lab / app.py
yakki233's picture
Update app.py
2811ef4 verified
raw
history blame
3.18 kB
import os
import requests
import gradio as gr
# 从环境变量中读取你的 HF API Token
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
if HF_API_TOKEN is None:
raise RuntimeError(
"环境变量 HF_API_TOKEN 未设置,请在 Space 的 Settings -> Variables 中添加一个名为 HF_API_TOKEN 的 Secret。"
)
# 想使用的模型 ID,可以自行替换为其他支持 Inference API 的模型
# 比如 "meta-llama/Llama-3.2-1B-Instruct"、"Qwen/Qwen2.5-1.5B-Instruct" 等
MODEL_ID = "Qwen/Qwen2.5-1.5B-Instruct"
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
def query_hf_api(prompt: str, max_new_tokens: int = 256, temperature: float = 0.7) -> str:
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"do_sample": True,
},
}
response = requests.post(API_URL, headers=HEADERS, json=payload, timeout=120)
response.raise_for_status()
data = response.json()
# text-generation 类模型常见返回格式是 [{"generated_text": "..."}]
if isinstance(data, list) and len(data) > 0:
return data[0].get("generated_text", "").strip()
# 兜底:直接把返回内容转成字符串方便调试
return str(data)
def chat_fn(history, message, max_new_tokens, temperature):
# 简单地把历史对话拼成一个长 prompt
dialog = ""
if history:
for user_msg, bot_msg in history:
dialog += f"用户: {user_msg}\n助手: {bot_msg}\n"
dialog += f"用户: {message}\n助手:"
try:
output = query_hf_api(dialog, max_new_tokens=int(max_new_tokens), temperature=float(temperature))
except Exception as e:
output = f"[调用模型出错] {type(e).__name__}: {e}"
history = history + [(message, output)]
return history, ""
with gr.Blocks() as demo:
gr.Markdown(f"# 云端模型聊天 Demo\n使用模型:`{MODEL_ID}`(通过 Hugging Face Inference API)")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="对话", height=500)
msg = gr.Textbox(
label="你的问题",
placeholder="输入你想问的问题,回车或点击发送",
lines=2,
)
send_btn = gr.Button("发送")
clear_btn = gr.Button("清空对话")
with gr.Column(scale=1):
gr.Markdown("### 参数设置")
max_new_tokens = gr.Slider(16, 512, value=256, step=16, label="max_new_tokens")
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="temperature")
send_btn.click(
chat_fn,
inputs=[chatbot, msg, max_new_tokens, temperature],
outputs=[chatbot, msg],
)
msg.submit(
chat_fn,
inputs=[chatbot, msg, max_new_tokens, temperature],
outputs=[chatbot, msg],
)
clear_btn.click(lambda: ([], ""), None, [chatbot, msg])
if __name__ == "__main__":
# 不要给 launch() 传额外参数,HF 会自己管理 host/port
demo.launch()