suka-nlp commited on
Commit
4541b3f
·
verified ·
1 Parent(s): 9061c60

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - mlabonne/Evol-Instruct-Python-26k
4
+ language:
5
+ - en
6
+ library_name: adapter-transformers
7
+ tags:
8
+ - code
9
+ ---
10
+
11
+ ## Model Details
12
+
13
+ ### Model Description
14
+
15
+ - **Developed by:** Zidan Alfarizi
16
+ - **Model type:** large language model for code generation
17
+ - **Language(s) (NLP):** English
18
+ - **Finetuned from model:** Qwen1.5
19
+
20
+ ### Model Sources
21
+
22
+ - **Repository:** https://github.com/unslothai/unsloth
23
+ - **Developed by:** unsloth
24
+
25
+ ### Model parameter
26
+
27
+ - r = 16,
28
+ - target_modules = ["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],
29
+ - lora_alpha = 16,
30
+ - lora_dropout = 0,
31
+ - bias = "none",
32
+ - use_gradient_checkpointing = "unsloth",
33
+ - random_state = 3407,
34
+ - use_rslora = False,
35
+ - loftq_config = None,
36
+
37
+ ## Usage and limitations
38
+
39
+ This model is used to generate code based on commands given by the user. it should be noted that this model can generate many languages because it takes the initial model from llama2. However, after finetuning it is better at generating python code, because currently it is only trained with python code datasets.
40
+
41
+ ## How to Get Started with the Model
42
+
43
+ use link below to use model
44
+ /
45
+
46
+ ### Training Data
47
+
48
+ https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-26k
49
+
50
+
51
+ #### Training Hyperparameters
52
+
53
+ - **Warmup_step:** 5
54
+ - **lr_scheduler_type:** linear
55
+ - **Learning Rate:** 0.0002
56
+ - **Batch Size:** 2
57
+ - **Weigh_decay:** 0.001
58
+ - **Epoch:** 30
59
+ - **Optimizer:** adamw_8bit
60
+
61
+ #### Testing Data
62
+
63
+ https://huggingface.co/datasets/google-research-datasets/mbpp/viewer/full
64
+
65
+ ### Testing Document
66
+
67
+ https://docs.google.com/spreadsheets/d/1hr8R4nixQsDC5cGGENTOLUW1jPCS_lltVRIeOzenBvA/edit?usp=sharing
68
+
69
+ ### Results
70
+
71
+ Berfore finetune
72
+ - Accurary : 41%
73
+ - Consistensy : 100%
74
+
75
+ After fine tune
76
+ - Accuracy : 58%
77
+ - Consistency : 75%