--- language: - en tags: - text-to-sql - mistral - gguf - sql-generation - cpu-inference pipeline_tag: text-generation license: apache-2.0 --- # Mistral-7B SQL GGUF A GGUF-quantized version of Mistral-7B fine-tuned for SQL query generation. Optimized for CPU inference with clean SQL outputs. ## Model Details - Base Model: Mistral-7B-Instruct-v0.3 - Quantization: Q8_0 - Context Length: 32768 tokens (default from base model) - Format: GGUF (V3 latest) - Size: 7.17 GB - Parameters: 7.25B - Architecture: Llama - Use Case: Text to SQL conversion ## Usage ```python from huggingface_hub import hf_hub_download from llama_cpp import Llama # Download and setup model_path = hf_hub_download( repo_id="tharun66/mistral-sql-gguf", filename="mistral_sql_q4.gguf" ) # Initialize model llm = Llama( model_path=model_path, n_ctx=512, n_threads=4, verbose=False ) def generate_sql(question): prompt = f"""### Task: Convert to SQL ### Question: {question} ### SQL:""" response = llm( prompt, max_tokens=128, temperature=0.7, stop=["system", "user", "assistant", "###"], echo=False ) return response['choices'][0]['text'].strip() # Example question = "Show all active users" sql = generate_sql(question) print(sql) # Output: SELECT * FROM users WHERE status = 'active'