File size: 8,912 Bytes
7cd774e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# The MIT License (MIT)
# Copyright © 2023 Yuma Rao
# Copyright © 2023 KMFODA

# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the “Software”), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software.

# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.


import os
import time

os.environ["NEST_ASYNCIO"] = "0"
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
import math
import threading

import bittensor as bt
from transformers import AutoTokenizer


from distributed_training.base.validator import BaseValidatorNeuron
from distributed_training.utils.chain import log_peerid_to_chain
from distributed_training.utils.misc import (
    AsyncDendritePool,
    init_dht,
    load_wandb,
    setup_logging,
)
from distributed_training.utils.progress_tracker import (
    GlobalTrainingProgress,
    LocalTrainingProgress,
    get_global_epoch,
)
from distributed_training.utils.state_loader import (
    FastModelLoader,
    cleanup_old_cache,
    load_model_optimizer_gradient_averager,
    load_state_from_peer,
)
from distributed_training.utils.uids import map_uid_to_peerid, update_run_peerid_list
from distributed_training.validator import forward


class Validator(BaseValidatorNeuron):
    def __init__(self, config=None):
        super(Validator, self).__init__(config=config)
        self._update_wandb_project()
        self._init_basic_components()
        self._init_model_components()
        self._init_network_components()
        self._init_uid_components()

    def _update_wandb_project(self):
        suffix = "_validators" if self.neuron_type == "ValidatorNeuron" else "_miners"
        self.config.neuron.wandb_project += suffix

    def _init_basic_components(self):
        """Initialize basic validator components"""
        setup_logging(config=self.config)

        # Core setup
        self.device = self.config.neuron.device
        self.uid = self.metagraph.hotkeys.index(self.wallet.hotkey.ss58_address)
        self.dendrite_pool = AsyncDendritePool(
            wallet=self.wallet, metagraph=self.metagraph
        )
        init_dht(self)

        # Progress tracking
        self._init_progress_tracking()

        # Wandb setup
        if not self.config.neuron.dont_wandb_log:
            self.wandb = load_wandb(
                self, self.config, self.wallet, "validator", str(self.dht.peer_id)
            )

    def _init_progress_tracking(self):
        self.local_progress = LocalTrainingProgress(
            peer_id=self.dht.peer_id.to_bytes(),
            epoch=0,
            samples_accumulated=0,
            samples_per_second=0.0,
            time=0.0,
            client_mode=False,
            inner_step=0,
            loss=0.0,
        )
        self.global_progress = GlobalTrainingProgress(epoch=0, samples_accumulated=0)
        self.global_progress.epoch = get_global_epoch(self)
        self.local_progress.epoch = self.global_progress.epoch

        if self.global_progress.epoch is None:
            bt.logging.error(
                "Model Tag Is None. Make Sure You Are Using The Correct Model Name"
            )

    def _init_model_components(self):
        """Initialize model-related components including tokenizer and optimizer settings."""
        self._setup_model_params()
        self._init_tokenizer()
        self._setup_model_state()
        self._setup_training_params()

    def _setup_model_params(self):
        # Timeouts
        self.load_state_timeout = 180

        # Core parameters
        self.learning_rate_maximum = 4e-4
        self.weight_decay = 0.1
        self.num_inner_steps = 500
        self.offload_optimizer = True
        self.model_upload_retry_limit = 3
        self.model_upload_retry_delay = 10

        # Validator-specific training parameters
        self.maximum_steps = 306 * 4  # 10_000_000_000/(32000*1024)
        self.warmup_steps = 62  # 306 / 5
        self.failed_is_alive_counter_threshold = 10

    def _init_tokenizer(self):
        self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2", use_fast=False)
        self.tokenizer.pad_token = self.tokenizer.eos_token

    def _setup_model_state(self):
        self.learning_rate = self.get_learning_rate()
        self.average_loss = None
        self.loader = FastModelLoader(self.config.neuron.hf_repo_id)

        load_model_optimizer_gradient_averager(
            self, self.config.neuron.global_model_name, self.global_progress.epoch
        )
        cleanup_old_cache(self)

        if self.local_progress.epoch < self.global_progress.epoch:
            load_state_from_peer(self, epoch=self.global_progress.epoch)

    def _setup_training_params(self):
        self.local_batch_size_train = self.config.neuron.local_batch_size_train
        self.local_batch_size_train_effective = (
            self.config.neuron.local_batch_size_train_effective
        )
        self.logging_interval = 5
        self.number_of_local_steps = (
            self.config.neuron.local_batch_size_train_effective
            // self.config.neuron.local_batch_size_train
        )

        self.running_loss = 0.0
        self.batch_count = 0

    def _init_network_components(self):
        """Initialize network and P2P components"""
        bt.logging.info("Logging PeerID to chain")
        log_peerid_to_chain(self)

    def _init_uid_components(self):
        self._setup_uids()
        self._init_peer_mapping()
        self._setup_allreduce_block()

    def _setup_uids(self):
        self.master_uid = self.metagraph.hotkeys.index(
            self.config.neuron.master_ss58_address,
        )
        self.failed_is_alive_counter = {uid: 0 for uid in self.metagraph.uids.tolist()}

    def _init_peer_mapping(self):
        self.stop_event = threading.Event()
        map_uid_to_peerid(self)
        update_run_peerid_list(self)

    def _setup_allreduce_block(self):
        if (self.uid == self.master_uid) or (
            "last_allreduce_block" not in self.model.config.__dict__
        ):
            self.last_allreduce_block = self.block
        else:
            self.last_allreduce_block = self.model.config.last_allreduce_block

    def update_local_tracker_state(self, rewards, responses):
        for reward, response in zip(rewards, responses[0]):
            if (reward != 0) and (response.dataset_indices is not None):
                self.local_progress.samples_accumulated += len(response.dataset_indices)
            else:
                continue

    def get_learning_rate(self):
        learning_rate_minimum = self.learning_rate_maximum * 0.1
        # 1) linear warmup for warmup_steps
        if self.global_progress.epoch < self.warmup_steps:
            return (
                self.learning_rate_maximum
                * (self.global_progress.epoch + 1)
                / self.warmup_steps
            )
        # 2) if epoch > lr_decay_iters, return learning_rate_minimum
        if self.global_progress.epoch > self.maximum_steps:
            return learning_rate_minimum
        # 3) if in between, use cosine decay down to min learning rate
        decay_ratio = (self.global_progress.epoch - self.warmup_steps) / (
            self.maximum_steps - self.warmup_steps
        )
        assert 0 <= decay_ratio <= 1
        # coeff starts at 1 and goes to 0
        coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
        return (learning_rate_minimum + coeff) * (
            self.learning_rate_maximum - learning_rate_minimum
        )

    def get_validator_info(self):
        return {
            "block": self.metagraph.block.item(),
            "stake": self.metagraph.stake[self.uid],
            "rank": self.metagraph.ranks[self.uid],
            "vtrust": self.metagraph.validator_trust[self.uid],
            "dividends": self.metagraph.dividends[self.uid],
            "emissions": self.metagraph.emission[self.uid],
        }

    async def forward(self):
        return await forward(self)


# The main function parses the configuration and runs the validator.
if __name__ == "__main__":
    Validator().run()