--- license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct tags: - text-generation - conversational - character-ai - philosophy - fine-tuned - peft - lora language: - en pipeline_tag: text-generation --- # 🐸 Duncan Gamabunta v3.0 - Philosophical Frog AI ## Model Description Duncan Gamabunta is a fine-tuned SmolLM 1.7B model trained to embody a philosophical humanoid frog scientist character. ## Training Details - **Base Model**: HuggingFaceTB/SmolLM2-1.7B-Instruct - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Dataset Size**: 62 training examples, 7 validation examples - **Training Epochs**: 7 ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct") tokenizer = AutoTokenizer.from_pretrained("tuc111/duncan-gamabunta-v3.0") # Load the fine-tuned adapter model = PeftModel.from_pretrained(base_model, "tuc111/duncan-gamabunta-v3.0") # Generate response prompt = "<|im_start|>user\nHi Duncan!<|im_end|>\n<|im_start|>assistant\n" inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_new_tokens=150, temperature=0.7, do_sample=True) response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) print(response) ```