import os
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
# 设置 CPU
torch.set_float32_matmul_precision(["high", "highest"][0])
# 加载模型并转移到 CPU
birefnet = AutoModelForImageSegmentation.from_pretrained(
"briaai/RMBG-2.0", trust_remote_code=True
)
birefnet.to("cpu") # 从 CUDA 更改为 CPU
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
# 输出文件夹
output_folder = 'output_images'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 主函数
def fn(image):
print("Input image:", image) # 打印输入图像信息
im = load_img(image, output_type="pil")
im = im.convert("RGB")
origin = im.copy()
image = process(im)
image_path = os.path.join(output_folder, "no_bg_image.png")
image.save(image_path)
return (image, origin), image_path
# 图像处理函数
# @spaces.GPU # 保留该装饰器,它不会影响 CPU 操作
def process(image):
print("Processing image:", image.size) # 打印输入图像大小
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cpu")
print("Transformed image shape:", input_images.shape) # 打印变换后的图像形状
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
print("Predictions shape:", preds.shape) # 打印预测结果形状
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
# 文件处理函数
def process_file(f):
name_path = f.rsplit(".",1)[0]+".png"
im = load_img(f, output_type="pil")
im = im.convert("RGB")
transparent = process(im)
transparent.save(name_path)
return name_path
# 创建滑动条
slider1 = ImageSlider(label="RMBG-2.0", type="pil")
slider2 = ImageSlider(label="RMBG-2.0", type="pil")
image = gr.Image(label="Upload an image", type="pil") # 确保 type 设置正确
image2 = gr.Image(label="Upload an image", type="filepath")
text = gr.Textbox(label="Paste an image URL")
png_file = gr.File(label="output png file")
# 示例图像
chameleon = load_img("giraffe.jpg", output_type="pil")
# URL 示例
url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg"
# 创建界面
tab1 = gr.Interface(
fn,
inputs=image,
outputs=[slider1, gr.File(label="output png file")],
examples=[chameleon],
api_name="image"
)
tab2 = gr.Interface(fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], examples=[url], api_name="text")
tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["giraffe.jpg"], api_name="png")
# 创建 Tab 界面
demo = gr.TabbedInterface(
[tab1, tab2], ["input image", "input url"], title=(
"RMBG-2.0 for background removal
"
""
"Background removal model developed by "
"BRIA.AI, trained on a carefully selected dataset,
"
"and is available as an open-source model for non-commercial use.
"
" For testing upload your image and wait.
"
"Commercial use license | "
"Model card | "
"Blog"
"
"
""
"API Endpoint available on: "
"Bria.ai, "
"fal.ai
"
"ComfyUI node is available here: "
"ComfyUI Node
"
"Purchase commercial weights for commercial use: "
"here"
""
))
# 启动应用
if __name__ == "__main__":
demo.launch(debug=True, show_error=True)