File size: 33,976 Bytes
7cd774e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
import copy
import gc
import os
import subprocess
import pytz
import sys
import shutil
import tempfile
import threading
import time
from functools import partial
from pathlib import Path
from typing import Optional

import bittensor as bt
import hivemind
import psutil
import torch
from memory_profiler import profile
from datetime import datetime

from hivemind.compression import deserialize_torch_tensor
from hivemind.proto import averaging_pb2
from hivemind.utils import get_logger
from hivemind.utils.asyncio import aiter_with_timeout
from hivemind.utils.streaming import combine_from_streaming
from huggingface_hub import (
    create_tag,
    hf_hub_download,
    list_repo_refs,
    list_repo_files,
    scan_cache_dir,
    upload_folder,
)
from huggingface_hub.utils import (
    HfHubHTTPError,
    RepositoryNotFoundError,
    EntryNotFoundError,
)
from huggingface_hub.constants import HF_HUB_CACHE
from transformers import (
    AutoModelForCausalLM,
    AutoConfig,
    get_cosine_schedule_with_warmup,
)

from distributed_training import __run__
from distributed_training.averaging.averagers import DTGradAverager, DTStateAverager
from distributed_training.utils.progress_tracker import (
    get_global_epoch,
    get_local_inner_step,
    get_min_local_inner_Step,
)
from distributed_training.averaging.avg_handler import AveragingHandler
from huggingface_hub import list_repo_commits

hivemind_logger = get_logger(__name__)


class ModelLoadingManager:
    def __init__(self):
        self.loading_lock = threading.Lock()
        self._is_loading = False
        self._last_loaded_epoch = None

    @property
    def is_loading(self):
        with self.loading_lock:
            return self._is_loading

    @property
    def last_loaded_epoch(self):
        with self.loading_lock:
            return self._last_loaded_epoch

    def set_loading_state(self, is_loading, epoch=None):
        with self.loading_lock:
            self._is_loading = is_loading
            if not is_loading and epoch is not None:
                self._last_loaded_epoch = epoch


class FastModelLoader:
    def __init__(self, model_name: str, cache_dir: str = None):
        """
        Initialize the fast model loader with HF downloader integration.

        Args:
            model_name (str): The HuggingFace model name (e.g., 'organization/model-name')
            cache_dir (str, optional): Directory to store downloaded files. Defaults to HF cache.
        """
        self.model_name = model_name
        self.cache_dir = cache_dir or os.path.expanduser("~/.cache/huggingface/hub")
        self._downloaded_files = {}  # Cache of downloaded files

    def download_files(self, revision: str = None, files: list = None):
        """
        Download files using hfdownloader.

        Args:
            revision (str, optional): Git revision/epoch number
            files (list, optional): List of specific files to download with patterns

        Returns:
            str: Path to downloaded files
        """
        # Generate cache key
        cache_key = f"{revision}_{','.join(files) if files else 'default'}"

        # Check if we already downloaded these files
        if cache_key in self._downloaded_files:
            return self._downloaded_files[cache_key]

        model_path = os.path.join(self.cache_dir, self.model_name.replace("/", "_"))
        os.makedirs(model_path, exist_ok=True)

        cmd = [
            "hfdownloader",
            "-r",
            self.model_name,
            "download",
            "-c",
            "10",
            "-y",
        ]

        if revision:
            cmd.extend(["-b", revision])

        # Add file patterns if specified, otherwise default to both model and optimizer
        if files:
            for file_pattern in files:
                cmd.extend(["-f", f"{file_pattern}"])
        else:
            cmd.extend(
                [
                    "-f",
                    "*.safetensors",
                    "-f",
                    "optimizer.pt",
                    "--skip-verify",
                ]
            )

        bt.logging.debug(f"Executing hfdownloader command: {' '.join(cmd)}")

        try:
            process = subprocess.Popen(
                cmd,
                cwd=model_path,
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                text=True,
                bufsize=1,
                universal_newlines=True,
                env={
                    **os.environ,
                    "PYTHONUNBUFFERED": "1",
                },  # Force Python unbuffered output
            )

            # Use select to handle both stdout and stderr
            import select

            outputs = [process.stdout, process.stderr]
            while True:
                # Wait for output on either stdout or stderr
                readable, _, _ = select.select(outputs, [], [])

                for output in readable:
                    line = output.readline()
                    if line:
                        # Don't buffer the print
                        print(line.rstrip(), flush=True)

                # Check if process has finished
                if process.poll() is not None:
                    break

            # Get any remaining output
            remaining_stdout, remaining_stderr = process.communicate()
            if remaining_stdout:
                print(remaining_stdout.rstrip(), flush=True)
            if remaining_stderr:
                print(
                    f"Error: {remaining_stderr.rstrip()}", file=sys.stderr, flush=True
                )

            if process.returncode != 0:
                raise RuntimeError(
                    f"hfdownloader failed with return code {process.returncode}"
                )

        except Exception as e:
            bt.logging.error(f"Download failed! Error: {str(e)}")
            raise RuntimeError(f"hfdownloader failed: {str(e)}")

        return model_path

    def load_model_and_optimizer(self, epoch: int = None):
        """
        Load both model and optimizer states in a single download operation.

        Args:
            epoch (int, optional): Epoch number for specific revision

        Returns:
            tuple: (model_state_dict, optimizer_state_dict)
        """
        revision = str(epoch) if epoch is not None else None

        # Download both model and optimizer files in one go
        model_path = self.download_files(revision=revision)

        # Load model state
        model_files = list(Path(model_path).rglob("*.safetensors"))
        if not model_files:
            raise FileNotFoundError(f"No model files found in {model_path}")

        bt.logging.info(f"Loading model state from: {[f.name for f in model_files]}")

        state_dict = {}
        for model_file in model_files:
            from safetensors.torch import load_file

            state = load_file(model_file)
            state_dict.update(state)

        # Load optimizer state
        optimizer_file = Path(model_path) / "optimizer.pt"
        if not optimizer_file.exists():
            raise FileNotFoundError(f"Optimizer state not found at {optimizer_file}")

        bt.logging.info(f"Loading optimizer state from: {optimizer_file}")
        optimizer_state = torch.load(str(optimizer_file), map_location="cpu")

        return state_dict, optimizer_state


def check_model_exists(repo_id: str, revision: Optional[str] = None) -> bool:
    try:
        if revision and revision != "None":
            list_repo_files(repo_id, revision=revision)
        else:
            list_repo_files(repo_id)
        return True
    except Exception as e:
        bt.logging.info(f"Model or revision check failed with error: {e}")
        return False


# @profile
def load_model_optimizer_gradient_averager(
    self,
    local_model_name,
    epoch,
    reload_inner_optimizer=True,
    reload_outer_optimizer=True,
    revision=None,
    use_fallback_model=True,
    reset_block_list=True,
):
    """
    Pytorch currently have an ongoing issue with memory leaks:
    https://github.com/pytorch/pytorch/issues/64043. To mitigate
    against this for now gc.collect() is run after each component
    with optimizers and state averagers are deleted.
    """
    bt.logging.debug(
        f"CPU Memory Before Loading State {psutil.virtual_memory().available / 10**9} GB"
    )
    global_model_name = self.config.neuron.global_model_name
    self.global_model_config = AutoConfig.from_pretrained(
        global_model_name, trust_remote_code=True
    )
    if use_fallback_model:
        model_name_list = [local_model_name, global_model_name]
    else:
        model_name_list = [local_model_name]

    if (revision is None) and (local_model_name != global_model_name):
        revision = f"{__run__}.{epoch}.{self.local_progress.inner_step}"
    elif (revision is None) and (local_model_name == global_model_name):
        revision = f"{__run__}.{epoch}.0"

    # Delete Gradient and State Averagers
    if hasattr(self, "state_averager"):
        self.grad_averager.shutdown()
        while self.grad_averager.is_alive():
            time.sleep(1)

        del self.grad_averager.main_parameters
        del self.grad_averager.offloaded_optimizer
        del self.grad_averager._averaged_tensors
        del self.grad_averager
        gc.collect()
        torch.cuda.empty_cache()

        self.state_averager.shutdown()
        while self.state_averager.is_alive():
            time.sleep(1)

        del self.state_averager.optimizer.param_groups
        del self.state_averager.optimizer
        del self.state_averager.main_parameters
        del self.state_averager._averaged_tensors
        del self.state_averager

        gc.collect()
        torch.cuda.empty_cache()
        bt.logging.info("Deleted State Averager and Gradient Averager")

    # Delete existing averag handler
    if hasattr(self, "avg_handler"):
        del self.avg_handler.model
        del self.avg_handler.inner_optimizer
        del self.avg_handler.grad_averager
        del self.avg_handler.state_averager
        del self.avg_handler
        gc.collect()
        torch.cuda.empty_cache()
        bt.logging.info("Deleted Average Handler")

    for model_name in model_name_list:
        optimizer_state = None
        # Load Model & Inner Optimizer
        try:
            if model_name == global_model_name:
                revision = ".".join(revision.split(".")[:-1] + ["0"])
            if not check_model_exists(
                model_name,
                revision=revision,
            ):
                continue

            # Delete existing model
            if hasattr(self, "model"):
                transformer = self.model.model.transformer
                for component in ["wte", "wpe"]:
                    if hasattr(transformer, component):
                        comp = getattr(transformer, component)
                        if hasattr(comp, "weight"):
                            del comp.weight
                            gc.collect()
                            torch.cuda.empty_cache()
                        if hasattr(comp, "norm"):
                            del comp.norm
                            gc.collect()
                            torch.cuda.empty_cache()
                        delattr(transformer, component)
                del self.model
                gc.collect()
                torch.cuda.empty_cache()
                bt.logging.info("Deleted Model")

            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=True,
            )
            bt.logging.info(
                f"Successfully Loaded Model From {model_name} With Revision {revision}"
            )

            # Move model to device
            self.model = self.model.to(self.device)
            self.model.config.block_list = []
            self.local_progress.inner_step = (
                self.model.config.inner_step
                if "inner_step" in self.model.config.__dict__
                else 0
            )
            if (model_name == global_model_name) and (
                epoch == self.global_progress.epoch
            ):
                self.allreduce_status_dict = (
                    self.model.config.all_reduce_scores
                    if "all_reduce_scores" in self.model.config.__dict__
                    else {}
                )

            if reload_inner_optimizer:
                # Delete existing inner optimizer
                if hasattr(self, "inner_optimizer"):
                    for i in self.inner_optimizer.param_groups[0]["params"]:
                        del i
                        gc.collect()
                        torch.cuda.empty_cache()
                    del self.inner_optimizer
                    gc.collect()
                    torch.cuda.empty_cache()
                    bt.logging.info("Deleted Inner Optimizer")

                self.inner_optimizer = torch.optim.AdamW(
                    self.model.parameters(),
                    lr=self.learning_rate_maximum,
                    betas=(0.9, 0.95),
                    weight_decay=0.1,
                )
                bt.logging.info(f"Loaded Inner Optimizer")

                self.scheduler = get_cosine_schedule_with_warmup(
                    self.inner_optimizer,
                    num_warmup_steps=1000,
                    num_training_steps=88000,
                )

                try:
                    optimizer_state = torch.load(
                        os.path.join(
                            model_name.split("/")[-1],
                            "inner_optimizer.pt",
                        ),
                        weights_only=True,
                        map_location="cpu",
                    )
                except:
                    optimizer_state = torch.load(
                        hf_hub_download(
                            repo_id=model_name,
                            filename="inner_optimizer.pt",
                            revision=revision,
                        ),
                        weights_only=True,
                        map_location="cpu",
                    )

                # Load optimizer state if available
                if "optimizer_state_dict" in optimizer_state:
                    self.inner_optimizer.load_state_dict(
                        optimizer_state["optimizer_state_dict"]
                    )
                if "learning_rate" in optimizer_state:
                    for group in self.inner_optimizer.param_groups:
                        group["lr"] = optimizer_state["learning_rate"]
                if "scheduler_state" in optimizer_state:
                    self.scheduler.load_state_dict(optimizer_state["scheduler_state"])
                bt.logging.info(
                    f"Successfully Loaded Inner Optimizer State From {model_name} For Revision {revision}"
                )

                break

        except Exception as e:
            if model_name == model_name_list[-1]:
                raise Exception(f"Failed to load model despite repo existing: {str(e)}")
            else:
                bt.logging.info(f"Failed to load model despite repo existing: {str(e)}")

        finally:
            if isinstance(optimizer_state, dict):
                keys = list(optimizer_state.keys())
                for k in keys:
                    del optimizer_state[k]
                    gc.collect()
            del optimizer_state
            gc.collect()
            torch.cuda.empty_cache()

    # Set outer optimizer
    self.outer_optimizer = partial(torch.optim.SGD, lr=0.7, momentum=0.9, nesterov=True)

    # Load a new state averager
    self.state_averager = DTStateAverager(
        dht=self.dht,
        prefix=f"{self.config.neuron.run_id}_state_averager",
        optimizer=self.outer_optimizer,
        params=self.model.parameters(),
        initialize_optimizer=True,
        offload_optimizer=self.offload_optimizer,
        custom_gradients=self.offload_optimizer,
        min_group_size=self.config.neuron.min_group_size,
        min_matchmaking_time=30.0,
        request_timeout=10.0,
        next_chunk_timeout=45.0,
        allreduce_timeout=self.allreduce_timeout - 30.0 - 15.0,
        start=True,
    )
    bt.logging.info("Successfully Loaded Gradient Averager")

    # Load a new gradient averager
    self.grad_averager = DTGradAverager(
        dht=self.dht,
        main_parameters=self.state_averager.main_parameters,
        offloaded_optimizer=self.state_averager.optimizer,
        prefix=f"{self.config.neuron.run_id}_grad_averager",
        compression=hivemind.Uniform8BitQuantization(),
        state_compression=hivemind.Uniform8BitQuantization(),
        min_group_size=self.config.neuron.min_group_size,
        min_matchmaking_time=30.0,
        request_timeout=10.0,
        next_chunk_timeout=45.0,
        allreduce_timeout=self.allreduce_timeout - 30.0 - 15.0,
        start=True,
    )
    bt.logging.info("Successfully Loaded State Averager")

    if reload_outer_optimizer:
        optimizer_state = None
        try:
            optimizer_state = torch.load(
                hf_hub_download(
                    repo_id=global_model_name,
                    filename="outer_optimizer.pt",
                    revision=".".join(revision.split(".")[:-1] + ["0"]),
                ),
                weights_only=True,
                map_location="cpu",
            )

            # Load optimizer state if available
            if "optimizer_state_dict" in optimizer_state:
                self.state_averager.optimizer.load_state_dict(
                    optimizer_state["optimizer_state_dict"]
                )

            bt.logging.info(
                f"Successfully Loaded Outer Optimizer State From {global_model_name} For Revision {'.'.join(revision.split('.')[:-1] + ['0'])}"
            )

        except Exception as e:
            bt.logging.warning(
                f"No optimizer state found or failed to load: {str(e)}. Initializing fresh optimizer."
            )

        finally:
            if isinstance(optimizer_state, dict):
                keys = list(optimizer_state.keys())
                for k in keys:
                    del optimizer_state[k]
                    gc.collect()
            del optimizer_state
            gc.collect()
            torch.cuda.empty_cache()

    self.avg_handler = AveragingHandler(
        self.model,
        self.inner_optimizer,
        self.grad_averager,
        self.state_averager,
        self.retry_limit,
        self.retry_delay,
        self.uid,
        self.config.neuron.local_batch_size_train,
        self.config.neuron.local_batch_size_train_effective,
        self.tokenizer,
        self.device,
    )

    self.scaler = torch.amp.GradScaler(enabled=True)

    if (self.local_progress.inner_step != 0) and ("." in revision):
        self.state_averager.reset_main_parameters(
            model_name,
            revision=".".join(
                revision.split(".")[:-1]
                + [str(get_min_local_inner_Step(self, model_name, epoch=epoch))]
            ),
        )

    bt.logging.debug(
        f"CPU Memory After Loading State {psutil.virtual_memory().available / 10**9} GB"
    )


def load_state_from_peer(
    self,
    repo_id=None,
    epoch=None,
    reload_inner_optimizer=True,
    reload_outer_optimizer=True,
    revision=None,
    use_fallback_model=True,
):
    try:
        state_loaded = False
        if epoch is None:
            self.global_progress.epoch = get_global_epoch(self)
            epoch = self.global_progress.epoch
        if repo_id is None:
            repo_id = self.config.neuron.global_model_name
        self.local_progress.inner_step = get_local_inner_step(
            self, repo_id, epoch=self.global_progress.epoch
        )

        bt.logging.debug("Model Weights Before Loading State")
        current_model_weights_sample = copy.copy(
            [layer for layer in self.model.parameters()][-2][-10:].tolist()
        )
        bt.logging.debug(current_model_weights_sample)

        bt.logging.debug(f"Old Model Tag: {self.local_progress.epoch}")

        if self.global_progress.epoch is not None:
            bt.logging.debug(
                f"Latest Model State Found On The HF Hub With The Tag: {self.global_progress.epoch}. Loading That Model State."
            )

            # Load model state with max retries
            MAX_ATTEMPTS = 3
            attempt = 0

            while attempt < MAX_ATTEMPTS:
                try:
                    load_model_optimizer_gradient_averager(
                        self,
                        local_model_name=repo_id,
                        epoch=epoch,
                        reload_inner_optimizer=reload_inner_optimizer,
                        reload_outer_optimizer=reload_outer_optimizer,
                        revision=revision,
                        use_fallback_model=use_fallback_model,
                    )
                    break

                except Exception as e:
                    attempt += 1
                    if attempt == MAX_ATTEMPTS:
                        raise Exception(
                            f"Failed to load model after {MAX_ATTEMPTS} attempts: {str(e)}"
                        )
                    bt.logging.warning(
                        f"Failed to load model, retrying. Attempt {attempt}/{MAX_ATTEMPTS}. Error {str(e)}"
                    )

            state_loaded = True

            bt.logging.debug("Model Weights After Loading State")
            new_model_weights_sample = copy.copy(
                [layer for layer in self.model.parameters()][-2][-10:].tolist()
            )
            bt.logging.debug(new_model_weights_sample)

            self.local_progress.epoch = epoch
            self.local_progress.samples_accumulated = 0
            bt.logging.debug(f"New Model Tag: {self.global_progress.epoch}")

            # Clean up old cache
            try:
                cleanup_old_cache(self, repo_id, revision)
            except Exception as e:
                bt.logging.warning(f"Failed to cleanup cache: {str(e)}")

        else:
            bt.logging.debug(f"Model With Tag: {epoch} Does Not Exist")

        return state_loaded

    except Exception as e:
        bt.logging.error(f"Error loading state: {str(e)}")
        return False


# TODO Remove this if score_bandwidth is deprecated
async def load_state_from_miner(self, peer, timeout: Optional[float] = None):
    metadata = None
    hivemind_logger.info(f"Downloading parameters from peer {peer}")
    try:
        stub = self.grad_averager.get_stub(
            self._p2p,
            peer,
            namespace=self.grad_averager.matchmaking_kwargs["prefix"],
        )
        stream = await stub.rpc_download_state_partial(averaging_pb2.DownloadRequest())
        current_tensor_parts, tensors = [], []

        # TODO merge this with hivemind.compression.deserialize_tensor_stream
        async for message in aiter_with_timeout(stream, timeout=timeout):
            if message.metadata:
                metadata = self.grad_averager.serializer.loads(message.metadata)
            if message.tensor_part.dtype and current_tensor_parts:
                # tensor_part.dtype indicates the start of the new tensor, so we should wrap up this one
                tensors.append(
                    deserialize_torch_tensor(
                        combine_from_streaming(current_tensor_parts)
                    )
                )
                current_tensor_parts = []
            current_tensor_parts.append(message.tensor_part)
        if current_tensor_parts:
            tensors.append(
                deserialize_torch_tensor(combine_from_streaming(current_tensor_parts))
            )

        if not metadata:
            hivemind_logger.exception(f"Peer {peer} did not send its state")
            return

        hivemind_logger.info(f"Finished downloading state from {peer}")
        return metadata, tensors
    except Exception as e:
        hivemind_logger.exception(f"Failed to download state from {peer} - {repr(e)}")
        return None, None


def cleanup_old_cache(self, repo_id=None, current_revision=None):
    """Helper method to clean up old cache files"""
    if repo_id is None:
        repo_id = self.config.neuron.global_model_name
        current_revision = self.model.config._commit_hash

    cache_info = scan_cache_dir()
    broken_cache_list = [str(warning) for warning in cache_info.warnings]
    cache_dir = HF_HUB_CACHE
    cache_dir = Path(cache_dir).expanduser().resolve()
    bt.logging.info("Cache clearing warnings:")
    bt.logging.info(f"{cache_info.warnings}")

    # Delete cache using preferred huggingface cache clearing method
    if current_revision is None:
        for cache in cache_dir.iterdir():
            if repo_id.replace("/", "--") in str(cache):
                bt.logging.info(f"Deleting the entire cache folder for repo {repo_id}.")
                try:
                    shutil.rmtree(str(cache))
                except OSError as e:
                    bt.logging.info(
                        "Error: %s - %s deleting the entire cache folder for the repo: %s"
                        % (e.filename, e.strerror, repo_id)
                    )

    else:
        for repo in cache_info.repos:
            if repo.repo_id == repo_id:
                revisions = sorted(
                    repo.revisions, key=lambda r: r.last_modified, reverse=True
                )

                bt.logging.info(
                    f"Found {len(revisions)} model revisions in .cache folder. Proceeding to delete all non-current revision."
                )
                for revision in revisions:
                    if (current_revision is not None) and (
                        revision.commit_hash == current_revision
                    ):
                        bt.logging.info(
                            f"Skipping cache for current revision {revision.commit_hash}"
                        )
                        continue
                    else:
                        bt.logging.info(
                            f"Deleting cache for revision {revision.commit_hash}"
                        )
                        cache_info.delete_revisions(revision.commit_hash).execute()
                break

    # Forcefully remove the entire cache folder for a model if it's corrupted
    if len(broken_cache_list) > 1:
        for cache in cache_dir.iterdir():
            if str(cache) in str(broken_cache_list):
                bt.logging.info(
                    f"Found repo {repo_id} in HF cache warning message. Proceeding to delete the entire cache folder."
                )
                try:
                    shutil.rmtree(str(cache))
                except OSError as e:
                    bt.logging.info(
                        "Error: %s - %s deleting the entire cache folder for the repo: %s"
                        % (e.filename, e.strerror, repo_id)
                    )


def upload_new_state(self, epoch: int, results: dict, block: int = None):
    attempt = 0
    while attempt < self.model_upload_retry_limit:
        try:
            bt.logging.info(
                f"Pushing new model and optimizer state to HF Hub with tag {epoch}"
            )

            # Save and upload both model and optimizer state
            upload_success = save_and_upload_state(
                self, epoch=epoch, results=results, block=block
            )

            if upload_success:
                # Verify the upload
                updated_refs = list_repo_refs(
                    self.config.neuron.global_model_name,
                    repo_type="model",
                )
                new_tag = (
                    max(
                        [
                            int(tag.name.split(".")[1])
                            for tag in updated_refs.tags
                            if (
                                (len(tag.name.split(".")) == 3)
                                and (tag.name.split(".")[0] == __run__)
                            )
                        ]
                    )
                    if updated_refs.tags
                    else 0
                )
                bt.logging.info(f"Successfully pushed new model with tag {new_tag}")
                # Wait to allow out of sync miners to download new model state
                time.sleep(self.load_state_timeout)
                break

        except HfHubHTTPError as e:
            attempt += 1
            bt.logging.info(f"{e}. Loading State from Peer.")
            state_loaded = load_state_from_peer(self, epoch=self.global_progress.epoch)
            if state_loaded:
                break
        except Exception:
            attempt += 1
            bt.logging.warning(
                f"Failed To Upload Model To HF hub, Retrying. Attempt {attempt}/{self.model_upload_retry_limit}."
            )
            if attempt < self.model_upload_retry_limit:
                time.sleep(self.model_upload_retry_delay)
            else:
                bt.logging.error(
                    "Maximum Retry Limit Reached. Unable To Upload Model To HF Hub."
                )
                raise
    return upload_success


def save_and_upload_state(self, epoch: int, results: dict, block: int = None):
    """Unified function to save and upload both model and optimizer state"""
    batch_size = sum(
        [result for result in results["gathered"].values() if result is not None]
    )
    participating_peers = results["participating_peers"]
    failed_peers = results["failed_peers"]
    attempt = 0
    while attempt < self.model_upload_retry_limit:
        try:
            with tempfile.TemporaryDirectory() as tmp_folder:
                bt.logging.info(
                    f"Preparing model and optimizer state for epoch {epoch}"
                )
                if block is not None:
                    self.model.config.last_allreduce_block = block
                self.model.config.inner_step = 0
                self.model.save_pretrained(tmp_folder)

                # Save outer optimizer state
                outer_optimizer_state = {
                    "optimizer_state_dict": self.state_averager.optimizer.state_dict(),
                    "learning_rate": self.state_averager.optimizer.param_groups[0][
                        "lr"
                    ],
                    "epoch": epoch,
                }
                torch.save(
                    outer_optimizer_state,
                    os.path.join(tmp_folder, "outer_optimizer.pt"),
                )

                # Save outer optimizer state
                inner_optimizer_state = {
                    "optimizer_state_dict": self.inner_optimizer.state_dict(),
                    "learning_rate": self.inner_optimizer.param_groups[0]["lr"],
                    "scheduler_state": self.scheduler.state_dict(),
                    "epoch": epoch,
                }
                torch.save(
                    inner_optimizer_state,
                    os.path.join(tmp_folder, "inner_optimizer.pt"),
                )

                bt.logging.info(
                    f"Uploading model and optimizer states to repo: {self.config.neuron.global_model_name}"
                )

                # Upload everything in one go
                commit_message = f"Run {__run__}. Outer Step {epoch}. Inner Step {0}. Peers {len(participating_peers) - len(failed_peers)}."
                upload_folder(
                    folder_path=tmp_folder,
                    repo_id=self.config.neuron.global_model_name,
                    repo_type="model",
                    commit_message=commit_message,
                )

                # Create a tag for this version
                create_tag(
                    self.config.neuron.global_model_name,
                    repo_type="model",
                    tag=f"{__run__}.{epoch}.{0}",
                    tag_message=commit_message,
                )

                bt.logging.info(
                    f"Successfully pushed new model and optimizer state with tag {epoch} to repo: {self.config.neuron.global_model_name}"
                )
                return True

        except Exception as e:
            attempt += 1
            bt.logging.warning(
                f"Failed to upload state to HF hub, Retrying. Attempt {attempt}/{self.model_upload_retry_limit}. Error: {str(e)}"
            )
            if attempt < self.model_upload_retry_limit:
                time.sleep(self.model_upload_retry_delay)
            else:
                bt.logging.error(
                    "Maximum retry limit reached. Unable to upload state to HF Hub."
                )
                raise
    return False


def get_top_uid(self):
    all_reduce_scores_uids = [
        k
        for k, v in self.allreduce_status_dict.items()
        if (v == "SUCCESS")
        and (self.uid_tracker[int(k)]["model_huggingface_id"] is not None)
        and (
            (
                datetime.now(pytz.utc)
                - list_repo_commits(
                    self.uid_tracker[int(k)]["model_huggingface_id"], repo_type="model"
                )[0].created_at
            ).seconds
            < (60 * 60)
        )
    ]
    top_uid_list = [
        k
        for k, v in sorted(
            {
                u: self.metagraph.incentive[int(u)].item()
                for u in all_reduce_scores_uids
            }.items(),
            key=lambda item: item[1],
        )
    ]
    if top_uid_list != []:
        top_uid = top_uid_list[-1]
    bt.logging.info(f"Top UID Identified As {top_uid}")
    return top_uid