Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,207 +1,296 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
tags:
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
## Model Details
|
| 18 |
-
|
| 19 |
-
### Model Description
|
| 20 |
-
|
| 21 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
- **Developed by:** [More Information Needed]
|
| 26 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 27 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 28 |
-
- **Model type:** [More Information Needed]
|
| 29 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 30 |
-
- **License:** [More Information Needed]
|
| 31 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 32 |
-
|
| 33 |
-
### Model Sources [optional]
|
| 34 |
|
| 35 |
-
|
| 36 |
|
| 37 |
-
-
|
| 38 |
-
- **Paper [optional]:** [More Information Needed]
|
| 39 |
-
- **Demo [optional]:** [More Information Needed]
|
| 40 |
|
| 41 |
-
##
|
| 42 |
|
| 43 |
-
|
| 44 |
|
| 45 |
-
###
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
### Downstream Use [optional]
|
| 52 |
-
|
| 53 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 54 |
-
|
| 55 |
-
[More Information Needed]
|
| 56 |
-
|
| 57 |
-
### Out-of-Scope Use
|
| 58 |
-
|
| 59 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 60 |
-
|
| 61 |
-
[More Information Needed]
|
| 62 |
-
|
| 63 |
-
## Bias, Risks, and Limitations
|
| 64 |
-
|
| 65 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 66 |
-
|
| 67 |
-
[More Information Needed]
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
| 82 |
|
| 83 |
-
|
| 84 |
|
| 85 |
-
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
|
|
|
| 105 |
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
|
|
|
| 109 |
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
###
|
| 113 |
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
-
|
| 119 |
|
| 120 |
-
|
|
|
|
| 121 |
|
| 122 |
-
|
| 123 |
|
| 124 |
-
|
| 125 |
|
| 126 |
-
|
| 127 |
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
|
| 131 |
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
|
|
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
|
| 142 |
-
|
| 143 |
|
| 144 |
-
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
|
|
|
| 151 |
|
| 152 |
-
-
|
| 153 |
-
- **Hours used:** [More Information Needed]
|
| 154 |
-
- **Cloud Provider:** [More Information Needed]
|
| 155 |
-
- **Compute Region:** [More Information Needed]
|
| 156 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
|
| 158 |
-
|
|
|
|
| 159 |
|
| 160 |
-
|
| 161 |
|
| 162 |
-
|
| 163 |
|
| 164 |
-
|
| 165 |
|
| 166 |
-
|
| 167 |
|
| 168 |
-
|
| 169 |
|
| 170 |
-
[
|
| 171 |
|
| 172 |
-
|
| 173 |
|
| 174 |
-
|
|
|
|
| 175 |
|
| 176 |
-
##
|
| 177 |
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
|
| 181 |
|
| 182 |
-
|
| 183 |
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
|
| 187 |
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
|
| 191 |
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
|
| 196 |
-
|
| 197 |
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
-
|
| 205 |
-
### Framework versions
|
| 206 |
|
| 207 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- ja
|
| 5 |
+
- en
|
| 6 |
+
library_name: transformers
|
| 7 |
+
pipeline_tag: image-text-to-text
|
| 8 |
tags:
|
| 9 |
+
- vision
|
| 10 |
+
- vlm
|
| 11 |
+
- qwen
|
| 12 |
+
- lora
|
| 13 |
+
- document-understanding
|
| 14 |
+
- form-detection
|
| 15 |
+
- japanese
|
| 16 |
+
base_model: Qwen/Qwen3-VL-32B-Instruct
|
| 17 |
+
datasets:
|
| 18 |
+
- hand-dot/pdfme-form-field-dataset
|
| 19 |
---
|
| 20 |
|
| 21 |
+
# PDFme Form Field Detector (32B)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
**Detects form fields that applicants need to fill in Japanese documents.**
|
| 24 |
|
| 25 |
+
This model is fine-tuned from [Qwen3-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct) using QLoRA to detect input fields in Japanese application forms, registration documents, and other official paperwork.
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
## What This Model Does
|
| 28 |
|
| 29 |
+
Given an image of a Japanese document, this model identifies the bounding boxes of form fields that **applicants/customers** should fill in, while **excluding fields meant for staff/officials**.
|
| 30 |
|
| 31 |
+
### Example Use Cases
|
| 32 |
|
| 33 |
+
- Automating form digitization
|
| 34 |
+
- Building PDF form generators
|
| 35 |
+
- Creating accessibility tools for document processing
|
| 36 |
|
| 37 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
| Item | Value |
|
| 40 |
+
|------|-------|
|
| 41 |
+
| Base Model | Qwen/Qwen3-VL-32B-Instruct |
|
| 42 |
+
| Fine-tuning Method | QLoRA (4-bit quantization + LoRA) |
|
| 43 |
+
| Training Data | [hand-dot/pdfme-form-field-dataset](https://huggingface.co/datasets/hand-dot/pdfme-form-field-dataset) (90 samples, augmented) |
|
| 44 |
+
| Output Format | JSON with normalized bbox coordinates (0-1000) |
|
| 45 |
|
| 46 |
+
## Performance
|
| 47 |
|
| 48 |
+
### Evaluation Results (IoU ≥ 0.5)
|
| 49 |
+
|
| 50 |
+
| Metric | 32B Model | 8B Model | Description |
|
| 51 |
+
|--------|-----------|----------|-------------|
|
| 52 |
+
| **Recall** | **13.56%** | 18.08% | Ground truth fields detected |
|
| 53 |
+
| **Precision** | **5.24%** | 7.90% | Correct predictions |
|
| 54 |
+
| **Average IoU** | **0.2163** | 0.2209 | Overlap between predicted and ground truth |
|
| 55 |
+
| Matches | 24/177 | 32/177 | Matched predictions |
|
| 56 |
+
| Predictions | 458 | 405 | Total predictions |
|
| 57 |
+
|
| 58 |
+
### Per-Sample Results (Best performers)
|
| 59 |
+
|
| 60 |
+
| Sample | Recall | Precision | IoU | Evaluation |
|
| 61 |
+
|--------|--------|-----------|-----|------------|
|
| 62 |
+
| **#2** | **60.00%** | **69.23%** | **0.507** | ⭐ Excellent |
|
| 63 |
+
| **#7** | 33.33% | 25.00% | 0.380 | Good |
|
| 64 |
+
| **#9** | 18.18% | 7.69% | 0.313 | Improved |
|
| 65 |
|
| 66 |
+
### Training Progress
|
| 67 |
|
| 68 |
+
| Epoch | Loss | Notes |
|
| 69 |
+
|-------|------|-------|
|
| 70 |
+
| Start | 18.74 | - |
|
| 71 |
+
| 0.5 | 11.13 | Rapid decrease |
|
| 72 |
+
| 1.0 | 6.72 | Stabilizing |
|
| 73 |
+
| 2.0 | 5.75 | Converging |
|
| 74 |
+
| 3.0 | **5.59** | Final |
|
| 75 |
|
| 76 |
+
**Loss improved: 18.74 → 5.59 (70% reduction)**
|
| 77 |
|
| 78 |
+
### Key Finding
|
| 79 |
|
| 80 |
+
Despite being 4x larger than the 8B model, the 32B model achieved similar accuracy. **The dataset (10 original samples) is the bottleneck**, not model capacity.
|
| 81 |
|
| 82 |
+
### Current Limitations
|
| 83 |
|
| 84 |
+
1. **Small training dataset** - 10 original samples, augmented to 90
|
| 85 |
+
2. **Over-detection tendency** - 458 predictions vs 177 ground truth (2.6x)
|
| 86 |
+
3. **Location precision** - Average IoU of 0.22 indicates room for improvement
|
| 87 |
|
| 88 |
+
## Quick Start
|
| 89 |
|
| 90 |
+
### Installation
|
| 91 |
|
| 92 |
+
```bash
|
| 93 |
+
pip install transformers peft torch accelerate bitsandbytes
|
| 94 |
+
```
|
| 95 |
|
| 96 |
+
### Inference
|
| 97 |
|
| 98 |
+
```python
|
| 99 |
+
import torch
|
| 100 |
+
from PIL import Image
|
| 101 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 102 |
+
from peft import PeftModel
|
| 103 |
|
| 104 |
+
# Load model (32B)
|
| 105 |
+
base_model = "Qwen/Qwen3-VL-32B-Instruct"
|
| 106 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 107 |
+
base_model,
|
| 108 |
+
torch_dtype=torch.bfloat16,
|
| 109 |
+
device_map="auto",
|
| 110 |
+
trust_remote_code=True,
|
| 111 |
+
)
|
| 112 |
+
model = PeftModel.from_pretrained(model, "takumi123xxx/pdfme-form-field-detector-lora-32b")
|
| 113 |
+
processor = AutoProcessor.from_pretrained(base_model, trust_remote_code=True)
|
| 114 |
|
| 115 |
+
# Prepare prompt
|
| 116 |
+
system_prompt = """You are an expert at analyzing Japanese documents.
|
| 117 |
+
There are two types of input fields:
|
| 118 |
+
1. Fields for applicants/customers to fill → Target for detection
|
| 119 |
+
2. Fields for staff/officials to fill → Exclude from detection"""
|
| 120 |
|
| 121 |
+
user_prompt = """Detect all input fields that applicants should fill in this image.
|
| 122 |
+
Exclude fields for staff.
|
| 123 |
+
Return JSON with bbox coordinates (0-1000 normalized)."""
|
| 124 |
|
| 125 |
+
# Load image
|
| 126 |
+
image = Image.open("your_document.png").convert("RGB")
|
| 127 |
|
| 128 |
+
messages = [
|
| 129 |
+
{"role": "system", "content": system_prompt},
|
| 130 |
+
{"role": "user", "content": [
|
| 131 |
+
{"type": "image", "image": image},
|
| 132 |
+
{"type": "text", "text": user_prompt},
|
| 133 |
+
]},
|
| 134 |
+
]
|
| 135 |
|
| 136 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 137 |
+
inputs = processor(text=text, images=image, return_tensors="pt").to(model.device)
|
| 138 |
|
| 139 |
+
output = model.generate(**inputs, max_new_tokens=2048)
|
| 140 |
+
result = processor.decode(output[0], skip_special_tokens=True)
|
| 141 |
+
print(result)
|
| 142 |
+
```
|
| 143 |
|
| 144 |
+
### Output Format
|
| 145 |
|
| 146 |
+
```json
|
| 147 |
+
{
|
| 148 |
+
"applicant_fields": [
|
| 149 |
+
{"bbox": [100, 200, 500, 250]},
|
| 150 |
+
{"bbox": [100, 300, 500, 350]}
|
| 151 |
+
],
|
| 152 |
+
"count": 2
|
| 153 |
+
}
|
| 154 |
+
```
|
| 155 |
|
| 156 |
+
- `bbox`: `[x1, y1, x2, y2]` normalized to 0-1000 scale
|
| 157 |
+
- To convert to pixels: `pixel_x = bbox_x / 1000 * image_width`
|
| 158 |
|
| 159 |
+
## Demo
|
| 160 |
|
| 161 |
+
Try the model on Hugging Face Spaces:
|
| 162 |
+
[takumi123xxx/pdfme-form-field-detector](https://huggingface.co/spaces/takumi123xxx/pdfme-form-field-detector)
|
| 163 |
|
| 164 |
+
## Deployment (Inference Endpoints)
|
| 165 |
|
| 166 |
+
### ⚠️ Important: Instance Selection
|
| 167 |
|
| 168 |
+
This model is a **32B parameter** Vision-Language Model. Please note the following when deploying:
|
| 169 |
|
| 170 |
+
| Condition | Recommended Instance | VRAM | Notes |
|
| 171 |
+
|-----------|---------------------|------|-------|
|
| 172 |
+
| **With 4-bit quantization** | `nvidia-a100` | 40GB+ | ⭐ Recommended |
|
| 173 |
+
| **Without 4-bit quantization** | `nvidia-a100-80g` | 80GB | Requires more VRAM |
|
| 174 |
|
| 175 |
+
### Environment Variables
|
| 176 |
|
| 177 |
+
| Variable | Default | Description |
|
| 178 |
+
|----------|---------|-------------|
|
| 179 |
+
| `BASE_MODEL` | `Qwen/Qwen3-VL-32B-Instruct` | Base model |
|
| 180 |
+
| `USE_LORA` | `true` | Use LoRA adapter |
|
| 181 |
+
| `USE_4BIT` | `true` | Use 4-bit quantization (recommended) |
|
| 182 |
|
| 183 |
+
## Training Details
|
| 184 |
|
| 185 |
+
- **Base Model**: Qwen/Qwen3-VL-32B-Instruct
|
| 186 |
+
- **Epochs**: 3
|
| 187 |
+
- **Batch Size**: 1 (with gradient accumulation of 8)
|
| 188 |
+
- **Learning Rate**: 2e-4
|
| 189 |
+
- **LoRA Rank**: 16
|
| 190 |
+
- **LoRA Alpha**: 32
|
| 191 |
+
- **Quantization**: 4-bit NF4
|
| 192 |
+
- **Training Time**: ~2 hours on RTX PRO 6000 (95GB VRAM)
|
| 193 |
|
| 194 |
+
## Comparison: 8B vs 32B
|
| 195 |
|
| 196 |
+
| Aspect | 8B Model | 32B Model |
|
| 197 |
+
|--------|----------|-----------|
|
| 198 |
+
| Parameters | 8B | 32B (4x larger) |
|
| 199 |
+
| Final Loss | 5.60 | 5.59 |
|
| 200 |
+
| Recall | 18.08% | 13.56% |
|
| 201 |
+
| VRAM (4-bit) | ~20GB | ~40GB |
|
| 202 |
+
| Inference Speed | Faster | Slower |
|
| 203 |
|
| 204 |
+
**Conclusion**: With only 90 training samples, both models perform similarly. **Data quantity and diversity are the bottleneck**, not model size.
|
| 205 |
|
| 206 |
+
## Future Improvements
|
| 207 |
|
| 208 |
+
### Short-term
|
| 209 |
|
| 210 |
+
1. **Expand original dataset** - 100+ diverse document samples
|
| 211 |
+
2. **Reduce epochs** - 1-2 epochs may be sufficient for 32B
|
| 212 |
+
3. **Separate test set** - Evaluate on unseen documents
|
| 213 |
|
| 214 |
+
### Mid-term
|
| 215 |
|
| 216 |
+
4. **Field type classification** - Identify field types (name, address, date, etc.)
|
| 217 |
+
5. **Multi-turn dialogue** - Support conditional detection ("only detect name fields")
|
| 218 |
|
| 219 |
+
### Long-term
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
+
6. **Large-scale dataset** - 1000+ annotated samples across document types
|
| 222 |
+
7. **Active learning** - Human review → feedback → continuous improvement
|
| 223 |
|
| 224 |
+
## License
|
| 225 |
|
| 226 |
+
Apache 2.0
|
| 227 |
|
| 228 |
+
---
|
| 229 |
|
| 230 |
+
# PDFme フォームフィールド検出モデル(32B)
|
| 231 |
|
| 232 |
+
**日本の書類から、申請者が記入すべきフォーム欄を自動検出するモデル**
|
| 233 |
|
| 234 |
+
[Qwen3-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct)をQLoRAでファインチューニングし、申請書や届出書などの入力欄を検出します。
|
| 235 |
|
| 236 |
+
## このモデルでできること
|
| 237 |
|
| 238 |
+
書類の画像を入力すると、**申請者(顧客)が記入すべき欄**の位置(bbox)を検出します。
|
| 239 |
+
**職員が記入する欄**(受付番号、処理日など)は除外されます。
|
| 240 |
|
| 241 |
+
## モデル情報
|
| 242 |
|
| 243 |
+
| 項目 | 内容 |
|
| 244 |
+
|------|------|
|
| 245 |
+
| ベースモデル | Qwen/Qwen3-VL-32B-Instruct |
|
| 246 |
+
| 学習手法 | QLoRA(4bit量子化 + LoRA) |
|
| 247 |
+
| 学習データ | 90件(拡張データ) |
|
| 248 |
+
| 出力形式 | JSON(0-1000正規化されたbbox座標) |
|
| 249 |
|
| 250 |
+
## 性能評価
|
| 251 |
|
| 252 |
+
### 評価結果(IoU ≥ 0.5)
|
| 253 |
|
| 254 |
+
| 指標 | 32Bモデル | 8Bモデル | 説明 |
|
| 255 |
+
|------|-----------|----------|------|
|
| 256 |
+
| **Recall** | **13.56%** | 18.08% | 正解フィールドの検出率 |
|
| 257 |
+
| **Precision** | **5.24%** | 7.90% | 予測の正解率 |
|
| 258 |
+
| **平均IoU** | **0.2163** | 0.2209 | 予測と正解の重なり |
|
| 259 |
+
| マッチ数 | 24/177 | 32/177 | マッチした予測数 |
|
| 260 |
+
| 予測数 | 458 | 405 | 総予測数 |
|
| 261 |
|
| 262 |
+
### 学習曲線
|
| 263 |
|
| 264 |
+
| Epoch | Loss | 備考 |
|
| 265 |
+
|-------|------|------|
|
| 266 |
+
| 開始 | 18.74 | - |
|
| 267 |
+
| 0.5 | 11.13 | 急速に減少 |
|
| 268 |
+
| 1.0 | 6.72 | 安定化 |
|
| 269 |
+
| 2.0 | 5.75 | 収束傾向 |
|
| 270 |
+
| 3.0 | **5.59** | 最終 |
|
| 271 |
|
| 272 |
+
**Loss改善: 18.74 → 5.59(70%減少)**
|
| 273 |
|
| 274 |
+
### 重要な発見
|
| 275 |
|
| 276 |
+
32Bモデルは8Bモデルと同等の精度でした。**データセット(元10件)がボトルネック**であり、モデルサイズではありません。
|
| 277 |
|
| 278 |
+
## デモ
|
| 279 |
|
| 280 |
+
Hugging Face Spacesでお試しください:
|
| 281 |
+
[takumi123xxx/pdfme-form-field-detector](https://huggingface.co/spaces/takumi123xxx/pdfme-form-field-detector)
|
| 282 |
|
| 283 |
+
## 学習詳細
|
| 284 |
|
| 285 |
+
- **ベースモデル**: Qwen/Qwen3-VL-32B-Instruct
|
| 286 |
+
- **エポック数**: 3
|
| 287 |
+
- **バッチサイズ**: 1(勾配累積: 8)
|
| 288 |
+
- **学習率**: 2e-4
|
| 289 |
+
- **LoRAランク**: 16
|
| 290 |
+
- **LoRAアルファ**: 32
|
| 291 |
+
- **量子化**: 4bit NF4
|
| 292 |
+
- **学習時間**: RTX PRO 6000(95GB VRAM)で約2時間
|
| 293 |
|
| 294 |
+
## ライセンス
|
|
|
|
| 295 |
|
| 296 |
+
Apache 2.0
|