--- license: apache-2.0 ---
## Controllable Layer Decomposition for Reversible Multi-Layer Image Generation 🏠 [Homepage](https://monkek123King.github.io/CLD_page)      📄 [Paper](http://arxiv.org/abs/2511.16249)      🤗 [HuggingFace](https://huggingface.co/papers/2511.16249)
### 📢 News * **`Dec 2025`:** Experiment checkpoints are released [here](https://huggingface.co/thuteam/CLD)\! 🎉 * **`Nov 2025`:** The paper is now available on [arXiv](https://arxiv.org/abs/2511.16249). ☕️ ----- ## 🚀 Getting Started ### 🔧 Installation **a. Create a conda virtual environment and activate it.** ```shell conda env create -f environment.yml conda activate CLD ``` **b. Clone CLD.** ``` git clone https://github.com/monkek123King/CLD.git ``` ### 📦 Prepare model ckpt **a. Download FLUX.1-dev weights** ``` from huggingface_hub import snapshot_download repo_id = "black-forest-labs/FLUX.1-dev" snapshot_download(repo_id, local_dir=Path_to_pretrained_FLUX_model) ``` **b.Download adapter pre-trained weights** ``` from huggingface_hub import snapshot_download repo_id = "alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha" snapshot_download(repo_id, local_dir=Path_to_pretrained_FLUX_adapter) ``` **c. Download LoRA weights for CLD from https://huggingface.co/thuteam/CLD** ``` ckpt ├── decouple_LoRA │   ├── adapter │   │   └── pytorch_lora_weights.safetensors │   ├── layer_pe.pth │   └── transformer │   └── pytorch_lora_weights.safetensors ├── pre_trained_LoRA │   └── pytorch_lora_weights.safetensors ├── prism_ft_LoRA │   └── pytorch_lora_weights.safetensors └── trans_vae └── 0008000.pt ``` **d. YAML configuration file** ``` pretrained_model_name_or_path: Path_to_pretrained_FLUX_model pretrained_adapter_path: Path_to_pretrained_FLUX_adapter transp_vae_path: "ckpt/trans_vae/0008000.pt" pretrained_lora_dir: "ckpt/pre_trained_LoRA" artplus_lora_dir: "ckpt/prism_ft_LoRA" lora_ckpt: "ckpt/decouple_LoRA/transformer" layer_ckpt: "ckpt/decouple_LoRA" adapter_lora_dir: "ckpt/decouple_LoRA/adapter" ``` ### 🏋️ Train and Evaluate **Train** ``` python -m train.train -c train/train.yaml ``` **Infer** ``` python -m infer.infer -c infer/infer.yaml ``` **Eval** Prepare the ground-truth samples. ``` python -m eval.prepare_gt ``` Evaluate to obtain the metric results. ``` python evaluate.py --pred-dir "Path_to_predict_results" --gt-dir "Path_to_gt_samples" --output-dir "Path_to_save_eval_results" ``` ----- ## ✍️ Citation If you find our work useful for your research, please consider citing our paper and giving this repository a star 🌟. ```bibtex @article{liu2025controllable, title={Controllable Layer Decomposition for Reversible Multi-Layer Image Generation}, author={Liu, Zihao and Xu, Zunnan and Shu, Shi and Zhou, Jun and Zhang, Ruicheng and Tang, Zhenchao and Li, Xiu}, journal={arXiv preprint arXiv:2511.16249}, year={2025} } ```