import copy import gc import os import subprocess import pytz import sys import shutil import tempfile import threading import time from functools import partial from pathlib import Path from typing import Optional import bittensor as bt import hivemind import psutil import torch from memory_profiler import profile from datetime import datetime from hivemind.compression import deserialize_torch_tensor from hivemind.proto import averaging_pb2 from hivemind.utils import get_logger from hivemind.utils.asyncio import aiter_with_timeout from hivemind.utils.streaming import combine_from_streaming from huggingface_hub import ( create_tag, hf_hub_download, list_repo_refs, list_repo_files, scan_cache_dir, upload_folder, ) from huggingface_hub.utils import ( HfHubHTTPError, RepositoryNotFoundError, EntryNotFoundError, ) from huggingface_hub.constants import HF_HUB_CACHE from transformers import ( AutoModelForCausalLM, AutoConfig, get_cosine_schedule_with_warmup, ) from distributed_training import __run__ from distributed_training.averaging.averagers import DTGradAverager, DTStateAverager from distributed_training.utils.progress_tracker import ( get_global_epoch, get_local_inner_step, get_min_local_inner_Step, ) from distributed_training.averaging.avg_handler import AveragingHandler from huggingface_hub import list_repo_commits hivemind_logger = get_logger(__name__) class ModelLoadingManager: def __init__(self): self.loading_lock = threading.Lock() self._is_loading = False self._last_loaded_epoch = None @property def is_loading(self): with self.loading_lock: return self._is_loading @property def last_loaded_epoch(self): with self.loading_lock: return self._last_loaded_epoch def set_loading_state(self, is_loading, epoch=None): with self.loading_lock: self._is_loading = is_loading if not is_loading and epoch is not None: self._last_loaded_epoch = epoch class FastModelLoader: def __init__(self, model_name: str, cache_dir: str = None): """ Initialize the fast model loader with HF downloader integration. Args: model_name (str): The HuggingFace model name (e.g., 'organization/model-name') cache_dir (str, optional): Directory to store downloaded files. Defaults to HF cache. """ self.model_name = model_name self.cache_dir = cache_dir or os.path.expanduser("~/.cache/huggingface/hub") self._downloaded_files = {} # Cache of downloaded files def download_files(self, revision: str = None, files: list = None): """ Download files using hfdownloader. Args: revision (str, optional): Git revision/epoch number files (list, optional): List of specific files to download with patterns Returns: str: Path to downloaded files """ # Generate cache key cache_key = f"{revision}_{','.join(files) if files else 'default'}" # Check if we already downloaded these files if cache_key in self._downloaded_files: return self._downloaded_files[cache_key] model_path = os.path.join(self.cache_dir, self.model_name.replace("/", "_")) os.makedirs(model_path, exist_ok=True) cmd = [ "hfdownloader", "-r", self.model_name, "download", "-c", "10", "-y", ] if revision: cmd.extend(["-b", revision]) # Add file patterns if specified, otherwise default to both model and optimizer if files: for file_pattern in files: cmd.extend(["-f", f"{file_pattern}"]) else: cmd.extend( [ "-f", "*.safetensors", "-f", "optimizer.pt", "--skip-verify", ] ) bt.logging.debug(f"Executing hfdownloader command: {' '.join(cmd)}") try: process = subprocess.Popen( cmd, cwd=model_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1, universal_newlines=True, env={ **os.environ, "PYTHONUNBUFFERED": "1", }, # Force Python unbuffered output ) # Use select to handle both stdout and stderr import select outputs = [process.stdout, process.stderr] while True: # Wait for output on either stdout or stderr readable, _, _ = select.select(outputs, [], []) for output in readable: line = output.readline() if line: # Don't buffer the print print(line.rstrip(), flush=True) # Check if process has finished if process.poll() is not None: break # Get any remaining output remaining_stdout, remaining_stderr = process.communicate() if remaining_stdout: print(remaining_stdout.rstrip(), flush=True) if remaining_stderr: print( f"Error: {remaining_stderr.rstrip()}", file=sys.stderr, flush=True ) if process.returncode != 0: raise RuntimeError( f"hfdownloader failed with return code {process.returncode}" ) except Exception as e: bt.logging.error(f"Download failed! Error: {str(e)}") raise RuntimeError(f"hfdownloader failed: {str(e)}") return model_path def load_model_and_optimizer(self, epoch: int = None): """ Load both model and optimizer states in a single download operation. Args: epoch (int, optional): Epoch number for specific revision Returns: tuple: (model_state_dict, optimizer_state_dict) """ revision = str(epoch) if epoch is not None else None # Download both model and optimizer files in one go model_path = self.download_files(revision=revision) # Load model state model_files = list(Path(model_path).rglob("*.safetensors")) if not model_files: raise FileNotFoundError(f"No model files found in {model_path}") bt.logging.info(f"Loading model state from: {[f.name for f in model_files]}") state_dict = {} for model_file in model_files: from safetensors.torch import load_file state = load_file(model_file) state_dict.update(state) # Load optimizer state optimizer_file = Path(model_path) / "optimizer.pt" if not optimizer_file.exists(): raise FileNotFoundError(f"Optimizer state not found at {optimizer_file}") bt.logging.info(f"Loading optimizer state from: {optimizer_file}") optimizer_state = torch.load(str(optimizer_file), map_location="cpu") return state_dict, optimizer_state def check_model_exists(repo_id: str, revision: Optional[str] = None) -> bool: try: if revision and revision != "None": list_repo_files(repo_id, revision=revision) else: list_repo_files(repo_id) return True except Exception as e: bt.logging.info(f"Model or revision check failed with error: {e}") return False # @profile def load_model_optimizer_gradient_averager( self, local_model_name, epoch, reload_inner_optimizer=True, reload_outer_optimizer=True, revision=None, use_fallback_model=True, reset_block_list=True, ): """ Pytorch currently have an ongoing issue with memory leaks: https://github.com/pytorch/pytorch/issues/64043. To mitigate against this for now gc.collect() is run after each component with optimizers and state averagers are deleted. """ bt.logging.debug( f"CPU Memory Before Loading State {psutil.virtual_memory().available / 10**9} GB" ) global_model_name = self.config.neuron.global_model_name self.global_model_config = AutoConfig.from_pretrained( global_model_name, trust_remote_code=True ) if use_fallback_model: model_name_list = [local_model_name, global_model_name] else: model_name_list = [local_model_name] if (revision is None) and (local_model_name != global_model_name): revision = f"{__run__}.{epoch}.{self.local_progress.inner_step}" elif (revision is None) and (local_model_name == global_model_name): revision = f"{__run__}.{epoch}.0" # Delete Gradient and State Averagers if hasattr(self, "state_averager"): self.grad_averager.shutdown() while self.grad_averager.is_alive(): time.sleep(1) del self.grad_averager.main_parameters del self.grad_averager.offloaded_optimizer del self.grad_averager._averaged_tensors del self.grad_averager gc.collect() torch.cuda.empty_cache() self.state_averager.shutdown() while self.state_averager.is_alive(): time.sleep(1) del self.state_averager.optimizer.param_groups del self.state_averager.optimizer del self.state_averager.main_parameters del self.state_averager._averaged_tensors del self.state_averager gc.collect() torch.cuda.empty_cache() bt.logging.info("Deleted State Averager and Gradient Averager") # Delete existing averag handler if hasattr(self, "avg_handler"): del self.avg_handler.model del self.avg_handler.inner_optimizer del self.avg_handler.grad_averager del self.avg_handler.state_averager del self.avg_handler gc.collect() torch.cuda.empty_cache() bt.logging.info("Deleted Average Handler") for model_name in model_name_list: optimizer_state = None # Load Model & Inner Optimizer try: if model_name == global_model_name: revision = ".".join(revision.split(".")[:-1] + ["0"]) if not check_model_exists( model_name, revision=revision, ): continue # Delete existing model if hasattr(self, "model"): transformer = self.model.model.transformer for component in ["wte", "wpe"]: if hasattr(transformer, component): comp = getattr(transformer, component) if hasattr(comp, "weight"): del comp.weight gc.collect() torch.cuda.empty_cache() if hasattr(comp, "norm"): del comp.norm gc.collect() torch.cuda.empty_cache() delattr(transformer, component) del self.model gc.collect() torch.cuda.empty_cache() bt.logging.info("Deleted Model") self.model = AutoModelForCausalLM.from_pretrained( model_name, revision=revision, trust_remote_code=True, ) bt.logging.info( f"Successfully Loaded Model From {model_name} With Revision {revision}" ) # Move model to device self.model = self.model.to(self.device) self.model.config.block_list = [] self.local_progress.inner_step = ( self.model.config.inner_step if "inner_step" in self.model.config.__dict__ else 0 ) if (model_name == global_model_name) and ( epoch == self.global_progress.epoch ): self.allreduce_status_dict = ( self.model.config.all_reduce_scores if "all_reduce_scores" in self.model.config.__dict__ else {} ) if reload_inner_optimizer: # Delete existing inner optimizer if hasattr(self, "inner_optimizer"): for i in self.inner_optimizer.param_groups[0]["params"]: del i gc.collect() torch.cuda.empty_cache() del self.inner_optimizer gc.collect() torch.cuda.empty_cache() bt.logging.info("Deleted Inner Optimizer") self.inner_optimizer = torch.optim.AdamW( self.model.parameters(), lr=self.learning_rate_maximum, betas=(0.9, 0.95), weight_decay=0.1, ) bt.logging.info(f"Loaded Inner Optimizer") self.scheduler = get_cosine_schedule_with_warmup( self.inner_optimizer, num_warmup_steps=1000, num_training_steps=88000, ) try: optimizer_state = torch.load( os.path.join( model_name.split("/")[-1], "inner_optimizer.pt", ), weights_only=True, map_location="cpu", ) except: optimizer_state = torch.load( hf_hub_download( repo_id=model_name, filename="inner_optimizer.pt", revision=revision, ), weights_only=True, map_location="cpu", ) # Load optimizer state if available if "optimizer_state_dict" in optimizer_state: self.inner_optimizer.load_state_dict( optimizer_state["optimizer_state_dict"] ) if "learning_rate" in optimizer_state: for group in self.inner_optimizer.param_groups: group["lr"] = optimizer_state["learning_rate"] if "scheduler_state" in optimizer_state: self.scheduler.load_state_dict(optimizer_state["scheduler_state"]) bt.logging.info( f"Successfully Loaded Inner Optimizer State From {model_name} For Revision {revision}" ) break except Exception as e: if model_name == model_name_list[-1]: raise Exception(f"Failed to load model despite repo existing: {str(e)}") else: bt.logging.info(f"Failed to load model despite repo existing: {str(e)}") finally: if isinstance(optimizer_state, dict): keys = list(optimizer_state.keys()) for k in keys: del optimizer_state[k] gc.collect() del optimizer_state gc.collect() torch.cuda.empty_cache() # Set outer optimizer self.outer_optimizer = partial(torch.optim.SGD, lr=0.7, momentum=0.9, nesterov=True) # Load a new state averager self.state_averager = DTStateAverager( dht=self.dht, prefix=f"{self.config.neuron.run_id}_state_averager", optimizer=self.outer_optimizer, params=self.model.parameters(), initialize_optimizer=True, offload_optimizer=self.offload_optimizer, custom_gradients=self.offload_optimizer, min_group_size=self.config.neuron.min_group_size, min_matchmaking_time=30.0, request_timeout=10.0, next_chunk_timeout=45.0, allreduce_timeout=self.allreduce_timeout - 30.0 - 15.0, start=True, ) bt.logging.info("Successfully Loaded Gradient Averager") # Load a new gradient averager self.grad_averager = DTGradAverager( dht=self.dht, main_parameters=self.state_averager.main_parameters, offloaded_optimizer=self.state_averager.optimizer, prefix=f"{self.config.neuron.run_id}_grad_averager", compression=hivemind.Uniform8BitQuantization(), state_compression=hivemind.Uniform8BitQuantization(), min_group_size=self.config.neuron.min_group_size, min_matchmaking_time=30.0, request_timeout=10.0, next_chunk_timeout=45.0, allreduce_timeout=self.allreduce_timeout - 30.0 - 15.0, start=True, ) bt.logging.info("Successfully Loaded State Averager") if reload_outer_optimizer: optimizer_state = None try: optimizer_state = torch.load( hf_hub_download( repo_id=global_model_name, filename="outer_optimizer.pt", revision=".".join(revision.split(".")[:-1] + ["0"]), ), weights_only=True, map_location="cpu", ) # Load optimizer state if available if "optimizer_state_dict" in optimizer_state: self.state_averager.optimizer.load_state_dict( optimizer_state["optimizer_state_dict"] ) bt.logging.info( f"Successfully Loaded Outer Optimizer State From {global_model_name} For Revision {'.'.join(revision.split('.')[:-1] + ['0'])}" ) except Exception as e: bt.logging.warning( f"No optimizer state found or failed to load: {str(e)}. Initializing fresh optimizer." ) finally: if isinstance(optimizer_state, dict): keys = list(optimizer_state.keys()) for k in keys: del optimizer_state[k] gc.collect() del optimizer_state gc.collect() torch.cuda.empty_cache() self.avg_handler = AveragingHandler( self.model, self.inner_optimizer, self.grad_averager, self.state_averager, self.retry_limit, self.retry_delay, self.uid, self.config.neuron.local_batch_size_train, self.config.neuron.local_batch_size_train_effective, self.tokenizer, self.device, ) self.scaler = torch.amp.GradScaler(enabled=True) if (self.local_progress.inner_step != 0) and ("." in revision): self.state_averager.reset_main_parameters( model_name, revision=".".join( revision.split(".")[:-1] + [str(get_min_local_inner_Step(self, model_name, epoch=epoch))] ), ) bt.logging.debug( f"CPU Memory After Loading State {psutil.virtual_memory().available / 10**9} GB" ) def load_state_from_peer( self, repo_id=None, epoch=None, reload_inner_optimizer=True, reload_outer_optimizer=True, revision=None, use_fallback_model=True, ): try: state_loaded = False if epoch is None: self.global_progress.epoch = get_global_epoch(self) epoch = self.global_progress.epoch if repo_id is None: repo_id = self.config.neuron.global_model_name self.local_progress.inner_step = get_local_inner_step( self, repo_id, epoch=self.global_progress.epoch ) bt.logging.debug("Model Weights Before Loading State") current_model_weights_sample = copy.copy( [layer for layer in self.model.parameters()][-2][-10:].tolist() ) bt.logging.debug(current_model_weights_sample) bt.logging.debug(f"Old Model Tag: {self.local_progress.epoch}") if self.global_progress.epoch is not None: bt.logging.debug( f"Latest Model State Found On The HF Hub With The Tag: {self.global_progress.epoch}. Loading That Model State." ) # Load model state with max retries MAX_ATTEMPTS = 3 attempt = 0 while attempt < MAX_ATTEMPTS: try: load_model_optimizer_gradient_averager( self, local_model_name=repo_id, epoch=epoch, reload_inner_optimizer=reload_inner_optimizer, reload_outer_optimizer=reload_outer_optimizer, revision=revision, use_fallback_model=use_fallback_model, ) break except Exception as e: attempt += 1 if attempt == MAX_ATTEMPTS: raise Exception( f"Failed to load model after {MAX_ATTEMPTS} attempts: {str(e)}" ) bt.logging.warning( f"Failed to load model, retrying. Attempt {attempt}/{MAX_ATTEMPTS}. Error {str(e)}" ) state_loaded = True bt.logging.debug("Model Weights After Loading State") new_model_weights_sample = copy.copy( [layer for layer in self.model.parameters()][-2][-10:].tolist() ) bt.logging.debug(new_model_weights_sample) self.local_progress.epoch = epoch self.local_progress.samples_accumulated = 0 bt.logging.debug(f"New Model Tag: {self.global_progress.epoch}") # Clean up old cache try: cleanup_old_cache(self, repo_id, revision) except Exception as e: bt.logging.warning(f"Failed to cleanup cache: {str(e)}") else: bt.logging.debug(f"Model With Tag: {epoch} Does Not Exist") return state_loaded except Exception as e: bt.logging.error(f"Error loading state: {str(e)}") return False # TODO Remove this if score_bandwidth is deprecated async def load_state_from_miner(self, peer, timeout: Optional[float] = None): metadata = None hivemind_logger.info(f"Downloading parameters from peer {peer}") try: stub = self.grad_averager.get_stub( self._p2p, peer, namespace=self.grad_averager.matchmaking_kwargs["prefix"], ) stream = await stub.rpc_download_state_partial(averaging_pb2.DownloadRequest()) current_tensor_parts, tensors = [], [] # TODO merge this with hivemind.compression.deserialize_tensor_stream async for message in aiter_with_timeout(stream, timeout=timeout): if message.metadata: metadata = self.grad_averager.serializer.loads(message.metadata) if message.tensor_part.dtype and current_tensor_parts: # tensor_part.dtype indicates the start of the new tensor, so we should wrap up this one tensors.append( deserialize_torch_tensor( combine_from_streaming(current_tensor_parts) ) ) current_tensor_parts = [] current_tensor_parts.append(message.tensor_part) if current_tensor_parts: tensors.append( deserialize_torch_tensor(combine_from_streaming(current_tensor_parts)) ) if not metadata: hivemind_logger.exception(f"Peer {peer} did not send its state") return hivemind_logger.info(f"Finished downloading state from {peer}") return metadata, tensors except Exception as e: hivemind_logger.exception(f"Failed to download state from {peer} - {repr(e)}") return None, None def cleanup_old_cache(self, repo_id=None, current_revision=None): """Helper method to clean up old cache files""" if repo_id is None: repo_id = self.config.neuron.global_model_name current_revision = self.model.config._commit_hash cache_info = scan_cache_dir() broken_cache_list = [str(warning) for warning in cache_info.warnings] cache_dir = HF_HUB_CACHE cache_dir = Path(cache_dir).expanduser().resolve() bt.logging.info("Cache clearing warnings:") bt.logging.info(f"{cache_info.warnings}") # Delete cache using preferred huggingface cache clearing method if current_revision is None: for cache in cache_dir.iterdir(): if repo_id.replace("/", "--") in str(cache): bt.logging.info(f"Deleting the entire cache folder for repo {repo_id}.") try: shutil.rmtree(str(cache)) except OSError as e: bt.logging.info( "Error: %s - %s deleting the entire cache folder for the repo: %s" % (e.filename, e.strerror, repo_id) ) else: for repo in cache_info.repos: if repo.repo_id == repo_id: revisions = sorted( repo.revisions, key=lambda r: r.last_modified, reverse=True ) bt.logging.info( f"Found {len(revisions)} model revisions in .cache folder. Proceeding to delete all non-current revision." ) for revision in revisions: if (current_revision is not None) and ( revision.commit_hash == current_revision ): bt.logging.info( f"Skipping cache for current revision {revision.commit_hash}" ) continue else: bt.logging.info( f"Deleting cache for revision {revision.commit_hash}" ) cache_info.delete_revisions(revision.commit_hash).execute() break # Forcefully remove the entire cache folder for a model if it's corrupted if len(broken_cache_list) > 1: for cache in cache_dir.iterdir(): if str(cache) in str(broken_cache_list): bt.logging.info( f"Found repo {repo_id} in HF cache warning message. Proceeding to delete the entire cache folder." ) try: shutil.rmtree(str(cache)) except OSError as e: bt.logging.info( "Error: %s - %s deleting the entire cache folder for the repo: %s" % (e.filename, e.strerror, repo_id) ) def upload_new_state(self, epoch: int, results: dict, block: int = None): attempt = 0 while attempt < self.model_upload_retry_limit: try: bt.logging.info( f"Pushing new model and optimizer state to HF Hub with tag {epoch}" ) # Save and upload both model and optimizer state upload_success = save_and_upload_state( self, epoch=epoch, results=results, block=block ) if upload_success: # Verify the upload updated_refs = list_repo_refs( self.config.neuron.global_model_name, repo_type="model", ) new_tag = ( max( [ int(tag.name.split(".")[1]) for tag in updated_refs.tags if ( (len(tag.name.split(".")) == 3) and (tag.name.split(".")[0] == __run__) ) ] ) if updated_refs.tags else 0 ) bt.logging.info(f"Successfully pushed new model with tag {new_tag}") # Wait to allow out of sync miners to download new model state time.sleep(self.load_state_timeout) break except HfHubHTTPError as e: attempt += 1 bt.logging.info(f"{e}. Loading State from Peer.") state_loaded = load_state_from_peer(self, epoch=self.global_progress.epoch) if state_loaded: break except Exception: attempt += 1 bt.logging.warning( f"Failed To Upload Model To HF hub, Retrying. Attempt {attempt}/{self.model_upload_retry_limit}." ) if attempt < self.model_upload_retry_limit: time.sleep(self.model_upload_retry_delay) else: bt.logging.error( "Maximum Retry Limit Reached. Unable To Upload Model To HF Hub." ) raise return upload_success def save_and_upload_state(self, epoch: int, results: dict, block: int = None): """Unified function to save and upload both model and optimizer state""" batch_size = sum( [result for result in results["gathered"].values() if result is not None] ) participating_peers = results["participating_peers"] failed_peers = results["failed_peers"] attempt = 0 while attempt < self.model_upload_retry_limit: try: with tempfile.TemporaryDirectory() as tmp_folder: bt.logging.info( f"Preparing model and optimizer state for epoch {epoch}" ) if block is not None: self.model.config.last_allreduce_block = block self.model.config.inner_step = 0 self.model.save_pretrained(tmp_folder) # Save outer optimizer state outer_optimizer_state = { "optimizer_state_dict": self.state_averager.optimizer.state_dict(), "learning_rate": self.state_averager.optimizer.param_groups[0][ "lr" ], "epoch": epoch, } torch.save( outer_optimizer_state, os.path.join(tmp_folder, "outer_optimizer.pt"), ) # Save outer optimizer state inner_optimizer_state = { "optimizer_state_dict": self.inner_optimizer.state_dict(), "learning_rate": self.inner_optimizer.param_groups[0]["lr"], "scheduler_state": self.scheduler.state_dict(), "epoch": epoch, } torch.save( inner_optimizer_state, os.path.join(tmp_folder, "inner_optimizer.pt"), ) bt.logging.info( f"Uploading model and optimizer states to repo: {self.config.neuron.global_model_name}" ) # Upload everything in one go commit_message = f"Run {__run__}. Outer Step {epoch}. Inner Step {0}. Peers {len(participating_peers) - len(failed_peers)}." upload_folder( folder_path=tmp_folder, repo_id=self.config.neuron.global_model_name, repo_type="model", commit_message=commit_message, ) # Create a tag for this version create_tag( self.config.neuron.global_model_name, repo_type="model", tag=f"{__run__}.{epoch}.{0}", tag_message=commit_message, ) bt.logging.info( f"Successfully pushed new model and optimizer state with tag {epoch} to repo: {self.config.neuron.global_model_name}" ) return True except Exception as e: attempt += 1 bt.logging.warning( f"Failed to upload state to HF hub, Retrying. Attempt {attempt}/{self.model_upload_retry_limit}. Error: {str(e)}" ) if attempt < self.model_upload_retry_limit: time.sleep(self.model_upload_retry_delay) else: bt.logging.error( "Maximum retry limit reached. Unable to upload state to HF Hub." ) raise return False def get_top_uid(self): all_reduce_scores_uids = [ k for k, v in self.allreduce_status_dict.items() if (v == "SUCCESS") and (self.uid_tracker[int(k)]["model_huggingface_id"] is not None) and ( ( datetime.now(pytz.utc) - list_repo_commits( self.uid_tracker[int(k)]["model_huggingface_id"], repo_type="model" )[0].created_at ).seconds < (60 * 60) ) ] top_uid_list = [ k for k, v in sorted( { u: self.metagraph.incentive[int(u)].item() for u in all_reduce_scores_uids }.items(), key=lambda item: item[1], ) ] if top_uid_list != []: top_uid = top_uid_list[-1] bt.logging.info(f"Top UID Identified As {top_uid}") return top_uid