Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1256 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- multilingual
|
| 5 |
+
- ar
|
| 6 |
+
- bg
|
| 7 |
+
- ca
|
| 8 |
+
- cs
|
| 9 |
+
- da
|
| 10 |
+
- de
|
| 11 |
+
- el
|
| 12 |
+
- es
|
| 13 |
+
- et
|
| 14 |
+
- fa
|
| 15 |
+
- fi
|
| 16 |
+
- fr
|
| 17 |
+
- gl
|
| 18 |
+
- gu
|
| 19 |
+
- he
|
| 20 |
+
- hi
|
| 21 |
+
- hr
|
| 22 |
+
- hu
|
| 23 |
+
- hy
|
| 24 |
+
- id
|
| 25 |
+
- it
|
| 26 |
+
- ja
|
| 27 |
+
- ka
|
| 28 |
+
- ko
|
| 29 |
+
- ku
|
| 30 |
+
- lt
|
| 31 |
+
- lv
|
| 32 |
+
- mk
|
| 33 |
+
- mn
|
| 34 |
+
- mr
|
| 35 |
+
- ms
|
| 36 |
+
- my
|
| 37 |
+
- nb
|
| 38 |
+
- nl
|
| 39 |
+
- pl
|
| 40 |
+
- pt
|
| 41 |
+
- ro
|
| 42 |
+
- ru
|
| 43 |
+
- sk
|
| 44 |
+
- sl
|
| 45 |
+
- sq
|
| 46 |
+
- sr
|
| 47 |
+
- sv
|
| 48 |
+
- th
|
| 49 |
+
- tr
|
| 50 |
+
- uk
|
| 51 |
+
- ur
|
| 52 |
+
- vi
|
| 53 |
+
- zh
|
| 54 |
+
library_name: sentence-transformers
|
| 55 |
+
tags:
|
| 56 |
+
- sentence-transformers
|
| 57 |
+
- sentence-similarity
|
| 58 |
+
- feature-extraction
|
| 59 |
+
- loss:MSELoss
|
| 60 |
+
base_model: FacebookAI/xlm-roberta-base
|
| 61 |
+
metrics:
|
| 62 |
+
- negative_mse
|
| 63 |
+
- src2trg_accuracy
|
| 64 |
+
- trg2src_accuracy
|
| 65 |
+
- mean_accuracy
|
| 66 |
+
- pearson_cosine
|
| 67 |
+
- spearman_cosine
|
| 68 |
+
- pearson_manhattan
|
| 69 |
+
- spearman_manhattan
|
| 70 |
+
- pearson_euclidean
|
| 71 |
+
- spearman_euclidean
|
| 72 |
+
- pearson_dot
|
| 73 |
+
- spearman_dot
|
| 74 |
+
- pearson_max
|
| 75 |
+
- spearman_max
|
| 76 |
+
widget:
|
| 77 |
+
- source_sentence: Grazie tante.
|
| 78 |
+
sentences:
|
| 79 |
+
- Grazie infinite.
|
| 80 |
+
- Non c'è un solo architetto diplomato in tutta la Contea.
|
| 81 |
+
- Le aziende non credevano che fosse loro responsabilità.
|
| 82 |
+
- source_sentence: Avance rapide.
|
| 83 |
+
sentences:
|
| 84 |
+
- Très bien.
|
| 85 |
+
- Donc, je voulais faire quelque chose de spécial aujourd'hui.
|
| 86 |
+
- Et ils ne tiennent pas non plus compte des civils qui souffrent de façon plus
|
| 87 |
+
générale.
|
| 88 |
+
- source_sentence: E' importante.
|
| 89 |
+
sentences:
|
| 90 |
+
- E' una materia fondamentale.
|
| 91 |
+
- Sono qui oggi per mostrare le mie fotografie dei Lakota.
|
| 92 |
+
- Non ero seguito da un corteo di macchine.
|
| 93 |
+
- source_sentence: Müfettişler…
|
| 94 |
+
sentences:
|
| 95 |
+
- İşçi sınıfına dair birşey.
|
| 96 |
+
- Antlaşmaya göre, o topraklar bağımsız bir ulustur.
|
| 97 |
+
- Son derece düz ve bataklık bir coğrafya.
|
| 98 |
+
- source_sentence: Wir sind eins.
|
| 99 |
+
sentences:
|
| 100 |
+
- Das versuchen wir zu bieten.
|
| 101 |
+
- Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.
|
| 102 |
+
- Hinter mir war gar keine Autokolonne.
|
| 103 |
+
pipeline_tag: sentence-similarity
|
| 104 |
+
co2_eq_emissions:
|
| 105 |
+
emissions: 23.27766676567869
|
| 106 |
+
energy_consumed: 0.05988563672345058
|
| 107 |
+
source: codecarbon
|
| 108 |
+
training_type: fine-tuning
|
| 109 |
+
on_cloud: false
|
| 110 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
| 111 |
+
ram_total_size: 31.777088165283203
|
| 112 |
+
hours_used: 0.179
|
| 113 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
| 114 |
+
model-index:
|
| 115 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
|
| 116 |
+
results:
|
| 117 |
+
- task:
|
| 118 |
+
type: knowledge-distillation
|
| 119 |
+
name: Knowledge Distillation
|
| 120 |
+
dataset:
|
| 121 |
+
name: en ar
|
| 122 |
+
type: en-ar
|
| 123 |
+
metrics:
|
| 124 |
+
- type: negative_mse
|
| 125 |
+
value: -20.395545661449432
|
| 126 |
+
name: Negative Mse
|
| 127 |
+
- task:
|
| 128 |
+
type: translation
|
| 129 |
+
name: Translation
|
| 130 |
+
dataset:
|
| 131 |
+
name: en ar
|
| 132 |
+
type: en-ar
|
| 133 |
+
metrics:
|
| 134 |
+
- type: src2trg_accuracy
|
| 135 |
+
value: 0.7603222557905337
|
| 136 |
+
name: Src2Trg Accuracy
|
| 137 |
+
- type: trg2src_accuracy
|
| 138 |
+
value: 0.7824773413897281
|
| 139 |
+
name: Trg2Src Accuracy
|
| 140 |
+
- type: mean_accuracy
|
| 141 |
+
value: 0.7713997985901309
|
| 142 |
+
name: Mean Accuracy
|
| 143 |
+
- task:
|
| 144 |
+
type: semantic-similarity
|
| 145 |
+
name: Semantic Similarity
|
| 146 |
+
dataset:
|
| 147 |
+
name: sts17 en ar test
|
| 148 |
+
type: sts17-en-ar-test
|
| 149 |
+
metrics:
|
| 150 |
+
- type: pearson_cosine
|
| 151 |
+
value: 0.40984231242712876
|
| 152 |
+
name: Pearson Cosine
|
| 153 |
+
- type: spearman_cosine
|
| 154 |
+
value: 0.4425400227662121
|
| 155 |
+
name: Spearman Cosine
|
| 156 |
+
- type: pearson_manhattan
|
| 157 |
+
value: 0.4068582195810505
|
| 158 |
+
name: Pearson Manhattan
|
| 159 |
+
- type: spearman_manhattan
|
| 160 |
+
value: 0.4194184278683204
|
| 161 |
+
name: Spearman Manhattan
|
| 162 |
+
- type: pearson_euclidean
|
| 163 |
+
value: 0.38014538983821944
|
| 164 |
+
name: Pearson Euclidean
|
| 165 |
+
- type: spearman_euclidean
|
| 166 |
+
value: 0.38651157412220366
|
| 167 |
+
name: Spearman Euclidean
|
| 168 |
+
- type: pearson_dot
|
| 169 |
+
value: 0.4077636003696869
|
| 170 |
+
name: Pearson Dot
|
| 171 |
+
- type: spearman_dot
|
| 172 |
+
value: 0.37682818098716137
|
| 173 |
+
name: Spearman Dot
|
| 174 |
+
- type: pearson_max
|
| 175 |
+
value: 0.40984231242712876
|
| 176 |
+
name: Pearson Max
|
| 177 |
+
- type: spearman_max
|
| 178 |
+
value: 0.4425400227662121
|
| 179 |
+
name: Spearman Max
|
| 180 |
+
- task:
|
| 181 |
+
type: knowledge-distillation
|
| 182 |
+
name: Knowledge Distillation
|
| 183 |
+
dataset:
|
| 184 |
+
name: en fr
|
| 185 |
+
type: en-fr
|
| 186 |
+
metrics:
|
| 187 |
+
- type: negative_mse
|
| 188 |
+
value: -19.62321847677231
|
| 189 |
+
name: Negative Mse
|
| 190 |
+
- task:
|
| 191 |
+
type: translation
|
| 192 |
+
name: Translation
|
| 193 |
+
dataset:
|
| 194 |
+
name: en fr
|
| 195 |
+
type: en-fr
|
| 196 |
+
metrics:
|
| 197 |
+
- type: src2trg_accuracy
|
| 198 |
+
value: 0.8981854838709677
|
| 199 |
+
name: Src2Trg Accuracy
|
| 200 |
+
- type: trg2src_accuracy
|
| 201 |
+
value: 0.8901209677419355
|
| 202 |
+
name: Trg2Src Accuracy
|
| 203 |
+
- type: mean_accuracy
|
| 204 |
+
value: 0.8941532258064516
|
| 205 |
+
name: Mean Accuracy
|
| 206 |
+
- task:
|
| 207 |
+
type: semantic-similarity
|
| 208 |
+
name: Semantic Similarity
|
| 209 |
+
dataset:
|
| 210 |
+
name: sts17 fr en test
|
| 211 |
+
type: sts17-fr-en-test
|
| 212 |
+
metrics:
|
| 213 |
+
- type: pearson_cosine
|
| 214 |
+
value: 0.5017606394120642
|
| 215 |
+
name: Pearson Cosine
|
| 216 |
+
- type: spearman_cosine
|
| 217 |
+
value: 0.5333594401322842
|
| 218 |
+
name: Spearman Cosine
|
| 219 |
+
- type: pearson_manhattan
|
| 220 |
+
value: 0.4461108010622129
|
| 221 |
+
name: Pearson Manhattan
|
| 222 |
+
- type: spearman_manhattan
|
| 223 |
+
value: 0.45470883061015244
|
| 224 |
+
name: Spearman Manhattan
|
| 225 |
+
- type: pearson_euclidean
|
| 226 |
+
value: 0.44313058261278737
|
| 227 |
+
name: Pearson Euclidean
|
| 228 |
+
- type: spearman_euclidean
|
| 229 |
+
value: 0.44806261424208443
|
| 230 |
+
name: Spearman Euclidean
|
| 231 |
+
- type: pearson_dot
|
| 232 |
+
value: 0.40165874540768454
|
| 233 |
+
name: Pearson Dot
|
| 234 |
+
- type: spearman_dot
|
| 235 |
+
value: 0.41339619568003433
|
| 236 |
+
name: Spearman Dot
|
| 237 |
+
- type: pearson_max
|
| 238 |
+
value: 0.5017606394120642
|
| 239 |
+
name: Pearson Max
|
| 240 |
+
- type: spearman_max
|
| 241 |
+
value: 0.5333594401322842
|
| 242 |
+
name: Spearman Max
|
| 243 |
+
- task:
|
| 244 |
+
type: knowledge-distillation
|
| 245 |
+
name: Knowledge Distillation
|
| 246 |
+
dataset:
|
| 247 |
+
name: en de
|
| 248 |
+
type: en-de
|
| 249 |
+
metrics:
|
| 250 |
+
- type: negative_mse
|
| 251 |
+
value: -19.727922976017
|
| 252 |
+
name: Negative Mse
|
| 253 |
+
- task:
|
| 254 |
+
type: translation
|
| 255 |
+
name: Translation
|
| 256 |
+
dataset:
|
| 257 |
+
name: en de
|
| 258 |
+
type: en-de
|
| 259 |
+
metrics:
|
| 260 |
+
- type: src2trg_accuracy
|
| 261 |
+
value: 0.8920282542885973
|
| 262 |
+
name: Src2Trg Accuracy
|
| 263 |
+
- type: trg2src_accuracy
|
| 264 |
+
value: 0.8910191725529768
|
| 265 |
+
name: Trg2Src Accuracy
|
| 266 |
+
- type: mean_accuracy
|
| 267 |
+
value: 0.8915237134207871
|
| 268 |
+
name: Mean Accuracy
|
| 269 |
+
- task:
|
| 270 |
+
type: semantic-similarity
|
| 271 |
+
name: Semantic Similarity
|
| 272 |
+
dataset:
|
| 273 |
+
name: sts17 en de test
|
| 274 |
+
type: sts17-en-de-test
|
| 275 |
+
metrics:
|
| 276 |
+
- type: pearson_cosine
|
| 277 |
+
value: 0.5262798164154752
|
| 278 |
+
name: Pearson Cosine
|
| 279 |
+
- type: spearman_cosine
|
| 280 |
+
value: 0.5618005565496922
|
| 281 |
+
name: Spearman Cosine
|
| 282 |
+
- type: pearson_manhattan
|
| 283 |
+
value: 0.5084907192868734
|
| 284 |
+
name: Pearson Manhattan
|
| 285 |
+
- type: spearman_manhattan
|
| 286 |
+
value: 0.5218456102379673
|
| 287 |
+
name: Spearman Manhattan
|
| 288 |
+
- type: pearson_euclidean
|
| 289 |
+
value: 0.5055278909013912
|
| 290 |
+
name: Pearson Euclidean
|
| 291 |
+
- type: spearman_euclidean
|
| 292 |
+
value: 0.5206420646365548
|
| 293 |
+
name: Spearman Euclidean
|
| 294 |
+
- type: pearson_dot
|
| 295 |
+
value: 0.3742195121194434
|
| 296 |
+
name: Pearson Dot
|
| 297 |
+
- type: spearman_dot
|
| 298 |
+
value: 0.3691237073066472
|
| 299 |
+
name: Spearman Dot
|
| 300 |
+
- type: pearson_max
|
| 301 |
+
value: 0.5262798164154752
|
| 302 |
+
name: Pearson Max
|
| 303 |
+
- type: spearman_max
|
| 304 |
+
value: 0.5618005565496922
|
| 305 |
+
name: Spearman Max
|
| 306 |
+
- task:
|
| 307 |
+
type: knowledge-distillation
|
| 308 |
+
name: Knowledge Distillation
|
| 309 |
+
dataset:
|
| 310 |
+
name: en es
|
| 311 |
+
type: en-es
|
| 312 |
+
metrics:
|
| 313 |
+
- type: negative_mse
|
| 314 |
+
value: -19.472387433052063
|
| 315 |
+
name: Negative Mse
|
| 316 |
+
- task:
|
| 317 |
+
type: translation
|
| 318 |
+
name: Translation
|
| 319 |
+
dataset:
|
| 320 |
+
name: en es
|
| 321 |
+
type: en-es
|
| 322 |
+
metrics:
|
| 323 |
+
- type: src2trg_accuracy
|
| 324 |
+
value: 0.9434343434343434
|
| 325 |
+
name: Src2Trg Accuracy
|
| 326 |
+
- type: trg2src_accuracy
|
| 327 |
+
value: 0.9464646464646465
|
| 328 |
+
name: Trg2Src Accuracy
|
| 329 |
+
- type: mean_accuracy
|
| 330 |
+
value: 0.944949494949495
|
| 331 |
+
name: Mean Accuracy
|
| 332 |
+
- task:
|
| 333 |
+
type: semantic-similarity
|
| 334 |
+
name: Semantic Similarity
|
| 335 |
+
dataset:
|
| 336 |
+
name: sts17 es en test
|
| 337 |
+
type: sts17-es-en-test
|
| 338 |
+
metrics:
|
| 339 |
+
- type: pearson_cosine
|
| 340 |
+
value: 0.4944989376773328
|
| 341 |
+
name: Pearson Cosine
|
| 342 |
+
- type: spearman_cosine
|
| 343 |
+
value: 0.502096516024397
|
| 344 |
+
name: Spearman Cosine
|
| 345 |
+
- type: pearson_manhattan
|
| 346 |
+
value: 0.44447965250345656
|
| 347 |
+
name: Pearson Manhattan
|
| 348 |
+
- type: spearman_manhattan
|
| 349 |
+
value: 0.428444032581959
|
| 350 |
+
name: Spearman Manhattan
|
| 351 |
+
- type: pearson_euclidean
|
| 352 |
+
value: 0.43569887867301704
|
| 353 |
+
name: Pearson Euclidean
|
| 354 |
+
- type: spearman_euclidean
|
| 355 |
+
value: 0.4169602915053127
|
| 356 |
+
name: Spearman Euclidean
|
| 357 |
+
- type: pearson_dot
|
| 358 |
+
value: 0.3751122541083453
|
| 359 |
+
name: Pearson Dot
|
| 360 |
+
- type: spearman_dot
|
| 361 |
+
value: 0.37961391381473436
|
| 362 |
+
name: Spearman Dot
|
| 363 |
+
- type: pearson_max
|
| 364 |
+
value: 0.4944989376773328
|
| 365 |
+
name: Pearson Max
|
| 366 |
+
- type: spearman_max
|
| 367 |
+
value: 0.502096516024397
|
| 368 |
+
name: Spearman Max
|
| 369 |
+
- task:
|
| 370 |
+
type: knowledge-distillation
|
| 371 |
+
name: Knowledge Distillation
|
| 372 |
+
dataset:
|
| 373 |
+
name: en tr
|
| 374 |
+
type: en-tr
|
| 375 |
+
metrics:
|
| 376 |
+
- type: negative_mse
|
| 377 |
+
value: -20.754697918891907
|
| 378 |
+
name: Negative Mse
|
| 379 |
+
- task:
|
| 380 |
+
type: translation
|
| 381 |
+
name: Translation
|
| 382 |
+
dataset:
|
| 383 |
+
name: en tr
|
| 384 |
+
type: en-tr
|
| 385 |
+
metrics:
|
| 386 |
+
- type: src2trg_accuracy
|
| 387 |
+
value: 0.743202416918429
|
| 388 |
+
name: Src2Trg Accuracy
|
| 389 |
+
- type: trg2src_accuracy
|
| 390 |
+
value: 0.743202416918429
|
| 391 |
+
name: Trg2Src Accuracy
|
| 392 |
+
- type: mean_accuracy
|
| 393 |
+
value: 0.743202416918429
|
| 394 |
+
name: Mean Accuracy
|
| 395 |
+
- task:
|
| 396 |
+
type: semantic-similarity
|
| 397 |
+
name: Semantic Similarity
|
| 398 |
+
dataset:
|
| 399 |
+
name: sts17 en tr test
|
| 400 |
+
type: sts17-en-tr-test
|
| 401 |
+
metrics:
|
| 402 |
+
- type: pearson_cosine
|
| 403 |
+
value: 0.5544917743538167
|
| 404 |
+
name: Pearson Cosine
|
| 405 |
+
- type: spearman_cosine
|
| 406 |
+
value: 0.581923120433332
|
| 407 |
+
name: Spearman Cosine
|
| 408 |
+
- type: pearson_manhattan
|
| 409 |
+
value: 0.5103770986779784
|
| 410 |
+
name: Pearson Manhattan
|
| 411 |
+
- type: spearman_manhattan
|
| 412 |
+
value: 0.5087986920849596
|
| 413 |
+
name: Spearman Manhattan
|
| 414 |
+
- type: pearson_euclidean
|
| 415 |
+
value: 0.5045523005860614
|
| 416 |
+
name: Pearson Euclidean
|
| 417 |
+
- type: spearman_euclidean
|
| 418 |
+
value: 0.5053157708914061
|
| 419 |
+
name: Spearman Euclidean
|
| 420 |
+
- type: pearson_dot
|
| 421 |
+
value: 0.47262046401401747
|
| 422 |
+
name: Pearson Dot
|
| 423 |
+
- type: spearman_dot
|
| 424 |
+
value: 0.4297595645819756
|
| 425 |
+
name: Spearman Dot
|
| 426 |
+
- type: pearson_max
|
| 427 |
+
value: 0.5544917743538167
|
| 428 |
+
name: Pearson Max
|
| 429 |
+
- type: spearman_max
|
| 430 |
+
value: 0.581923120433332
|
| 431 |
+
name: Spearman Max
|
| 432 |
+
- task:
|
| 433 |
+
type: knowledge-distillation
|
| 434 |
+
name: Knowledge Distillation
|
| 435 |
+
dataset:
|
| 436 |
+
name: en it
|
| 437 |
+
type: en-it
|
| 438 |
+
metrics:
|
| 439 |
+
- type: negative_mse
|
| 440 |
+
value: -19.76993829011917
|
| 441 |
+
name: Negative Mse
|
| 442 |
+
- task:
|
| 443 |
+
type: translation
|
| 444 |
+
name: Translation
|
| 445 |
+
dataset:
|
| 446 |
+
name: en it
|
| 447 |
+
type: en-it
|
| 448 |
+
metrics:
|
| 449 |
+
- type: src2trg_accuracy
|
| 450 |
+
value: 0.878147029204431
|
| 451 |
+
name: Src2Trg Accuracy
|
| 452 |
+
- type: trg2src_accuracy
|
| 453 |
+
value: 0.8831822759315207
|
| 454 |
+
name: Trg2Src Accuracy
|
| 455 |
+
- type: mean_accuracy
|
| 456 |
+
value: 0.8806646525679758
|
| 457 |
+
name: Mean Accuracy
|
| 458 |
+
- task:
|
| 459 |
+
type: semantic-similarity
|
| 460 |
+
name: Semantic Similarity
|
| 461 |
+
dataset:
|
| 462 |
+
name: sts17 it en test
|
| 463 |
+
type: sts17-it-en-test
|
| 464 |
+
metrics:
|
| 465 |
+
- type: pearson_cosine
|
| 466 |
+
value: 0.506365733914274
|
| 467 |
+
name: Pearson Cosine
|
| 468 |
+
- type: spearman_cosine
|
| 469 |
+
value: 0.5250284136808592
|
| 470 |
+
name: Spearman Cosine
|
| 471 |
+
- type: pearson_manhattan
|
| 472 |
+
value: 0.45167598168533407
|
| 473 |
+
name: Pearson Manhattan
|
| 474 |
+
- type: spearman_manhattan
|
| 475 |
+
value: 0.46227952068355316
|
| 476 |
+
name: Spearman Manhattan
|
| 477 |
+
- type: pearson_euclidean
|
| 478 |
+
value: 0.4423426674780287
|
| 479 |
+
name: Pearson Euclidean
|
| 480 |
+
- type: spearman_euclidean
|
| 481 |
+
value: 0.45072801992723094
|
| 482 |
+
name: Spearman Euclidean
|
| 483 |
+
- type: pearson_dot
|
| 484 |
+
value: 0.4201989776020174
|
| 485 |
+
name: Pearson Dot
|
| 486 |
+
- type: spearman_dot
|
| 487 |
+
value: 0.42253906764732746
|
| 488 |
+
name: Spearman Dot
|
| 489 |
+
- type: pearson_max
|
| 490 |
+
value: 0.506365733914274
|
| 491 |
+
name: Pearson Max
|
| 492 |
+
- type: spearman_max
|
| 493 |
+
value: 0.5250284136808592
|
| 494 |
+
name: Spearman Max
|
| 495 |
+
---
|
| 496 |
+
|
| 497 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-base
|
| 498 |
+
|
| 499 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) and [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 500 |
+
|
| 501 |
+
## Model Details
|
| 502 |
+
|
| 503 |
+
### Model Description
|
| 504 |
+
- **Model Type:** Sentence Transformer
|
| 505 |
+
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
|
| 506 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 507 |
+
- **Output Dimensionality:** 768 tokens
|
| 508 |
+
- **Similarity Function:** Cosine Similarity
|
| 509 |
+
- **Training Datasets:**
|
| 510 |
+
- [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
| 511 |
+
- [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
| 512 |
+
- [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
| 513 |
+
- [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
| 514 |
+
- [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
| 515 |
+
- [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
| 516 |
+
- **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
|
| 517 |
+
<!-- - **License:** Unknown -->
|
| 518 |
+
|
| 519 |
+
### Model Sources
|
| 520 |
+
|
| 521 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 522 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 523 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 524 |
+
|
| 525 |
+
### Full Model Architecture
|
| 526 |
+
|
| 527 |
+
```
|
| 528 |
+
SentenceTransformer(
|
| 529 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 530 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 531 |
+
)
|
| 532 |
+
```
|
| 533 |
+
|
| 534 |
+
## Usage
|
| 535 |
+
|
| 536 |
+
### Direct Usage (Sentence Transformers)
|
| 537 |
+
|
| 538 |
+
First install the Sentence Transformers library:
|
| 539 |
+
|
| 540 |
+
```bash
|
| 541 |
+
pip install -U sentence-transformers
|
| 542 |
+
```
|
| 543 |
+
|
| 544 |
+
Then you can load this model and run inference.
|
| 545 |
+
```python
|
| 546 |
+
from sentence_transformers import SentenceTransformer
|
| 547 |
+
|
| 548 |
+
# Download from the 🤗 Hub
|
| 549 |
+
model = SentenceTransformer("tomaarsen/xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it")
|
| 550 |
+
# Run inference
|
| 551 |
+
sentences = [
|
| 552 |
+
'Wir sind eins.',
|
| 553 |
+
'Das versuchen wir zu bieten.',
|
| 554 |
+
'Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.',
|
| 555 |
+
]
|
| 556 |
+
embeddings = model.encode(sentences)
|
| 557 |
+
print(embeddings.shape)
|
| 558 |
+
# [3, 768]
|
| 559 |
+
|
| 560 |
+
# Get the similarity scores for the embeddings
|
| 561 |
+
similarities = model.similarity(embeddings)
|
| 562 |
+
print(similarities.shape)
|
| 563 |
+
# [3, 3]
|
| 564 |
+
```
|
| 565 |
+
|
| 566 |
+
<!--
|
| 567 |
+
### Direct Usage (Transformers)
|
| 568 |
+
|
| 569 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 570 |
+
|
| 571 |
+
</details>
|
| 572 |
+
-->
|
| 573 |
+
|
| 574 |
+
<!--
|
| 575 |
+
### Downstream Usage (Sentence Transformers)
|
| 576 |
+
|
| 577 |
+
You can finetune this model on your own dataset.
|
| 578 |
+
|
| 579 |
+
<details><summary>Click to expand</summary>
|
| 580 |
+
|
| 581 |
+
</details>
|
| 582 |
+
-->
|
| 583 |
+
|
| 584 |
+
<!--
|
| 585 |
+
### Out-of-Scope Use
|
| 586 |
+
|
| 587 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 588 |
+
-->
|
| 589 |
+
|
| 590 |
+
## Evaluation
|
| 591 |
+
|
| 592 |
+
### Metrics
|
| 593 |
+
|
| 594 |
+
#### Knowledge Distillation
|
| 595 |
+
* Dataset: `en-ar`
|
| 596 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
| 597 |
+
|
| 598 |
+
| Metric | Value |
|
| 599 |
+
|:-----------------|:-------------|
|
| 600 |
+
| **negative_mse** | **-20.3955** |
|
| 601 |
+
|
| 602 |
+
#### Translation
|
| 603 |
+
* Dataset: `en-ar`
|
| 604 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
| 605 |
+
|
| 606 |
+
| Metric | Value |
|
| 607 |
+
|:------------------|:-----------|
|
| 608 |
+
| src2trg_accuracy | 0.7603 |
|
| 609 |
+
| trg2src_accuracy | 0.7825 |
|
| 610 |
+
| **mean_accuracy** | **0.7714** |
|
| 611 |
+
|
| 612 |
+
#### Semantic Similarity
|
| 613 |
+
* Dataset: `sts17-en-ar-test`
|
| 614 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 615 |
+
|
| 616 |
+
| Metric | Value |
|
| 617 |
+
|:-------------------|:-----------|
|
| 618 |
+
| pearson_cosine | 0.4098 |
|
| 619 |
+
| spearman_cosine | 0.4425 |
|
| 620 |
+
| pearson_manhattan | 0.4069 |
|
| 621 |
+
| spearman_manhattan | 0.4194 |
|
| 622 |
+
| pearson_euclidean | 0.3801 |
|
| 623 |
+
| spearman_euclidean | 0.3865 |
|
| 624 |
+
| pearson_dot | 0.4078 |
|
| 625 |
+
| spearman_dot | 0.3768 |
|
| 626 |
+
| pearson_max | 0.4098 |
|
| 627 |
+
| **spearman_max** | **0.4425** |
|
| 628 |
+
|
| 629 |
+
#### Knowledge Distillation
|
| 630 |
+
* Dataset: `en-fr`
|
| 631 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
| 632 |
+
|
| 633 |
+
| Metric | Value |
|
| 634 |
+
|:-----------------|:-------------|
|
| 635 |
+
| **negative_mse** | **-19.6232** |
|
| 636 |
+
|
| 637 |
+
#### Translation
|
| 638 |
+
* Dataset: `en-fr`
|
| 639 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
| 640 |
+
|
| 641 |
+
| Metric | Value |
|
| 642 |
+
|:------------------|:-----------|
|
| 643 |
+
| src2trg_accuracy | 0.8982 |
|
| 644 |
+
| trg2src_accuracy | 0.8901 |
|
| 645 |
+
| **mean_accuracy** | **0.8942** |
|
| 646 |
+
|
| 647 |
+
#### Semantic Similarity
|
| 648 |
+
* Dataset: `sts17-fr-en-test`
|
| 649 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 650 |
+
|
| 651 |
+
| Metric | Value |
|
| 652 |
+
|:-------------------|:-----------|
|
| 653 |
+
| pearson_cosine | 0.5018 |
|
| 654 |
+
| spearman_cosine | 0.5334 |
|
| 655 |
+
| pearson_manhattan | 0.4461 |
|
| 656 |
+
| spearman_manhattan | 0.4547 |
|
| 657 |
+
| pearson_euclidean | 0.4431 |
|
| 658 |
+
| spearman_euclidean | 0.4481 |
|
| 659 |
+
| pearson_dot | 0.4017 |
|
| 660 |
+
| spearman_dot | 0.4134 |
|
| 661 |
+
| pearson_max | 0.5018 |
|
| 662 |
+
| **spearman_max** | **0.5334** |
|
| 663 |
+
|
| 664 |
+
#### Knowledge Distillation
|
| 665 |
+
* Dataset: `en-de`
|
| 666 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
| 667 |
+
|
| 668 |
+
| Metric | Value |
|
| 669 |
+
|:-----------------|:-------------|
|
| 670 |
+
| **negative_mse** | **-19.7279** |
|
| 671 |
+
|
| 672 |
+
#### Translation
|
| 673 |
+
* Dataset: `en-de`
|
| 674 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
| 675 |
+
|
| 676 |
+
| Metric | Value |
|
| 677 |
+
|:------------------|:-----------|
|
| 678 |
+
| src2trg_accuracy | 0.892 |
|
| 679 |
+
| trg2src_accuracy | 0.891 |
|
| 680 |
+
| **mean_accuracy** | **0.8915** |
|
| 681 |
+
|
| 682 |
+
#### Semantic Similarity
|
| 683 |
+
* Dataset: `sts17-en-de-test`
|
| 684 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 685 |
+
|
| 686 |
+
| Metric | Value |
|
| 687 |
+
|:-------------------|:-----------|
|
| 688 |
+
| pearson_cosine | 0.5263 |
|
| 689 |
+
| spearman_cosine | 0.5618 |
|
| 690 |
+
| pearson_manhattan | 0.5085 |
|
| 691 |
+
| spearman_manhattan | 0.5218 |
|
| 692 |
+
| pearson_euclidean | 0.5055 |
|
| 693 |
+
| spearman_euclidean | 0.5206 |
|
| 694 |
+
| pearson_dot | 0.3742 |
|
| 695 |
+
| spearman_dot | 0.3691 |
|
| 696 |
+
| pearson_max | 0.5263 |
|
| 697 |
+
| **spearman_max** | **0.5618** |
|
| 698 |
+
|
| 699 |
+
#### Knowledge Distillation
|
| 700 |
+
* Dataset: `en-es`
|
| 701 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
| 702 |
+
|
| 703 |
+
| Metric | Value |
|
| 704 |
+
|:-----------------|:-------------|
|
| 705 |
+
| **negative_mse** | **-19.4724** |
|
| 706 |
+
|
| 707 |
+
#### Translation
|
| 708 |
+
* Dataset: `en-es`
|
| 709 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
| 710 |
+
|
| 711 |
+
| Metric | Value |
|
| 712 |
+
|:------------------|:-----------|
|
| 713 |
+
| src2trg_accuracy | 0.9434 |
|
| 714 |
+
| trg2src_accuracy | 0.9465 |
|
| 715 |
+
| **mean_accuracy** | **0.9449** |
|
| 716 |
+
|
| 717 |
+
#### Semantic Similarity
|
| 718 |
+
* Dataset: `sts17-es-en-test`
|
| 719 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 720 |
+
|
| 721 |
+
| Metric | Value |
|
| 722 |
+
|:-------------------|:-----------|
|
| 723 |
+
| pearson_cosine | 0.4945 |
|
| 724 |
+
| spearman_cosine | 0.5021 |
|
| 725 |
+
| pearson_manhattan | 0.4445 |
|
| 726 |
+
| spearman_manhattan | 0.4284 |
|
| 727 |
+
| pearson_euclidean | 0.4357 |
|
| 728 |
+
| spearman_euclidean | 0.417 |
|
| 729 |
+
| pearson_dot | 0.3751 |
|
| 730 |
+
| spearman_dot | 0.3796 |
|
| 731 |
+
| pearson_max | 0.4945 |
|
| 732 |
+
| **spearman_max** | **0.5021** |
|
| 733 |
+
|
| 734 |
+
#### Knowledge Distillation
|
| 735 |
+
* Dataset: `en-tr`
|
| 736 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
| 737 |
+
|
| 738 |
+
| Metric | Value |
|
| 739 |
+
|:-----------------|:-------------|
|
| 740 |
+
| **negative_mse** | **-20.7547** |
|
| 741 |
+
|
| 742 |
+
#### Translation
|
| 743 |
+
* Dataset: `en-tr`
|
| 744 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
| 745 |
+
|
| 746 |
+
| Metric | Value |
|
| 747 |
+
|:------------------|:-----------|
|
| 748 |
+
| src2trg_accuracy | 0.7432 |
|
| 749 |
+
| trg2src_accuracy | 0.7432 |
|
| 750 |
+
| **mean_accuracy** | **0.7432** |
|
| 751 |
+
|
| 752 |
+
#### Semantic Similarity
|
| 753 |
+
* Dataset: `sts17-en-tr-test`
|
| 754 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 755 |
+
|
| 756 |
+
| Metric | Value |
|
| 757 |
+
|:-------------------|:-----------|
|
| 758 |
+
| pearson_cosine | 0.5545 |
|
| 759 |
+
| spearman_cosine | 0.5819 |
|
| 760 |
+
| pearson_manhattan | 0.5104 |
|
| 761 |
+
| spearman_manhattan | 0.5088 |
|
| 762 |
+
| pearson_euclidean | 0.5046 |
|
| 763 |
+
| spearman_euclidean | 0.5053 |
|
| 764 |
+
| pearson_dot | 0.4726 |
|
| 765 |
+
| spearman_dot | 0.4298 |
|
| 766 |
+
| pearson_max | 0.5545 |
|
| 767 |
+
| **spearman_max** | **0.5819** |
|
| 768 |
+
|
| 769 |
+
#### Knowledge Distillation
|
| 770 |
+
* Dataset: `en-it`
|
| 771 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
| 772 |
+
|
| 773 |
+
| Metric | Value |
|
| 774 |
+
|:-----------------|:-------------|
|
| 775 |
+
| **negative_mse** | **-19.7699** |
|
| 776 |
+
|
| 777 |
+
#### Translation
|
| 778 |
+
* Dataset: `en-it`
|
| 779 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
| 780 |
+
|
| 781 |
+
| Metric | Value |
|
| 782 |
+
|:------------------|:-----------|
|
| 783 |
+
| src2trg_accuracy | 0.8781 |
|
| 784 |
+
| trg2src_accuracy | 0.8832 |
|
| 785 |
+
| **mean_accuracy** | **0.8807** |
|
| 786 |
+
|
| 787 |
+
#### Semantic Similarity
|
| 788 |
+
* Dataset: `sts17-it-en-test`
|
| 789 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 790 |
+
|
| 791 |
+
| Metric | Value |
|
| 792 |
+
|:-------------------|:----------|
|
| 793 |
+
| pearson_cosine | 0.5064 |
|
| 794 |
+
| spearman_cosine | 0.525 |
|
| 795 |
+
| pearson_manhattan | 0.4517 |
|
| 796 |
+
| spearman_manhattan | 0.4623 |
|
| 797 |
+
| pearson_euclidean | 0.4423 |
|
| 798 |
+
| spearman_euclidean | 0.4507 |
|
| 799 |
+
| pearson_dot | 0.4202 |
|
| 800 |
+
| spearman_dot | 0.4225 |
|
| 801 |
+
| pearson_max | 0.5064 |
|
| 802 |
+
| **spearman_max** | **0.525** |
|
| 803 |
+
|
| 804 |
+
<!--
|
| 805 |
+
## Bias, Risks and Limitations
|
| 806 |
+
|
| 807 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 808 |
+
-->
|
| 809 |
+
|
| 810 |
+
<!--
|
| 811 |
+
### Recommendations
|
| 812 |
+
|
| 813 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 814 |
+
-->
|
| 815 |
+
|
| 816 |
+
## Training Details
|
| 817 |
+
|
| 818 |
+
### Training Datasets
|
| 819 |
+
|
| 820 |
+
#### en-ar
|
| 821 |
+
|
| 822 |
+
* Dataset: [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 823 |
+
* Size: 5,000 training samples
|
| 824 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 825 |
+
* Approximate statistics based on the first 1000 samples:
|
| 826 |
+
| | non_english | label |
|
| 827 |
+
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
|
| 828 |
+
| type | string | list |
|
| 829 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.3 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 830 |
+
* Samples:
|
| 831 |
+
| non_english | label |
|
| 832 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
|
| 833 |
+
| <code>حسناً ان ما نقوم به اليوم .. هو ان نجبر الطلاب لتعلم الرياضيات</code> | <code>[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]</code> |
|
| 834 |
+
| <code>انها المادة الاهم ..</code> | <code>[0.6257511377334595, -0.1750679910182953, -0.5734405517578125, 0.11480475962162018, 1.1682192087173462, ...]</code> |
|
| 835 |
+
| <code>انا لا انفي لدقيقة واحدة ان الذين يهتمون بالحسابات اليدوية والذين هوايتهم القيام بذلك .. او القيام بالطرق التقليدية في اي مجال ان يقوموا بذلك كما يريدون .</code> | <code>[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]</code> |
|
| 836 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 837 |
+
|
| 838 |
+
#### en-fr
|
| 839 |
+
|
| 840 |
+
* Dataset: [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 841 |
+
* Size: 5,000 training samples
|
| 842 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 843 |
+
* Approximate statistics based on the first 1000 samples:
|
| 844 |
+
| | non_english | label |
|
| 845 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 846 |
+
| type | string | list |
|
| 847 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 30.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 848 |
+
* Samples:
|
| 849 |
+
| non_english | label |
|
| 850 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 851 |
+
| <code>Je ne crois pas que ce soit justifié.</code> | <code>[-0.361753910779953, 0.7323777079582214, 0.6518164277076721, -0.8461216688156128, -0.007496988866478205, ...]</code> |
|
| 852 |
+
| <code>Je fais cette distinction entre ce qu'on force les gens à faire et les matières générales, et la matière que quelqu'un va apprendre parce que ça lui plait et peut-être même exceller dans ce domaine.</code> | <code>[0.3047865629196167, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]</code> |
|
| 853 |
+
| <code>Quels sont les problèmes en relation avec ça?</code> | <code>[0.2123892903327942, -0.09616081416606903, -0.41965243220329285, -0.5469444394111633, -0.6056491136550903, ...]</code> |
|
| 854 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 855 |
+
|
| 856 |
+
#### en-de
|
| 857 |
+
|
| 858 |
+
* Dataset: [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 859 |
+
* Size: 5,000 training samples
|
| 860 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 861 |
+
* Approximate statistics based on the first 1000 samples:
|
| 862 |
+
| | non_english | label |
|
| 863 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 864 |
+
| type | string | list |
|
| 865 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.04 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 866 |
+
* Samples:
|
| 867 |
+
| non_english | label |
|
| 868 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 869 |
+
| <code>Ich denke, dass es sich aus diesem Grund lohnt, den Leuten das Rechnen von Hand beizubringen.</code> | <code>[0.0960279330611229, 0.7833179831504822, -0.09527698159217834, 0.8104371428489685, 0.7545774579048157, ...]</code> |
|
| 870 |
+
| <code>Außerdem gibt es ein paar bestimmte konzeptionelle Dinge, die das Rechnen per Hand rechtfertigen, aber ich glaube es sind sehr wenige.</code> | <code>[-0.5939837098121643, 0.9714100956916809, 0.6800686717033386, -0.21585524082183838, -0.7509503364562988, ...]</code> |
|
| 871 |
+
| <code>Eine Sache, die ich mich oft frage, ist Altgriechisch, und wie das zusammengehört.</code> | <code>[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]</code> |
|
| 872 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 873 |
+
|
| 874 |
+
#### en-es
|
| 875 |
+
|
| 876 |
+
* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 877 |
+
* Size: 5,000 training samples
|
| 878 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 879 |
+
* Approximate statistics based on the first 1000 samples:
|
| 880 |
+
| | non_english | label |
|
| 881 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 882 |
+
| type | string | list |
|
| 883 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 25.42 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 884 |
+
* Samples:
|
| 885 |
+
| non_english | label |
|
| 886 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 887 |
+
| <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.5939835906028748, 0.9714106917381287, 0.6800685524940491, -0.2158554196357727, -0.7509507536888123, ...]</code> |
|
| 888 |
+
| <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code> | <code>[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]</code> |
|
| 889 |
+
| <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code> | <code>[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]</code> |
|
| 890 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 891 |
+
|
| 892 |
+
#### en-tr
|
| 893 |
+
|
| 894 |
+
* Dataset: [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 895 |
+
* Size: 5,000 training samples
|
| 896 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 897 |
+
* Approximate statistics based on the first 1000 samples:
|
| 898 |
+
| | non_english | label |
|
| 899 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 900 |
+
| type | string | list |
|
| 901 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 24.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 902 |
+
* Samples:
|
| 903 |
+
| non_english | label |
|
| 904 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 905 |
+
| <code>Eğer insanlar elle hesaba ilgililerse ya da öğrenmek için özel amaçları varsa konu ne kadar acayip olursa olsun bunu öğrenmeliler, engellemeyi bir an için bile önermiyorum.</code> | <code>[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]</code> |
|
| 906 |
+
| <code>İnsanların kendi ilgi alanlarını takip etmeleri, kesinlikle doğru bir şeydir.</code> | <code>[0.2061387449502945, 0.5284574031829834, 0.3577779233455658, 0.28818392753601074, 0.17228049039840698, ...]</code> |
|
| 907 |
+
| <code>Ben bir biçimde Antik Yunan hakkında ilgiliyimdir. ancak tüm nüfusu Antik Yunan gibi bir konu hakkında bilgi edinmeye zorlamamalıyız.</code> | <code>[0.12050342559814453, 0.15652479231357574, 0.48636534810066223, -0.13693244755268097, 0.42764803767204285, ...]</code> |
|
| 908 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 909 |
+
|
| 910 |
+
#### en-it
|
| 911 |
+
|
| 912 |
+
* Dataset: [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 913 |
+
* Size: 5,000 training samples
|
| 914 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 915 |
+
* Approximate statistics based on the first 1000 samples:
|
| 916 |
+
| | non_english | label |
|
| 917 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 918 |
+
| type | string | list |
|
| 919 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 26.41 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 920 |
+
* Samples:
|
| 921 |
+
| non_english | label |
|
| 922 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
|
| 923 |
+
| <code>Non credo che sia giustificato.</code> | <code>[-0.36175352334976196, 0.7323781251907349, 0.651816189289093, -0.8461223840713501, -0.007496151141822338, ...]</code> |
|
| 924 |
+
| <code>Perciò faccio distinzione tra quello che stiamo facendo fare alle persone, le materie che si ritengono principali, e le materie che le persone potrebbero seguire per loro interesse o forse a volte anche incitate a farlo.</code> | <code>[0.3047865927219391, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]</code> |
|
| 925 |
+
| <code>Ma che argomenti porta la gente su questi temi?</code> | <code>[0.2123885154724121, -0.09616123884916306, -0.4196523427963257, -0.5469440817832947, -0.6056501865386963, ...]</code> |
|
| 926 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 927 |
+
|
| 928 |
+
### Evaluation Datasets
|
| 929 |
+
|
| 930 |
+
#### en-ar
|
| 931 |
+
|
| 932 |
+
* Dataset: [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 933 |
+
* Size: 993 evaluation samples
|
| 934 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 935 |
+
* Approximate statistics based on the first 1000 samples:
|
| 936 |
+
| | non_english | label |
|
| 937 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 938 |
+
| type | string | list |
|
| 939 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 28.03 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 940 |
+
* Samples:
|
| 941 |
+
| non_english | label |
|
| 942 |
+
|:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 943 |
+
| <code>شكرا جزيلا كريس.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
| 944 |
+
| <code>انه فعلا شرف عظيم لي ان أصعد المنصة للمرة الثانية. أنا في غاية الامتنان.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
| 945 |
+
| <code>لقد بهرت فعلا بهذا المؤتمر, وأريد أن أشكركم جميعا على تعليقاتكم الطيبة على ما قلته تلك الليلة.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
| 946 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 947 |
+
|
| 948 |
+
#### en-fr
|
| 949 |
+
|
| 950 |
+
* Dataset: [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 951 |
+
* Size: 992 evaluation samples
|
| 952 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 953 |
+
* Approximate statistics based on the first 1000 samples:
|
| 954 |
+
| | non_english | label |
|
| 955 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 956 |
+
| type | string | list |
|
| 957 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 30.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 958 |
+
* Samples:
|
| 959 |
+
| non_english | label |
|
| 960 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 961 |
+
| <code>Merci beaucoup, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
| 962 |
+
| <code>C'est vraiment un honneur de pouvoir venir sur cette scène une deuxième fois. Je suis très reconnaissant.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
| 963 |
+
| <code>J'ai été très impressionné par cette conférence, et je tiens à vous remercier tous pour vos nombreux et sympathiques commentaires sur ce que j'ai dit l'autre soir.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
| 964 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 965 |
+
|
| 966 |
+
#### en-de
|
| 967 |
+
|
| 968 |
+
* Dataset: [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 969 |
+
* Size: 991 evaluation samples
|
| 970 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 971 |
+
* Approximate statistics based on the first 1000 samples:
|
| 972 |
+
| | non_english | label |
|
| 973 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 974 |
+
| type | string | list |
|
| 975 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.71 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 976 |
+
* Samples:
|
| 977 |
+
| non_english | label |
|
| 978 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 979 |
+
| <code>Vielen Dank, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
| 980 |
+
| <code>Es ist mir wirklich eine Ehre, zweimal auf dieser Bühne stehen zu dürfen. Tausend Dank dafür.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
| 981 |
+
| <code>Ich bin wirklich begeistert von dieser Konferenz, und ich danke Ihnen allen für die vielen netten Kommentare zu meiner Rede vorgestern Abend.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
| 982 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 983 |
+
|
| 984 |
+
#### en-es
|
| 985 |
+
|
| 986 |
+
* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 987 |
+
* Size: 990 evaluation samples
|
| 988 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 989 |
+
* Approximate statistics based on the first 1000 samples:
|
| 990 |
+
| | non_english | label |
|
| 991 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 992 |
+
| type | string | list |
|
| 993 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 26.47 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 994 |
+
* Samples:
|
| 995 |
+
| non_english | label |
|
| 996 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 997 |
+
| <code>Muchas gracias Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
| 998 |
+
| <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
| 999 |
+
| <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
| 1000 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 1001 |
+
|
| 1002 |
+
#### en-tr
|
| 1003 |
+
|
| 1004 |
+
* Dataset: [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 1005 |
+
* Size: 993 evaluation samples
|
| 1006 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 1007 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1008 |
+
| | non_english | label |
|
| 1009 |
+
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
|
| 1010 |
+
| type | string | list |
|
| 1011 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 25.4 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 1012 |
+
* Samples:
|
| 1013 |
+
| non_english | label |
|
| 1014 |
+
|:----------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 1015 |
+
| <code>Çok teşekkür ederim Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
| 1016 |
+
| <code>Bu sahnede ikinci kez yer alma fırsatına sahip olmak gerçekten büyük bir onur. Çok minnettarım.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
| 1017 |
+
| <code>Bu konferansta çok mutlu oldum, ve anlattıklarımla ilgili güzel yorumlarınız için sizlere çok teşekkür ederim.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
| 1018 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 1019 |
+
|
| 1020 |
+
#### en-it
|
| 1021 |
+
|
| 1022 |
+
* Dataset: [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
|
| 1023 |
+
* Size: 993 evaluation samples
|
| 1024 |
+
* Columns: <code>non_english</code> and <code>label</code>
|
| 1025 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1026 |
+
| | non_english | label |
|
| 1027 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
| 1028 |
+
| type | string | list |
|
| 1029 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.94 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 1030 |
+
* Samples:
|
| 1031 |
+
| non_english | label |
|
| 1032 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 1033 |
+
| <code>Grazie mille, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
|
| 1034 |
+
| <code>E’ veramente un grande onore venire su questo palco due volte. Vi sono estremamente grato.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
|
| 1035 |
+
| <code>Sono impressionato da questa conferenza, e voglio ringraziare tutti voi per i tanti, lusinghieri commenti, anche perché... Ne ho bisogno!!</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
|
| 1036 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
|
| 1037 |
+
|
| 1038 |
+
### Training Hyperparameters
|
| 1039 |
+
#### Non-Default Hyperparameters
|
| 1040 |
+
|
| 1041 |
+
- `eval_strategy`: steps
|
| 1042 |
+
- `per_device_train_batch_size`: 64
|
| 1043 |
+
- `per_device_eval_batch_size`: 64
|
| 1044 |
+
- `learning_rate`: 2e-05
|
| 1045 |
+
- `num_train_epochs`: 5
|
| 1046 |
+
- `warmup_ratio`: 0.1
|
| 1047 |
+
- `fp16`: True
|
| 1048 |
+
|
| 1049 |
+
#### All Hyperparameters
|
| 1050 |
+
<details><summary>Click to expand</summary>
|
| 1051 |
+
|
| 1052 |
+
- `overwrite_output_dir`: False
|
| 1053 |
+
- `do_predict`: False
|
| 1054 |
+
- `eval_strategy`: steps
|
| 1055 |
+
- `prediction_loss_only`: False
|
| 1056 |
+
- `per_device_train_batch_size`: 64
|
| 1057 |
+
- `per_device_eval_batch_size`: 64
|
| 1058 |
+
- `per_gpu_train_batch_size`: None
|
| 1059 |
+
- `per_gpu_eval_batch_size`: None
|
| 1060 |
+
- `gradient_accumulation_steps`: 1
|
| 1061 |
+
- `eval_accumulation_steps`: None
|
| 1062 |
+
- `learning_rate`: 2e-05
|
| 1063 |
+
- `weight_decay`: 0.0
|
| 1064 |
+
- `adam_beta1`: 0.9
|
| 1065 |
+
- `adam_beta2`: 0.999
|
| 1066 |
+
- `adam_epsilon`: 1e-08
|
| 1067 |
+
- `max_grad_norm`: 1.0
|
| 1068 |
+
- `num_train_epochs`: 5
|
| 1069 |
+
- `max_steps`: -1
|
| 1070 |
+
- `lr_scheduler_type`: linear
|
| 1071 |
+
- `lr_scheduler_kwargs`: {}
|
| 1072 |
+
- `warmup_ratio`: 0.1
|
| 1073 |
+
- `warmup_steps`: 0
|
| 1074 |
+
- `log_level`: passive
|
| 1075 |
+
- `log_level_replica`: warning
|
| 1076 |
+
- `log_on_each_node`: True
|
| 1077 |
+
- `logging_nan_inf_filter`: True
|
| 1078 |
+
- `save_safetensors`: True
|
| 1079 |
+
- `save_on_each_node`: False
|
| 1080 |
+
- `save_only_model`: False
|
| 1081 |
+
- `no_cuda`: False
|
| 1082 |
+
- `use_cpu`: False
|
| 1083 |
+
- `use_mps_device`: False
|
| 1084 |
+
- `seed`: 42
|
| 1085 |
+
- `data_seed`: None
|
| 1086 |
+
- `jit_mode_eval`: False
|
| 1087 |
+
- `use_ipex`: False
|
| 1088 |
+
- `bf16`: False
|
| 1089 |
+
- `fp16`: True
|
| 1090 |
+
- `fp16_opt_level`: O1
|
| 1091 |
+
- `half_precision_backend`: auto
|
| 1092 |
+
- `bf16_full_eval`: False
|
| 1093 |
+
- `fp16_full_eval`: False
|
| 1094 |
+
- `tf32`: None
|
| 1095 |
+
- `local_rank`: 0
|
| 1096 |
+
- `ddp_backend`: None
|
| 1097 |
+
- `tpu_num_cores`: None
|
| 1098 |
+
- `tpu_metrics_debug`: False
|
| 1099 |
+
- `debug`: []
|
| 1100 |
+
- `dataloader_drop_last`: False
|
| 1101 |
+
- `dataloader_num_workers`: 0
|
| 1102 |
+
- `dataloader_prefetch_factor`: None
|
| 1103 |
+
- `past_index`: -1
|
| 1104 |
+
- `disable_tqdm`: False
|
| 1105 |
+
- `remove_unused_columns`: True
|
| 1106 |
+
- `label_names`: None
|
| 1107 |
+
- `load_best_model_at_end`: False
|
| 1108 |
+
- `ignore_data_skip`: False
|
| 1109 |
+
- `fsdp`: []
|
| 1110 |
+
- `fsdp_min_num_params`: 0
|
| 1111 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1112 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1113 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1114 |
+
- `deepspeed`: None
|
| 1115 |
+
- `label_smoothing_factor`: 0.0
|
| 1116 |
+
- `optim`: adamw_torch
|
| 1117 |
+
- `optim_args`: None
|
| 1118 |
+
- `adafactor`: False
|
| 1119 |
+
- `group_by_length`: False
|
| 1120 |
+
- `length_column_name`: length
|
| 1121 |
+
- `ddp_find_unused_parameters`: None
|
| 1122 |
+
- `ddp_bucket_cap_mb`: None
|
| 1123 |
+
- `ddp_broadcast_buffers`: None
|
| 1124 |
+
- `dataloader_pin_memory`: True
|
| 1125 |
+
- `dataloader_persistent_workers`: False
|
| 1126 |
+
- `skip_memory_metrics`: True
|
| 1127 |
+
- `use_legacy_prediction_loop`: False
|
| 1128 |
+
- `push_to_hub`: False
|
| 1129 |
+
- `resume_from_checkpoint`: None
|
| 1130 |
+
- `hub_model_id`: None
|
| 1131 |
+
- `hub_strategy`: every_save
|
| 1132 |
+
- `hub_private_repo`: False
|
| 1133 |
+
- `hub_always_push`: False
|
| 1134 |
+
- `gradient_checkpointing`: False
|
| 1135 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1136 |
+
- `include_inputs_for_metrics`: False
|
| 1137 |
+
- `eval_do_concat_batches`: True
|
| 1138 |
+
- `fp16_backend`: auto
|
| 1139 |
+
- `push_to_hub_model_id`: None
|
| 1140 |
+
- `push_to_hub_organization`: None
|
| 1141 |
+
- `mp_parameters`:
|
| 1142 |
+
- `auto_find_batch_size`: False
|
| 1143 |
+
- `full_determinism`: False
|
| 1144 |
+
- `torchdynamo`: None
|
| 1145 |
+
- `ray_scope`: last
|
| 1146 |
+
- `ddp_timeout`: 1800
|
| 1147 |
+
- `torch_compile`: False
|
| 1148 |
+
- `torch_compile_backend`: None
|
| 1149 |
+
- `torch_compile_mode`: None
|
| 1150 |
+
- `dispatch_batches`: None
|
| 1151 |
+
- `split_batches`: None
|
| 1152 |
+
- `include_tokens_per_second`: False
|
| 1153 |
+
- `include_num_input_tokens_seen`: False
|
| 1154 |
+
- `neftune_noise_alpha`: None
|
| 1155 |
+
- `optim_target_modules`: None
|
| 1156 |
+
- `batch_sampler`: batch_sampler
|
| 1157 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1158 |
+
|
| 1159 |
+
</details>
|
| 1160 |
+
|
| 1161 |
+
### Training Logs
|
| 1162 |
+
| Epoch | Step | Training Loss | en-ar loss | en-it loss | en-de loss | en-fr loss | en-es loss | en-tr loss | en-ar_mean_accuracy | en-ar_negative_mse | en-de_mean_accuracy | en-de_negative_mse | en-es_mean_accuracy | en-es_negative_mse | en-fr_mean_accuracy | en-fr_negative_mse | en-it_mean_accuracy | en-it_negative_mse | en-tr_mean_accuracy | en-tr_negative_mse | sts17-en-ar-test_spearman_max | sts17-en-de-test_spearman_max | sts17-en-tr-test_spearman_max | sts17-es-en-test_spearman_max | sts17-fr-en-test_spearman_max | sts17-it-en-test_spearman_max |
|
| 1163 |
+
|:------:|:----:|:-------------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|
|
| 1164 |
+
| 0.2110 | 100 | 0.5581 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1165 |
+
| 0.4219 | 200 | 0.3071 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1166 |
+
| 0.6329 | 300 | 0.2675 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1167 |
+
| 0.8439 | 400 | 0.2606 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1168 |
+
| 1.0549 | 500 | 0.2589 | 0.2519 | 0.2498 | 0.2511 | 0.2488 | 0.2503 | 0.2512 | 0.1254 | -25.1903 | 0.2523 | -25.1089 | 0.2591 | -25.0276 | 0.2409 | -24.8803 | 0.2180 | -24.9768 | 0.1158 | -25.1219 | 0.0308 | 0.1281 | 0.1610 | 0.1465 | 0.0552 | 0.0518 |
|
| 1169 |
+
| 1.2658 | 600 | 0.2504 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1170 |
+
| 1.4768 | 700 | 0.2427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1171 |
+
| 1.6878 | 800 | 0.2337 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1172 |
+
| 1.8987 | 900 | 0.2246 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1173 |
+
| 2.1097 | 1000 | 0.2197 | 0.2202 | 0.2157 | 0.2151 | 0.2147 | 0.2139 | 0.2218 | 0.5841 | -22.0204 | 0.8012 | -21.5087 | 0.8495 | -21.3935 | 0.7959 | -21.4660 | 0.7815 | -21.5699 | 0.6007 | -22.1778 | 0.3346 | 0.4013 | 0.4727 | 0.3353 | 0.3827 | 0.3292 |
|
| 1174 |
+
| 2.3207 | 1100 | 0.2163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1175 |
+
| 2.5316 | 1200 | 0.2123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1176 |
+
| 2.7426 | 1300 | 0.2069 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1177 |
+
| 2.9536 | 1400 | 0.2048 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1178 |
+
| 3.1646 | 1500 | 0.2009 | 0.2086 | 0.2029 | 0.2022 | 0.2012 | 0.2002 | 0.2111 | 0.7367 | -20.8567 | 0.8739 | -20.2247 | 0.9303 | -20.0215 | 0.8755 | -20.1213 | 0.8600 | -20.2900 | 0.7165 | -21.1119 | 0.4087 | 0.5473 | 0.5551 | 0.4724 | 0.4882 | 0.4690 |
|
| 1179 |
+
| 3.3755 | 1600 | 0.2019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1180 |
+
| 3.5865 | 1700 | 0.1989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1181 |
+
| 3.7975 | 1800 | 0.196 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1182 |
+
| 4.0084 | 1900 | 0.1943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1183 |
+
| 4.2194 | 2000 | 0.194 | 0.2040 | 0.1977 | 0.1973 | 0.1962 | 0.1947 | 0.2075 | 0.7714 | -20.3955 | 0.8915 | -19.7279 | 0.9449 | -19.4724 | 0.8942 | -19.6232 | 0.8807 | -19.7699 | 0.7432 | -20.7547 | 0.4425 | 0.5618 | 0.5819 | 0.5021 | 0.5334 | 0.5250 |
|
| 1184 |
+
| 4.4304 | 2100 | 0.1951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1185 |
+
| 4.6414 | 2200 | 0.1928 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1186 |
+
| 4.8523 | 2300 | 0.1909 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1187 |
+
|
| 1188 |
+
|
| 1189 |
+
### Environmental Impact
|
| 1190 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
| 1191 |
+
- **Energy Consumed**: 0.060 kWh
|
| 1192 |
+
- **Carbon Emitted**: 0.023 kg of CO2
|
| 1193 |
+
- **Hours Used**: 0.179 hours
|
| 1194 |
+
|
| 1195 |
+
### Training Hardware
|
| 1196 |
+
- **On Cloud**: No
|
| 1197 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
| 1198 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
| 1199 |
+
- **RAM Size**: 31.78 GB
|
| 1200 |
+
|
| 1201 |
+
### Framework Versions
|
| 1202 |
+
- Python: 3.11.6
|
| 1203 |
+
- Sentence Transformers: 3.0.0.dev0
|
| 1204 |
+
- Transformers: 4.41.0.dev0
|
| 1205 |
+
- PyTorch: 2.3.0+cu121
|
| 1206 |
+
- Accelerate: 0.26.1
|
| 1207 |
+
- Datasets: 2.18.0
|
| 1208 |
+
- Tokenizers: 0.19.1
|
| 1209 |
+
|
| 1210 |
+
## Citation
|
| 1211 |
+
|
| 1212 |
+
### BibTeX
|
| 1213 |
+
|
| 1214 |
+
#### Sentence Transformers
|
| 1215 |
+
```bibtex
|
| 1216 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1217 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1218 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1219 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1220 |
+
month = "11",
|
| 1221 |
+
year = "2019",
|
| 1222 |
+
publisher = "Association for Computational Linguistics",
|
| 1223 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1224 |
+
}
|
| 1225 |
+
```
|
| 1226 |
+
|
| 1227 |
+
#### MSELoss
|
| 1228 |
+
```bibtex
|
| 1229 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
| 1230 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
| 1231 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1232 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
| 1233 |
+
month = "11",
|
| 1234 |
+
year = "2020",
|
| 1235 |
+
publisher = "Association for Computational Linguistics",
|
| 1236 |
+
url = "https://arxiv.org/abs/2004.09813",
|
| 1237 |
+
}
|
| 1238 |
+
```
|
| 1239 |
+
|
| 1240 |
+
<!--
|
| 1241 |
+
## Glossary
|
| 1242 |
+
|
| 1243 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1244 |
+
-->
|
| 1245 |
+
|
| 1246 |
+
<!--
|
| 1247 |
+
## Model Card Authors
|
| 1248 |
+
|
| 1249 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1250 |
+
-->
|
| 1251 |
+
|
| 1252 |
+
<!--
|
| 1253 |
+
## Model Card Contact
|
| 1254 |
+
|
| 1255 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1256 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "xlm-roberta-base",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"XLMRobertaModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 514,
|
| 17 |
+
"model_type": "xlm-roberta",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"output_past": true,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.41.0.dev0",
|
| 25 |
+
"type_vocab_size": 1,
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"vocab_size": 250002
|
| 28 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.0.0.dev0",
|
| 4 |
+
"transformers": "4.41.0.dev0",
|
| 5 |
+
"pytorch": "2.3.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:149e16f1341357d04aa0ffc019a3dd067c6a43fd0e9c878c9b981c08c577cabd
|
| 3 |
+
size 1112197096
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
sentencepiece.bpe.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
| 3 |
+
size 5069051
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"mask_token": "<mask>",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "<pad>",
|
| 51 |
+
"sep_token": "</s>",
|
| 52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 53 |
+
"unk_token": "<unk>"
|
| 54 |
+
}
|