import os import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms # 设置 CPU torch.set_float32_matmul_precision(["high", "highest"][0]) # 加载模型并转移到 CPU birefnet = AutoModelForImageSegmentation.from_pretrained( "briaai/RMBG-2.0", trust_remote_code=True ) birefnet.to("cpu") # 从 CUDA 更改为 CPU transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) # 输出文件夹 output_folder = 'output_images' if not os.path.exists(output_folder): os.makedirs(output_folder) # 主函数 def fn(image): print("Input image:", image) # 打印输入图像信息 im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() image = process(im) image_path = os.path.join(output_folder, "no_bg_image.png") image.save(image_path) return (image, origin), image_path # 图像处理函数 # @spaces.GPU # 保留该装饰器,它不会影响 CPU 操作 def process(image): print("Processing image:", image.size) # 打印输入图像大小 image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cpu") print("Transformed image shape:", input_images.shape) # 打印变换后的图像形状 with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() print("Predictions shape:", preds.shape) # 打印预测结果形状 pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image # 文件处理函数 def process_file(f): name_path = f.rsplit(".",1)[0]+".png" im = load_img(f, output_type="pil") im = im.convert("RGB") transparent = process(im) transparent.save(name_path) return name_path # 创建滑动条 slider1 = ImageSlider(label="RMBG-2.0", type="pil") slider2 = ImageSlider(label="RMBG-2.0", type="pil") image = gr.Image(label="Upload an image", type="pil") # 确保 type 设置正确 image2 = gr.Image(label="Upload an image", type="filepath") text = gr.Textbox(label="Paste an image URL") png_file = gr.File(label="output png file") # 示例图像 chameleon = load_img("giraffe.jpg", output_type="pil") # URL 示例 url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg" # 创建界面 tab1 = gr.Interface( fn, inputs=image, outputs=[slider1, gr.File(label="output png file")], examples=[chameleon], api_name="image" ) tab2 = gr.Interface(fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], examples=[url], api_name="text") tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["giraffe.jpg"], api_name="png") # 创建 Tab 界面 demo = gr.TabbedInterface( [tab1, tab2], ["input image", "input url"], title=( "RMBG-2.0 for background removal
" "" "Background removal model developed by " "BRIA.AI, trained on a carefully selected dataset,
" "and is available as an open-source model for non-commercial use.

" " For testing upload your image and wait.
" "Commercial use license | " "Model card | " "Blog" "

" "" "API Endpoint available on: " "Bria.ai, " "fal.ai
" "ComfyUI node is available here: " "ComfyUI Node
" "Purchase commercial weights for commercial use: " "here" "
" )) # 启动应用 if __name__ == "__main__": demo.launch(debug=True, show_error=True)