
| # 保存生成的图像 | |
| image.save("generated_image.png") | |
| print("Image saved as generated_image.png") | |
| from diffusers import StableDiffusionPipeline | |
| import torch | |
| # 加载Stable Diffusion模型 | |
| pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
| # 将模型移动到GPU上(如果有可用的GPU) | |
| pipe = pipe.to("cuda") | |
| def prompt_to_image(prompt): | |
| """ | |
| 使用提示词生成图像 | |
| :param prompt: 适合Stable Diffusion的提示词 | |
| :return: 生成的图像 | |
| """ | |
| # 生成图像 | |
| image = pipe(prompt).images[0] | |
| return image | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # 选择一个大语言模型,这里以GPT - Neo 125M为例 | |
| model_name = "EleutherAI/gpt-neo-125M" | |
| # 加载分词器 | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # 加载模型 | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| def prompt_to_prompt(user_description): | |
| """ | |
| 将用户的简短描述转换为适合Stable Diffusion的提示词 | |
| :param user_description: 用户提供的简短文本描述 | |
| :return: 适合Stable Diffusion的提示词 | |
| """ | |
| # 将用户描述编码为模型可以接受的输入 | |
| input_ids = tokenizer.encode(user_description, return_tensors='pt') | |
| # 生成文本 | |
| output = model.generate(input_ids, max_length=50) | |
| # 将生成的文本解码为字符串 | |
| generated_prompt = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return generated_prompt |