SentenceTransformer based on thebajajra/RexBERT-base
This is a sentence-transformers model finetuned from thebajajra/RexBERT-base on the nomic-embed-unsupervised-data dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thebajajra/RexBERT-base
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
queries = [
"Where do you guys go to find used camper shells?",
]
documents = [
"I've got a newly acquired 1st gen 2005 silvee Toyota tundra trd and am looking for an used camper shell. Craigslist hasnt been very useful....where do you guys go?\n\nThanks!",
"I work at a convenience store and the number of Newports I sell a day is insane. Considering buying a couple cartons of em and maybe some parliament menthols if the FDA goes through with this. Should be able to throw em up on craigslist or ebay a week or two later and it'll be like steaks in a piranha pond",
"Hey guys what is the most optimal tool for pulling long staples out from hardwood flooring? I'm trying to find the most optimal way to do it because I have thousands to pull! Fence pliers did not work too well on account the pointy tip was too thick get in and roll them out and when i tried the gripping/cutting part it broke the staples.\n\nI'm thinking round nose vice grips or a car gasket puller?\n\nThanks",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.8108, 0.2481, 0.1200]])
Training Details
Training Dataset
nomic-embed-unsupervised-data
- Dataset: nomic-embed-unsupervised-data at 917bae6
- Size: 222,490,215 training samples
- Columns:
queryanddocument - Approximate statistics based on the first 1000 samples:
query document type string string details - min: 6 tokens
- mean: 16.83 tokens
- max: 62 tokens
- min: 12 tokens
- mean: 162.25 tokens
- max: 1024 tokens
- Samples:
query document I became a US citizen early this year and this is going to be my first 4th of July as an American!Because of the current situation, my citizen oath ceremony felt more like a pick up order... Got my certificate, and no guests allowed, so I couldn’t bring anybody to join my ceremony, also no pictures.
Anyway... I want to celebrate big time this 4th of July, and I’m already planning it! (Any ideas are super welcome!). I say big time but I just really want to do something fun at home with my family. 😊"The Kingdom of God for Jesus"; I know you guys know how to answer this overrated question.Basically what we're talking about is that the "kingdom" of god according to jesus are:
* "the kingdom as good news (where the kingdom is on earth, whereas by living a beautiful, meaningful life on earth is the meaning of salvation)"
* "the kingdom is offered to all"
* etc.
and finally, the question goes like this: "The Kingdom Does Not Ask for Performance; It is a gift, an offer. We can only inherit it. So, what is the point of being good?"So I made a "size" chart to go with my weight infograph, all based off that "Relative champ weight/height" thread.Here's the weight chart I did the other day
And here's the size chart I did today.
*Anivia, Skarner and Shyvanna (dragon form) are "Dimensions" instead of an actual "height", but I think you can get the jist.
The original thread this is based off of is located via the link below. I am using these numbers (and my own conversions), so I'm not always sure where they got the numbers! - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
nomic-embed-unsupervised-data
- Dataset: nomic-embed-unsupervised-data at 917bae6
- Size: 222,727 evaluation samples
- Columns:
queryanddocument - Approximate statistics based on the first 1000 samples:
query document type string string details - min: 6 tokens
- mean: 16.41 tokens
- max: 66 tokens
- min: 15 tokens
- mean: 164.47 tokens
- max: 1024 tokens
- Samples:
query document Do you subscribe to any horror magazines?I get most of my horror news from blogs and websites and such, but i do subscribe to a bunch of horror mags. With everything being so digital these days, something about flipping through a magazine and reading articles about both classic and upcoming horror movies is refreshing. I get a lot of great recommendations from them, and theres a lot of interesting interviews and behind the scenes stuff that i dont see on the popular websites.Missing PDS Laundry Card :(This is an absolute long shot but I must've accidentally left my laundry card in the dryer card slot because I cant find it anywhere. If someone found a card in there, please DM me. I've already bought a card but I'd like to have my original card back :(Talking Bad will be terribleTalking Dead is horrible and this will be to. Chris Hardwick and the cast of random no name celebrities offer nothing new to the discussion. The only good thing about Breaking Bad ending is that Talking Bad will end soon as well. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 256per_device_eval_batch_size: 128learning_rate: 2e-06num_train_epochs: 4warmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-06weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0009 | 100 | 4.4714 | - |
| 0.0018 | 200 | 4.4457 | - |
| 0.0028 | 300 | 4.4007 | - |
| 0.0037 | 400 | 4.336 | - |
| 0.0046 | 500 | 4.2476 | - |
| 0.0055 | 600 | 4.1406 | - |
| 0.0064 | 700 | 4.0049 | - |
| 0.0074 | 800 | 3.8434 | - |
| 0.0083 | 900 | 3.6393 | - |
| 0.0092 | 1000 | 3.3763 | - |
| 0.0101 | 1100 | 3.0541 | - |
| 0.0110 | 1200 | 2.6362 | - |
| 0.0120 | 1300 | 2.1226 | - |
| 0.0129 | 1400 | 1.6113 | - |
| 0.0138 | 1500 | 1.2565 | - |
| 0.0147 | 1600 | 1.029 | - |
| 0.0156 | 1700 | 0.846 | - |
| 0.0166 | 1800 | 0.7111 | - |
| 0.0175 | 1900 | 0.5967 | - |
| 0.0184 | 2000 | 0.488 | - |
| 0.0193 | 2100 | 0.4138 | - |
| 0.0203 | 2200 | 0.3565 | - |
| 0.0212 | 2300 | 0.3129 | - |
| 0.0221 | 2400 | 0.2827 | - |
| 0.0230 | 2500 | 0.2557 | - |
| 0.0239 | 2600 | 0.2379 | - |
| 0.0249 | 2700 | 0.2234 | - |
| 0.0258 | 2800 | 0.2055 | - |
| 0.0267 | 2900 | 0.1926 | - |
| 0.0276 | 3000 | 0.1843 | - |
| 0.0285 | 3100 | 0.175 | - |
| 0.0295 | 3200 | 0.1647 | - |
| 0.0304 | 3300 | 0.157 | - |
| 0.0313 | 3400 | 0.1512 | - |
| 0.0322 | 3500 | 0.146 | - |
| 0.0331 | 3600 | 0.1412 | - |
| 0.0341 | 3700 | 0.1352 | - |
| 0.0350 | 3800 | 0.1295 | - |
| 0.0359 | 3900 | 0.1261 | - |
| 0.0368 | 4000 | 0.122 | - |
| 0.0377 | 4100 | 0.1171 | - |
| 0.0387 | 4200 | 0.1147 | - |
| 0.0396 | 4300 | 0.1103 | - |
| 0.0405 | 4400 | 0.1073 | - |
| 0.0414 | 4500 | 0.1053 | - |
| 0.0423 | 4600 | 0.1016 | - |
| 0.0433 | 4700 | 0.0991 | - |
| 0.0442 | 4800 | 0.0981 | - |
| 0.0451 | 4900 | 0.0935 | - |
| 0.0460 | 5000 | 0.0928 | - |
| 0.0469 | 5100 | 0.0895 | - |
| 0.0479 | 5200 | 0.0877 | - |
| 0.0488 | 5300 | 0.0853 | - |
| 0.0497 | 5400 | 0.0829 | - |
| 0.0506 | 5500 | 0.0818 | - |
| 0.0515 | 5600 | 0.0805 | - |
| 0.0525 | 5700 | 0.0785 | - |
| 0.0534 | 5800 | 0.0769 | - |
| 0.0543 | 5900 | 0.0746 | - |
| 0.0552 | 6000 | 0.0754 | - |
| 0.0562 | 6100 | 0.0715 | - |
| 0.0571 | 6200 | 0.0707 | - |
| 0.0580 | 6300 | 0.0699 | - |
| 0.0589 | 6400 | 0.0678 | - |
| 0.0598 | 6500 | 0.0659 | - |
| 0.0608 | 6600 | 0.0659 | - |
| 0.0617 | 6700 | 0.0646 | - |
| 0.0626 | 6800 | 0.0627 | - |
| 0.0635 | 6900 | 0.0627 | - |
| 0.0644 | 7000 | 0.0604 | - |
| 0.0654 | 7100 | 0.0592 | - |
| 0.0663 | 7200 | 0.059 | - |
| 0.0672 | 7300 | 0.0577 | - |
| 0.0681 | 7400 | 0.0568 | - |
| 0.0690 | 7500 | 0.0558 | - |
| 0.0700 | 7600 | 0.0552 | - |
| 0.0709 | 7700 | 0.0542 | - |
| 0.0718 | 7800 | 0.0531 | - |
| 0.0727 | 7900 | 0.0528 | - |
| 0.0736 | 8000 | 0.0526 | - |
| 0.0746 | 8100 | 0.0509 | - |
| 0.0755 | 8200 | 0.05 | - |
| 0.0764 | 8300 | 0.0495 | - |
| 0.0773 | 8400 | 0.0486 | - |
| 0.0782 | 8500 | 0.0482 | - |
| 0.0792 | 8600 | 0.048 | - |
| 0.0801 | 8700 | 0.0468 | - |
| 0.0810 | 8800 | 0.0461 | - |
| 0.0819 | 8900 | 0.0459 | - |
| 0.0828 | 9000 | 0.0453 | - |
| 0.0838 | 9100 | 0.0442 | - |
| 0.0847 | 9200 | 0.0443 | - |
| 0.0856 | 9300 | 0.0437 | - |
| 0.0865 | 9400 | 0.0435 | - |
| 0.0874 | 9500 | 0.0426 | - |
| 0.0884 | 9600 | 0.042 | - |
| 0.0893 | 9700 | 0.0423 | - |
| 0.0902 | 9800 | 0.0406 | - |
| 0.0911 | 9900 | 0.0405 | - |
| 0.0920 | 10000 | 0.0397 | - |
| 0.0930 | 10100 | 0.0401 | - |
| 0.0939 | 10200 | 0.0392 | - |
| 0.0948 | 10300 | 0.0396 | - |
| 0.0957 | 10400 | 0.0391 | - |
| 0.0967 | 10500 | 0.0384 | - |
| 0.0976 | 10600 | 0.0377 | - |
| 0.0985 | 10700 | 0.0379 | - |
| 0.0994 | 10800 | 0.0372 | - |
| 0.1003 | 10900 | 0.0364 | - |
| 0.1013 | 11000 | 0.0367 | - |
| 0.1022 | 11100 | 0.0359 | - |
| 0.1031 | 11200 | 0.0355 | - |
| 0.1040 | 11300 | 0.0358 | - |
| 0.1049 | 11400 | 0.035 | - |
| 0.1059 | 11500 | 0.0353 | - |
| 0.1068 | 11600 | 0.0341 | - |
| 0.1077 | 11700 | 0.0343 | - |
| 0.1086 | 11800 | 0.034 | - |
| 0.1095 | 11900 | 0.0334 | - |
| 0.1105 | 12000 | 0.0337 | - |
| 0.1114 | 12100 | 0.0332 | - |
| 0.1123 | 12200 | 0.0323 | - |
| 0.1132 | 12300 | 0.0323 | - |
| 0.1141 | 12400 | 0.0322 | - |
| 0.1151 | 12500 | 0.0312 | - |
| 0.1160 | 12600 | 0.0307 | - |
| 0.1169 | 12700 | 0.0314 | - |
| 0.1178 | 12800 | 0.0309 | - |
| 0.1187 | 12900 | 0.0313 | - |
| 0.1197 | 13000 | 0.0306 | - |
| 0.1206 | 13100 | 0.0303 | - |
| 0.1215 | 13200 | 0.0301 | - |
| 0.1224 | 13300 | 0.0302 | - |
| 0.1233 | 13400 | 0.0296 | - |
| 0.1243 | 13500 | 0.029 | - |
| 0.1252 | 13600 | 0.0288 | - |
| 0.1261 | 13700 | 0.0286 | - |
| 0.1270 | 13800 | 0.0291 | - |
| 0.1279 | 13900 | 0.0287 | - |
| 0.1289 | 14000 | 0.0284 | - |
| 0.1298 | 14100 | 0.0276 | - |
| 0.1307 | 14200 | 0.028 | - |
| 0.1316 | 14300 | 0.0275 | - |
| 0.1326 | 14400 | 0.0269 | - |
| 0.1335 | 14500 | 0.027 | - |
| 0.1344 | 14600 | 0.0273 | - |
| 0.1353 | 14700 | 0.0267 | - |
| 0.1362 | 14800 | 0.0263 | - |
| 0.1372 | 14900 | 0.0264 | - |
| 0.1381 | 15000 | 0.0263 | - |
| 0.1390 | 15100 | 0.0262 | - |
| 0.1399 | 15200 | 0.0256 | - |
| 0.1408 | 15300 | 0.0254 | - |
| 0.1418 | 15400 | 0.0257 | - |
| 0.1427 | 15500 | 0.0251 | - |
| 0.1436 | 15600 | 0.0253 | - |
| 0.1445 | 15700 | 0.0247 | - |
| 0.1454 | 15800 | 0.0251 | - |
| 0.1464 | 15900 | 0.0245 | - |
| 0.1473 | 16000 | 0.0246 | - |
| 0.1482 | 16100 | 0.024 | - |
| 0.1491 | 16200 | 0.0241 | - |
| 0.1500 | 16300 | 0.0243 | - |
| 0.1510 | 16400 | 0.0235 | - |
| 0.1519 | 16500 | 0.024 | - |
| 0.1528 | 16600 | 0.0236 | - |
| 0.1537 | 16700 | 0.0233 | - |
| 0.1546 | 16800 | 0.0237 | - |
| 0.1556 | 16900 | 0.023 | - |
| 0.1565 | 17000 | 0.0233 | - |
| 0.1574 | 17100 | 0.0229 | - |
| 0.1583 | 17200 | 0.0227 | - |
| 0.1592 | 17300 | 0.023 | - |
| 0.1602 | 17400 | 0.0232 | - |
| 0.1611 | 17500 | 0.0221 | - |
| 0.1620 | 17600 | 0.0217 | - |
| 0.1629 | 17700 | 0.0224 | - |
| 0.1638 | 17800 | 0.0217 | - |
| 0.1648 | 17900 | 0.0219 | - |
| 0.1657 | 18000 | 0.0216 | - |
| 0.1666 | 18100 | 0.0214 | - |
| 0.1675 | 18200 | 0.0213 | - |
| 0.1685 | 18300 | 0.0215 | - |
| 0.1694 | 18400 | 0.0211 | - |
| 0.1703 | 18500 | 0.0213 | - |
| 0.1712 | 18600 | 0.0211 | - |
| 0.1721 | 18700 | 0.0212 | - |
| 0.1731 | 18800 | 0.0204 | - |
| 0.1740 | 18900 | 0.0206 | - |
| 0.1749 | 19000 | 0.021 | - |
| 0.1758 | 19100 | 0.0208 | - |
| 0.1767 | 19200 | 0.0202 | - |
| 0.1777 | 19300 | 0.0199 | - |
| 0.1786 | 19400 | 0.0204 | - |
| 0.1795 | 19500 | 0.0199 | - |
| 0.1804 | 19600 | 0.0196 | - |
| 0.1813 | 19700 | 0.0198 | - |
| 0.1823 | 19800 | 0.0199 | - |
| 0.1832 | 19900 | 0.0194 | - |
| 0.1841 | 20000 | 0.0191 | - |
| 0.1850 | 20100 | 0.0193 | - |
| 0.1859 | 20200 | 0.0193 | - |
| 0.1869 | 20300 | 0.0192 | - |
| 0.1878 | 20400 | 0.0192 | - |
| 0.1887 | 20500 | 0.0188 | - |
| 0.1896 | 20600 | 0.0183 | - |
| 0.1905 | 20700 | 0.0186 | - |
| 0.1915 | 20800 | 0.0182 | - |
| 0.1924 | 20900 | 0.0184 | - |
| 0.1933 | 21000 | 0.0187 | - |
| 0.1942 | 21100 | 0.0184 | - |
| 0.1951 | 21200 | 0.0183 | - |
| 0.1961 | 21300 | 0.0181 | - |
| 0.1970 | 21400 | 0.0178 | - |
| 0.1979 | 21500 | 0.0179 | - |
| 0.1988 | 21600 | 0.018 | - |
| 0.1997 | 21700 | 0.0185 | - |
| 0.2000 | 21728 | - | 0.0098 |
| 0.2007 | 21800 | 0.0176 | - |
| 0.2016 | 21900 | 0.0183 | - |
| 0.2025 | 22000 | 0.0174 | - |
| 0.2034 | 22100 | 0.0179 | - |
| 0.2044 | 22200 | 0.0175 | - |
| 0.2053 | 22300 | 0.0175 | - |
| 0.2062 | 22400 | 0.0172 | - |
| 0.2071 | 22500 | 0.0173 | - |
| 0.2080 | 22600 | 0.017 | - |
| 0.2090 | 22700 | 0.0167 | - |
| 0.2099 | 22800 | 0.0164 | - |
| 0.2108 | 22900 | 0.0167 | - |
| 0.2117 | 23000 | 0.0165 | - |
| 0.2126 | 23100 | 0.0171 | - |
| 0.2136 | 23200 | 0.0169 | - |
| 0.2145 | 23300 | 0.0164 | - |
| 0.2154 | 23400 | 0.0162 | - |
| 0.2163 | 23500 | 0.0164 | - |
| 0.2172 | 23600 | 0.0164 | - |
| 0.2182 | 23700 | 0.0166 | - |
| 0.2191 | 23800 | 0.0163 | - |
| 0.2200 | 23900 | 0.0164 | - |
| 0.2209 | 24000 | 0.0165 | - |
| 0.2218 | 24100 | 0.0163 | - |
| 0.2228 | 24200 | 0.0162 | - |
| 0.2237 | 24300 | 0.0163 | - |
| 0.2246 | 24400 | 0.0157 | - |
| 0.2255 | 24500 | 0.0157 | - |
| 0.2264 | 24600 | 0.0158 | - |
| 0.2274 | 24700 | 0.0153 | - |
| 0.2283 | 24800 | 0.0156 | - |
| 0.2292 | 24900 | 0.0155 | - |
| 0.2301 | 25000 | 0.0156 | - |
| 0.2310 | 25100 | 0.0154 | - |
| 0.2320 | 25200 | 0.0151 | - |
| 0.2329 | 25300 | 0.0153 | - |
| 0.2338 | 25400 | 0.015 | - |
| 0.2347 | 25500 | 0.0153 | - |
| 0.2356 | 25600 | 0.015 | - |
| 0.2366 | 25700 | 0.0152 | - |
| 0.2375 | 25800 | 0.0147 | - |
| 0.2384 | 25900 | 0.0148 | - |
| 0.2393 | 26000 | 0.0148 | - |
| 0.2402 | 26100 | 0.0144 | - |
| 0.2412 | 26200 | 0.0146 | - |
| 0.2421 | 26300 | 0.0143 | - |
| 0.2430 | 26400 | 0.0143 | - |
| 0.2439 | 26500 | 0.0145 | - |
| 0.2449 | 26600 | 0.0142 | - |
| 0.2458 | 26700 | 0.0142 | - |
| 0.2467 | 26800 | 0.0143 | - |
| 0.2476 | 26900 | 0.0139 | - |
| 0.2485 | 27000 | 0.0141 | - |
| 0.2495 | 27100 | 0.0141 | - |
| 0.2504 | 27200 | 0.0143 | - |
| 0.2513 | 27300 | 0.0141 | - |
| 0.2522 | 27400 | 0.014 | - |
| 0.2531 | 27500 | 0.0137 | - |
| 0.2541 | 27600 | 0.014 | - |
| 0.2550 | 27700 | 0.0139 | - |
| 0.2559 | 27800 | 0.0138 | - |
| 0.2568 | 27900 | 0.0141 | - |
| 0.2577 | 28000 | 0.0138 | - |
| 0.2587 | 28100 | 0.0138 | - |
| 0.2596 | 28200 | 0.0134 | - |
| 0.2605 | 28300 | 0.0135 | - |
| 0.2614 | 28400 | 0.0131 | - |
| 0.2623 | 28500 | 0.0133 | - |
| 0.2633 | 28600 | 0.0132 | - |
| 0.2642 | 28700 | 0.0133 | - |
| 0.2651 | 28800 | 0.0131 | - |
| 0.2660 | 28900 | 0.013 | - |
| 0.2669 | 29000 | 0.0131 | - |
| 0.2679 | 29100 | 0.013 | - |
| 0.2688 | 29200 | 0.0135 | - |
| 0.2697 | 29300 | 0.0131 | - |
| 0.2706 | 29400 | 0.0134 | - |
| 0.2715 | 29500 | 0.0131 | - |
| 0.2725 | 29600 | 0.0129 | - |
| 0.2734 | 29700 | 0.0127 | - |
| 0.2743 | 29800 | 0.0128 | - |
| 0.2752 | 29900 | 0.0125 | - |
| 0.2761 | 30000 | 0.0127 | - |
| 0.2771 | 30100 | 0.0126 | - |
| 0.2780 | 30200 | 0.0124 | - |
| 0.2789 | 30300 | 0.0126 | - |
| 0.2798 | 30400 | 0.0126 | - |
| 0.2808 | 30500 | 0.0122 | - |
| 0.2817 | 30600 | 0.0124 | - |
| 0.2826 | 30700 | 0.0123 | - |
| 0.2835 | 30800 | 0.0126 | - |
| 0.2844 | 30900 | 0.0123 | - |
| 0.2854 | 31000 | 0.012 | - |
| 0.2863 | 31100 | 0.012 | - |
| 0.2872 | 31200 | 0.0123 | - |
| 0.2881 | 31300 | 0.0122 | - |
| 0.2890 | 31400 | 0.0121 | - |
| 0.2900 | 31500 | 0.0124 | - |
| 0.2909 | 31600 | 0.0117 | - |
| 0.2918 | 31700 | 0.0118 | - |
| 0.2927 | 31800 | 0.0121 | - |
| 0.2936 | 31900 | 0.0119 | - |
| 0.2946 | 32000 | 0.0115 | - |
| 0.2955 | 32100 | 0.0117 | - |
| 0.2964 | 32200 | 0.012 | - |
| 0.2973 | 32300 | 0.0118 | - |
| 0.2982 | 32400 | 0.0117 | - |
| 0.2992 | 32500 | 0.0119 | - |
| 0.3001 | 32600 | 0.0118 | - |
| 0.3010 | 32700 | 0.0115 | - |
| 0.3019 | 32800 | 0.012 | - |
| 0.3028 | 32900 | 0.0119 | - |
| 0.3038 | 33000 | 0.0113 | - |
| 0.3047 | 33100 | 0.0117 | - |
| 0.3056 | 33200 | 0.0117 | - |
| 0.3065 | 33300 | 0.0113 | - |
| 0.3074 | 33400 | 0.0113 | - |
| 0.3084 | 33500 | 0.0113 | - |
| 0.3093 | 33600 | 0.0117 | - |
| 0.3102 | 33700 | 0.0111 | - |
| 0.3111 | 33800 | 0.0112 | - |
| 0.3120 | 33900 | 0.0113 | - |
| 0.3130 | 34000 | 0.0111 | - |
| 0.3139 | 34100 | 0.0113 | - |
| 0.3148 | 34200 | 0.0115 | - |
| 0.3157 | 34300 | 0.0114 | - |
| 0.3167 | 34400 | 0.0109 | - |
| 0.3176 | 34500 | 0.0112 | - |
| 0.3185 | 34600 | 0.0109 | - |
| 0.3194 | 34700 | 0.011 | - |
| 0.3203 | 34800 | 0.0108 | - |
| 0.3213 | 34900 | 0.0108 | - |
| 0.3222 | 35000 | 0.0107 | - |
| 0.3231 | 35100 | 0.0109 | - |
| 0.3240 | 35200 | 0.0108 | - |
| 0.3249 | 35300 | 0.0108 | - |
| 0.3259 | 35400 | 0.0108 | - |
| 0.3268 | 35500 | 0.0105 | - |
| 0.3277 | 35600 | 0.0106 | - |
| 0.3286 | 35700 | 0.0105 | - |
| 0.3295 | 35800 | 0.0104 | - |
| 0.3305 | 35900 | 0.0107 | - |
| 0.3314 | 36000 | 0.0105 | - |
| 0.3323 | 36100 | 0.0103 | - |
| 0.3332 | 36200 | 0.0105 | - |
| 0.3341 | 36300 | 0.0103 | - |
| 0.3351 | 36400 | 0.0107 | - |
| 0.3360 | 36500 | 0.0101 | - |
| 0.3369 | 36600 | 0.0102 | - |
| 0.3378 | 36700 | 0.0102 | - |
| 0.3387 | 36800 | 0.0102 | - |
| 0.3397 | 36900 | 0.01 | - |
| 0.3406 | 37000 | 0.0103 | - |
| 0.3415 | 37100 | 0.0103 | - |
| 0.3424 | 37200 | 0.01 | - |
| 0.3433 | 37300 | 0.0103 | - |
| 0.3443 | 37400 | 0.0103 | - |
| 0.3452 | 37500 | 0.0104 | - |
| 0.3461 | 37600 | 0.0098 | - |
| 0.3470 | 37700 | 0.0099 | - |
| 0.3479 | 37800 | 0.0102 | - |
| 0.3489 | 37900 | 0.0102 | - |
| 0.3498 | 38000 | 0.01 | - |
| 0.3507 | 38100 | 0.0101 | - |
| 0.3516 | 38200 | 0.01 | - |
| 0.3526 | 38300 | 0.0098 | - |
| 0.3535 | 38400 | 0.0097 | - |
| 0.3544 | 38500 | 0.0096 | - |
| 0.3553 | 38600 | 0.01 | - |
| 0.3562 | 38700 | 0.0097 | - |
| 0.3572 | 38800 | 0.0101 | - |
| 0.3581 | 38900 | 0.0099 | - |
| 0.3590 | 39000 | 0.0099 | - |
| 0.3599 | 39100 | 0.01 | - |
| 0.3608 | 39200 | 0.0094 | - |
| 0.3618 | 39300 | 0.0096 | - |
| 0.3627 | 39400 | 0.0095 | - |
| 0.3636 | 39500 | 0.0094 | - |
| 0.3645 | 39600 | 0.0094 | - |
| 0.3654 | 39700 | 0.0094 | - |
| 0.3664 | 39800 | 0.0096 | - |
| 0.3673 | 39900 | 0.0095 | - |
| 0.3682 | 40000 | 0.0096 | - |
| 0.3691 | 40100 | 0.0096 | - |
| 0.3700 | 40200 | 0.0094 | - |
| 0.3710 | 40300 | 0.0093 | - |
| 0.3719 | 40400 | 0.0092 | - |
| 0.3728 | 40500 | 0.0095 | - |
| 0.3737 | 40600 | 0.0091 | - |
| 0.3746 | 40700 | 0.0098 | - |
| 0.3756 | 40800 | 0.0094 | - |
| 0.3765 | 40900 | 0.0092 | - |
| 0.3774 | 41000 | 0.0094 | - |
| 0.3783 | 41100 | 0.0092 | - |
| 0.3792 | 41200 | 0.0093 | - |
| 0.3802 | 41300 | 0.0092 | - |
| 0.3811 | 41400 | 0.0095 | - |
| 0.3820 | 41500 | 0.0094 | - |
| 0.3829 | 41600 | 0.0089 | - |
| 0.3838 | 41700 | 0.009 | - |
| 0.3848 | 41800 | 0.0092 | - |
| 0.3857 | 41900 | 0.009 | - |
| 0.3866 | 42000 | 0.0089 | - |
| 0.3875 | 42100 | 0.0091 | - |
| 0.3884 | 42200 | 0.0087 | - |
| 0.3894 | 42300 | 0.0091 | - |
| 0.3903 | 42400 | 0.0089 | - |
| 0.3912 | 42500 | 0.0089 | - |
| 0.3921 | 42600 | 0.0089 | - |
| 0.3931 | 42700 | 0.0087 | - |
| 0.3940 | 42800 | 0.009 | - |
| 0.3949 | 42900 | 0.0087 | - |
| 0.3958 | 43000 | 0.0089 | - |
| 0.3967 | 43100 | 0.0088 | - |
| 0.3977 | 43200 | 0.0088 | - |
| 0.3986 | 43300 | 0.0089 | - |
| 0.3995 | 43400 | 0.0088 | - |
| 0.4000 | 43456 | - | 0.0047 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.4.1+cu121
- Accelerate: 1.11.0
- Datasets: 4.3.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 77