Gemma3-Python-22k-1B - GGUF Quantized
Quantized GGUF versions of Gemma3-Python-22k-1B for use with llama.cpp and other GGUF-compatible inference engines.
Original Model
- Base model: google/gemma-3-1b-it
- Fine-tuned model: theprint/Gemma3-Python-22k-1B
- Quantized by: theprint
Available Quantizations
Gemma3-Python-22k-1B-f16.gguf(2489.6 MB) - 16-bit float (original precision, largest file)Gemma3-Python-22k-1B-q3_k_m.gguf(850.9 MB) - 3-bit quantization (medium quality)Gemma3-Python-22k-1B-q4_k_m.gguf(966.7 MB) - 4-bit quantization (medium, recommended for most use cases)Gemma3-Python-22k-1B-q5_k_m.gguf(1027.9 MB) - 5-bit quantization (medium, good quality)Gemma3-Python-22k-1B-q6_k.gguf(1270.9 MB) - 6-bit quantization (high quality)Gemma3-Python-22k-1B-q8_0.gguf(1325.8 MB) - 8-bit quantization (very high quality)
Usage
With llama.cpp
# Download recommended quantization
wget https://huggingface.co/theprint/Gemma3-Python-22k-1B-GGUF/resolve/main/Gemma3-Python-22k-1B-q4_k_m.gguf
# Run inference
./llama.cpp/main -m Gemma3-Python-22k-1B-q4_k_m.gguf \
-p "Your prompt here" \
-n 256 \
--temp 0.7 \
--top-p 0.9
With other GGUF tools
These files are compatible with:
- llama.cpp
- Ollama (import as custom model)
- KoboldCpp
- text-generation-webui
Quantization Info
Recommended: q4_k_m provides the best balance of size, speed, and quality for most use cases.
For maximum quality: Use q8_0 or f16
For maximum speed/smallest size: Use q3_k_m or q4_k_s
License
mit
Citation
@misc{gemma3_python_22k_1b_gguf,
title={Gemma3-Python-22k-1B GGUF Quantized Models},
author={theprint},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/theprint/Gemma3-Python-22k-1B-GGUF}
}
- Downloads last month
- 65
Hardware compatibility
Log In
to view the estimation
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit