Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- l2-13b-ga/checkpoint-2800/special_tokens_map.json +23 -0
- l2-13b-ga/checkpoint-2800/tokenizer_config.json +42 -0
- l2-13b-ga/checkpoint-3100/config.json +30 -0
- l2-13b-ga/checkpoint-3100/generation_config.json +10 -0
- l2-13b-ga/checkpoint-3100/latest +1 -0
- l2-13b-ga/checkpoint-3100/model.safetensors.index.json +370 -0
- l2-13b-ga/checkpoint-3100/special_tokens_map.json +23 -0
- l2-13b-ga/checkpoint-3100/tokenizer.json +0 -0
- l2-13b-ga/checkpoint-3100/tokenizer_config.json +42 -0
- l2-13b-ga/checkpoint-3100/trainer_state.json +2210 -0
- l2-13b-ga/checkpoint-3100/zero_to_fp32.py +592 -0
- q2.5-eu-en/checkpoint-1800/trainer_state.json +0 -0
- q2.5-eu-en/checkpoint-2400/added_tokens.json +24 -0
- q2.5-eu-en/checkpoint-2400/chat_template.jinja +54 -0
- q2.5-eu-en/checkpoint-2400/config.json +29 -0
- q2.5-eu-en/checkpoint-2400/generation_config.json +6 -0
- q2.5-eu-en/checkpoint-2400/latest +1 -0
- q2.5-eu-en/checkpoint-2400/merges.txt +0 -0
- q2.5-eu-en/checkpoint-2400/special_tokens_map.json +31 -0
- q2.5-eu-en/checkpoint-2400/tokenizer_config.json +207 -0
- q2.5-eu-en/checkpoint-2400/trainer_state.json +0 -0
- q2.5-eu-en/checkpoint-2400/vocab.json +0 -0
- q2.5-eu-en/checkpoint-2400/zero_to_fp32.py +760 -0
- q2.5-eu-en/checkpoint-2700/added_tokens.json +24 -0
- q2.5-eu-en/checkpoint-2700/chat_template.jinja +54 -0
- q2.5-eu-en/checkpoint-2700/config.json +29 -0
- q2.5-eu-en/checkpoint-2700/generation_config.json +6 -0
- q2.5-eu-en/checkpoint-2700/latest +1 -0
- q2.5-eu-en/checkpoint-2700/merges.txt +0 -0
- q2.5-eu-en/checkpoint-2700/special_tokens_map.json +31 -0
- q2.5-eu-en/checkpoint-2700/tokenizer_config.json +207 -0
- q2.5-eu-en/checkpoint-2700/trainer_state.json +0 -0
- q2.5-eu-en/checkpoint-2700/vocab.json +0 -0
- q2.5-eu-en/checkpoint-2700/zero_to_fp32.py +760 -0
- q2.5-eu-en/checkpoint-300/added_tokens.json +24 -0
- q2.5-eu-en/checkpoint-300/chat_template.jinja +54 -0
- q2.5-eu-en/checkpoint-300/config.json +29 -0
- q2.5-eu-en/checkpoint-300/generation_config.json +6 -0
- q2.5-eu-en/checkpoint-300/latest +1 -0
- q2.5-eu-en/checkpoint-300/merges.txt +0 -0
- q2.5-eu-en/checkpoint-300/special_tokens_map.json +31 -0
- q2.5-eu-en/checkpoint-300/tokenizer_config.json +207 -0
- q2.5-eu-en/checkpoint-300/trainer_state.json +1091 -0
- q2.5-eu-en/checkpoint-300/vocab.json +0 -0
- q2.5-eu-en/checkpoint-300/zero_to_fp32.py +760 -0
- q2.5/checkpoint-12000/added_tokens.json +24 -0
- q2.5/checkpoint-12000/chat_template.jinja +54 -0
- q2.5/checkpoint-12000/config.json +29 -0
- q2.5/checkpoint-12000/generation_config.json +6 -0
- q2.5/checkpoint-12000/latest +1 -0
l2-13b-ga/checkpoint-2800/special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
l2-13b-ga/checkpoint-2800/tokenizer_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": true,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"bos_token": "<s>",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"legacy": true,
|
| 35 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 36 |
+
"pad_token": null,
|
| 37 |
+
"sp_model_kwargs": {},
|
| 38 |
+
"spaces_between_special_tokens": false,
|
| 39 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 40 |
+
"unk_token": "<unk>",
|
| 41 |
+
"use_default_system_prompt": false
|
| 42 |
+
}
|
l2-13b-ga/checkpoint-3100/config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "meta-llama/Llama-2-13b-hf",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"head_dim": 128,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"hidden_size": 5120,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 13824,
|
| 15 |
+
"max_position_embeddings": 4096,
|
| 16 |
+
"mlp_bias": false,
|
| 17 |
+
"model_type": "llama",
|
| 18 |
+
"num_attention_heads": 40,
|
| 19 |
+
"num_hidden_layers": 40,
|
| 20 |
+
"num_key_value_heads": 40,
|
| 21 |
+
"pretraining_tp": 1,
|
| 22 |
+
"rms_norm_eps": 1e-05,
|
| 23 |
+
"rope_scaling": null,
|
| 24 |
+
"rope_theta": 10000.0,
|
| 25 |
+
"tie_word_embeddings": false,
|
| 26 |
+
"torch_dtype": "bfloat16",
|
| 27 |
+
"transformers_version": "4.46.3",
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 35483
|
| 30 |
+
}
|
l2-13b-ga/checkpoint-3100/generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"max_length": 4096,
|
| 6 |
+
"pad_token_id": 0,
|
| 7 |
+
"temperature": 0.6,
|
| 8 |
+
"top_p": 0.9,
|
| 9 |
+
"transformers_version": "4.46.3"
|
| 10 |
+
}
|
l2-13b-ga/checkpoint-3100/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step3100
|
l2-13b-ga/checkpoint-3100/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 26103060480
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
| 369 |
+
}
|
| 370 |
+
}
|
l2-13b-ga/checkpoint-3100/special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
l2-13b-ga/checkpoint-3100/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
l2-13b-ga/checkpoint-3100/tokenizer_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": true,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"bos_token": "<s>",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"legacy": true,
|
| 35 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 36 |
+
"pad_token": null,
|
| 37 |
+
"sp_model_kwargs": {},
|
| 38 |
+
"spaces_between_special_tokens": false,
|
| 39 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 40 |
+
"unk_token": "<unk>",
|
| 41 |
+
"use_default_system_prompt": false
|
| 42 |
+
}
|
l2-13b-ga/checkpoint-3100/trainer_state.json
ADDED
|
@@ -0,0 +1,2210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 2.8954004202661685,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 3100,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0009339248190520663,
|
| 13 |
+
"grad_norm": 6.638877692627699,
|
| 14 |
+
"learning_rate": 9.345794392523364e-07,
|
| 15 |
+
"loss": 9.2917,
|
| 16 |
+
"step": 1
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.009339248190520663,
|
| 20 |
+
"grad_norm": 1.1560921335705272,
|
| 21 |
+
"learning_rate": 9.345794392523365e-06,
|
| 22 |
+
"loss": 9.0876,
|
| 23 |
+
"step": 10
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.018678496381041326,
|
| 27 |
+
"grad_norm": 0.8415132296956432,
|
| 28 |
+
"learning_rate": 1.869158878504673e-05,
|
| 29 |
+
"loss": 8.2164,
|
| 30 |
+
"step": 20
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.02801774457156199,
|
| 34 |
+
"grad_norm": 0.45381630992958155,
|
| 35 |
+
"learning_rate": 2.8037383177570094e-05,
|
| 36 |
+
"loss": 7.5184,
|
| 37 |
+
"step": 30
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.03735699276208265,
|
| 41 |
+
"grad_norm": 0.8400636107958425,
|
| 42 |
+
"learning_rate": 3.738317757009346e-05,
|
| 43 |
+
"loss": 6.6507,
|
| 44 |
+
"step": 40
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.046696240952603316,
|
| 48 |
+
"grad_norm": 0.557696240829066,
|
| 49 |
+
"learning_rate": 4.672897196261683e-05,
|
| 50 |
+
"loss": 5.8909,
|
| 51 |
+
"step": 50
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.05603548914312398,
|
| 55 |
+
"grad_norm": 0.3971996057467842,
|
| 56 |
+
"learning_rate": 5.607476635514019e-05,
|
| 57 |
+
"loss": 5.4127,
|
| 58 |
+
"step": 60
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.06537473733364464,
|
| 62 |
+
"grad_norm": 0.2932710540265688,
|
| 63 |
+
"learning_rate": 6.542056074766355e-05,
|
| 64 |
+
"loss": 5.0106,
|
| 65 |
+
"step": 70
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.0747139855241653,
|
| 69 |
+
"grad_norm": 0.3682690443551033,
|
| 70 |
+
"learning_rate": 7.476635514018692e-05,
|
| 71 |
+
"loss": 4.6042,
|
| 72 |
+
"step": 80
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.08405323371468597,
|
| 76 |
+
"grad_norm": 0.3132971920011515,
|
| 77 |
+
"learning_rate": 8.411214953271028e-05,
|
| 78 |
+
"loss": 4.2031,
|
| 79 |
+
"step": 90
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.09339248190520663,
|
| 83 |
+
"grad_norm": 0.6731868159213446,
|
| 84 |
+
"learning_rate": 9.345794392523365e-05,
|
| 85 |
+
"loss": 3.9423,
|
| 86 |
+
"step": 100
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.1027317300957273,
|
| 90 |
+
"grad_norm": 0.27848867836763197,
|
| 91 |
+
"learning_rate": 0.000102803738317757,
|
| 92 |
+
"loss": 3.7157,
|
| 93 |
+
"step": 110
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.11207097828624796,
|
| 97 |
+
"grad_norm": 0.24642109032991807,
|
| 98 |
+
"learning_rate": 0.00011214953271028037,
|
| 99 |
+
"loss": 3.4516,
|
| 100 |
+
"step": 120
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.12141022647676862,
|
| 104 |
+
"grad_norm": 0.25717384664029797,
|
| 105 |
+
"learning_rate": 0.00012149532710280373,
|
| 106 |
+
"loss": 3.2167,
|
| 107 |
+
"step": 130
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.13074947466728928,
|
| 111 |
+
"grad_norm": 0.20912922668565637,
|
| 112 |
+
"learning_rate": 0.0001308411214953271,
|
| 113 |
+
"loss": 3.0237,
|
| 114 |
+
"step": 140
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.14008872285780993,
|
| 118 |
+
"grad_norm": 0.15805888388706113,
|
| 119 |
+
"learning_rate": 0.00014018691588785047,
|
| 120 |
+
"loss": 2.8529,
|
| 121 |
+
"step": 150
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.1494279710483306,
|
| 125 |
+
"grad_norm": 0.23370349497479534,
|
| 126 |
+
"learning_rate": 0.00014953271028037384,
|
| 127 |
+
"loss": 2.7078,
|
| 128 |
+
"step": 160
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.15876721923885126,
|
| 132 |
+
"grad_norm": 0.1802138633012483,
|
| 133 |
+
"learning_rate": 0.0001588785046728972,
|
| 134 |
+
"loss": 2.6115,
|
| 135 |
+
"step": 170
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.16810646742937194,
|
| 139 |
+
"grad_norm": 0.13354347610039718,
|
| 140 |
+
"learning_rate": 0.00016822429906542056,
|
| 141 |
+
"loss": 2.5309,
|
| 142 |
+
"step": 180
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.17744571561989259,
|
| 146 |
+
"grad_norm": 0.09414865188086892,
|
| 147 |
+
"learning_rate": 0.00017757009345794393,
|
| 148 |
+
"loss": 2.4452,
|
| 149 |
+
"step": 190
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.18678496381041326,
|
| 153 |
+
"grad_norm": 0.08333601554768896,
|
| 154 |
+
"learning_rate": 0.0001869158878504673,
|
| 155 |
+
"loss": 2.3832,
|
| 156 |
+
"step": 200
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.1961242120009339,
|
| 160 |
+
"grad_norm": 0.15926414699806835,
|
| 161 |
+
"learning_rate": 0.00019626168224299065,
|
| 162 |
+
"loss": 2.3492,
|
| 163 |
+
"step": 210
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.2054634601914546,
|
| 167 |
+
"grad_norm": 0.09492820761057012,
|
| 168 |
+
"learning_rate": 0.0001999989254250208,
|
| 169 |
+
"loss": 2.323,
|
| 170 |
+
"step": 220
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.21480270838197524,
|
| 174 |
+
"grad_norm": 0.0801349259356147,
|
| 175 |
+
"learning_rate": 0.00019999235866155886,
|
| 176 |
+
"loss": 2.2731,
|
| 177 |
+
"step": 230
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.22414195657249592,
|
| 181 |
+
"grad_norm": 0.12210960524693895,
|
| 182 |
+
"learning_rate": 0.00019997982251228469,
|
| 183 |
+
"loss": 2.2433,
|
| 184 |
+
"step": 240
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.23348120476301656,
|
| 188 |
+
"grad_norm": 3.14289498732125,
|
| 189 |
+
"learning_rate": 0.00019996131772558666,
|
| 190 |
+
"loss": 3.2769,
|
| 191 |
+
"step": 250
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.24282045295353724,
|
| 195 |
+
"grad_norm": 1.632940983166179,
|
| 196 |
+
"learning_rate": 0.00019993684540617132,
|
| 197 |
+
"loss": 4.9343,
|
| 198 |
+
"step": 260
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.2521597011440579,
|
| 202 |
+
"grad_norm": 3.4831252230225416,
|
| 203 |
+
"learning_rate": 0.00019990640701499736,
|
| 204 |
+
"loss": 4.2768,
|
| 205 |
+
"step": 270
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.26149894933457857,
|
| 209 |
+
"grad_norm": 1.6069045920523788,
|
| 210 |
+
"learning_rate": 0.00019987000436918874,
|
| 211 |
+
"loss": 5.9581,
|
| 212 |
+
"step": 280
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.27083819752509924,
|
| 216 |
+
"grad_norm": 0.2220907936615993,
|
| 217 |
+
"learning_rate": 0.00019982763964192585,
|
| 218 |
+
"loss": 3.8228,
|
| 219 |
+
"step": 290
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.28017744571561987,
|
| 223 |
+
"grad_norm": 0.24737284913291765,
|
| 224 |
+
"learning_rate": 0.00019977931536231596,
|
| 225 |
+
"loss": 3.1413,
|
| 226 |
+
"step": 300
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.28951669390614054,
|
| 230 |
+
"grad_norm": 4.010404518241152,
|
| 231 |
+
"learning_rate": 0.00019972503441524224,
|
| 232 |
+
"loss": 2.8432,
|
| 233 |
+
"step": 310
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.2988559420966612,
|
| 237 |
+
"grad_norm": 0.1515583580811596,
|
| 238 |
+
"learning_rate": 0.00019966480004119142,
|
| 239 |
+
"loss": 2.7859,
|
| 240 |
+
"step": 320
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.3081951902871819,
|
| 244 |
+
"grad_norm": 0.11259395750650594,
|
| 245 |
+
"learning_rate": 0.00019959861583606045,
|
| 246 |
+
"loss": 2.5821,
|
| 247 |
+
"step": 330
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.3175344384777025,
|
| 251 |
+
"grad_norm": 0.22514797814956813,
|
| 252 |
+
"learning_rate": 0.00019952648575094183,
|
| 253 |
+
"loss": 2.4517,
|
| 254 |
+
"step": 340
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.3268736866682232,
|
| 258 |
+
"grad_norm": 0.08040136172033542,
|
| 259 |
+
"learning_rate": 0.00019944841409188767,
|
| 260 |
+
"loss": 2.3794,
|
| 261 |
+
"step": 350
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.3362129348587439,
|
| 265 |
+
"grad_norm": 0.054758073593565354,
|
| 266 |
+
"learning_rate": 0.00019936440551965263,
|
| 267 |
+
"loss": 2.3232,
|
| 268 |
+
"step": 360
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.34555218304926455,
|
| 272 |
+
"grad_norm": 0.06742998909645591,
|
| 273 |
+
"learning_rate": 0.00019927446504941577,
|
| 274 |
+
"loss": 2.2776,
|
| 275 |
+
"step": 370
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.35489143123978517,
|
| 279 |
+
"grad_norm": 0.048780907584876736,
|
| 280 |
+
"learning_rate": 0.00019917859805048096,
|
| 281 |
+
"loss": 2.2376,
|
| 282 |
+
"step": 380
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.36423067943030585,
|
| 286 |
+
"grad_norm": 0.0475325963052214,
|
| 287 |
+
"learning_rate": 0.00019907681024595663,
|
| 288 |
+
"loss": 2.2191,
|
| 289 |
+
"step": 390
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.3735699276208265,
|
| 293 |
+
"grad_norm": 0.054089563211590065,
|
| 294 |
+
"learning_rate": 0.00019896910771241387,
|
| 295 |
+
"loss": 2.1961,
|
| 296 |
+
"step": 400
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.3829091758113472,
|
| 300 |
+
"grad_norm": 0.21798406131864823,
|
| 301 |
+
"learning_rate": 0.00019885549687952372,
|
| 302 |
+
"loss": 2.2078,
|
| 303 |
+
"step": 410
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.3922484240018678,
|
| 307 |
+
"grad_norm": 0.8673185709111124,
|
| 308 |
+
"learning_rate": 0.00019873598452967338,
|
| 309 |
+
"loss": 2.3731,
|
| 310 |
+
"step": 420
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.4015876721923885,
|
| 314 |
+
"grad_norm": 0.22424350669971718,
|
| 315 |
+
"learning_rate": 0.0001986105777975613,
|
| 316 |
+
"loss": 2.6195,
|
| 317 |
+
"step": 430
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.4109269203829092,
|
| 321 |
+
"grad_norm": 0.307418135168262,
|
| 322 |
+
"learning_rate": 0.00019847928416977126,
|
| 323 |
+
"loss": 2.3624,
|
| 324 |
+
"step": 440
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.42026616857342985,
|
| 328 |
+
"grad_norm": 0.07944722668080402,
|
| 329 |
+
"learning_rate": 0.00019834211148432536,
|
| 330 |
+
"loss": 2.2799,
|
| 331 |
+
"step": 450
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.4296054167639505,
|
| 335 |
+
"grad_norm": 0.18146933758664588,
|
| 336 |
+
"learning_rate": 0.00019819906793021614,
|
| 337 |
+
"loss": 2.2177,
|
| 338 |
+
"step": 460
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.43894466495447115,
|
| 342 |
+
"grad_norm": 0.07035825837333018,
|
| 343 |
+
"learning_rate": 0.0001980501620469178,
|
| 344 |
+
"loss": 2.1767,
|
| 345 |
+
"step": 470
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.44828391314499183,
|
| 349 |
+
"grad_norm": 0.04596186944454228,
|
| 350 |
+
"learning_rate": 0.0001978954027238763,
|
| 351 |
+
"loss": 2.1598,
|
| 352 |
+
"step": 480
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.4576231613355125,
|
| 356 |
+
"grad_norm": 0.041342347745088055,
|
| 357 |
+
"learning_rate": 0.0001977347991999786,
|
| 358 |
+
"loss": 2.131,
|
| 359 |
+
"step": 490
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.46696240952603313,
|
| 363 |
+
"grad_norm": 0.04172063219841485,
|
| 364 |
+
"learning_rate": 0.00019756836106300137,
|
| 365 |
+
"loss": 2.1231,
|
| 366 |
+
"step": 500
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.4763016577165538,
|
| 370 |
+
"grad_norm": 0.03373646457711144,
|
| 371 |
+
"learning_rate": 0.00019739609824903843,
|
| 372 |
+
"loss": 2.1146,
|
| 373 |
+
"step": 510
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.4856409059070745,
|
| 377 |
+
"grad_norm": 0.03736871030676605,
|
| 378 |
+
"learning_rate": 0.00019721802104190748,
|
| 379 |
+
"loss": 2.1003,
|
| 380 |
+
"step": 520
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.49498015409759516,
|
| 384 |
+
"grad_norm": 0.033931028038211034,
|
| 385 |
+
"learning_rate": 0.00019703414007253645,
|
| 386 |
+
"loss": 2.0983,
|
| 387 |
+
"step": 530
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.5043194022881158,
|
| 391 |
+
"grad_norm": 0.03790055446070549,
|
| 392 |
+
"learning_rate": 0.00019684446631832868,
|
| 393 |
+
"loss": 2.092,
|
| 394 |
+
"step": 540
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.5136586504786365,
|
| 398 |
+
"grad_norm": 0.030956192803893078,
|
| 399 |
+
"learning_rate": 0.00019664901110250758,
|
| 400 |
+
"loss": 2.0807,
|
| 401 |
+
"step": 550
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.5229978986691571,
|
| 405 |
+
"grad_norm": 0.03542530209935129,
|
| 406 |
+
"learning_rate": 0.00019644778609344068,
|
| 407 |
+
"loss": 2.0773,
|
| 408 |
+
"step": 560
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.5323371468596778,
|
| 412 |
+
"grad_norm": 0.040947757568902336,
|
| 413 |
+
"learning_rate": 0.00019624080330394306,
|
| 414 |
+
"loss": 2.0649,
|
| 415 |
+
"step": 570
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.5416763950501985,
|
| 419 |
+
"grad_norm": 0.034273415973688146,
|
| 420 |
+
"learning_rate": 0.00019602807509056018,
|
| 421 |
+
"loss": 2.0479,
|
| 422 |
+
"step": 580
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.5510156432407192,
|
| 426 |
+
"grad_norm": 0.031427481498873144,
|
| 427 |
+
"learning_rate": 0.00019580961415283028,
|
| 428 |
+
"loss": 2.0563,
|
| 429 |
+
"step": 590
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.5603548914312397,
|
| 433 |
+
"grad_norm": 0.03141549752041532,
|
| 434 |
+
"learning_rate": 0.00019558543353252611,
|
| 435 |
+
"loss": 2.0503,
|
| 436 |
+
"step": 600
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.5696941396217604,
|
| 440 |
+
"grad_norm": 0.033012392726428204,
|
| 441 |
+
"learning_rate": 0.00019535554661287652,
|
| 442 |
+
"loss": 2.0389,
|
| 443 |
+
"step": 610
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.5790333878122811,
|
| 447 |
+
"grad_norm": 0.02913261992661444,
|
| 448 |
+
"learning_rate": 0.0001951199671177673,
|
| 449 |
+
"loss": 2.036,
|
| 450 |
+
"step": 620
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.5883726360028018,
|
| 454 |
+
"grad_norm": 0.030543903708435332,
|
| 455 |
+
"learning_rate": 0.00019487870911092214,
|
| 456 |
+
"loss": 2.0326,
|
| 457 |
+
"step": 630
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.5977118841933224,
|
| 461 |
+
"grad_norm": 0.03215005545393897,
|
| 462 |
+
"learning_rate": 0.00019463178699506277,
|
| 463 |
+
"loss": 2.0231,
|
| 464 |
+
"step": 640
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.6070511323838431,
|
| 468 |
+
"grad_norm": 0.03823630791937631,
|
| 469 |
+
"learning_rate": 0.00019437921551104933,
|
| 470 |
+
"loss": 2.0293,
|
| 471 |
+
"step": 650
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.6163903805743638,
|
| 475 |
+
"grad_norm": 0.03200103149471209,
|
| 476 |
+
"learning_rate": 0.00019412100973700038,
|
| 477 |
+
"loss": 2.017,
|
| 478 |
+
"step": 660
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.6257296287648845,
|
| 482 |
+
"grad_norm": 0.03841804153577787,
|
| 483 |
+
"learning_rate": 0.00019385718508739262,
|
| 484 |
+
"loss": 2.0135,
|
| 485 |
+
"step": 670
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.635068876955405,
|
| 489 |
+
"grad_norm": 0.03052396655271533,
|
| 490 |
+
"learning_rate": 0.0001935877573121407,
|
| 491 |
+
"loss": 2.0237,
|
| 492 |
+
"step": 680
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.6444081251459257,
|
| 496 |
+
"grad_norm": 0.033817837533771815,
|
| 497 |
+
"learning_rate": 0.00019331274249565717,
|
| 498 |
+
"loss": 2.0069,
|
| 499 |
+
"step": 690
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.6537473733364464,
|
| 503 |
+
"grad_norm": 0.028286999650643876,
|
| 504 |
+
"learning_rate": 0.00019303215705589194,
|
| 505 |
+
"loss": 2.0112,
|
| 506 |
+
"step": 700
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.6630866215269671,
|
| 510 |
+
"grad_norm": 0.030693948626257357,
|
| 511 |
+
"learning_rate": 0.00019274601774335243,
|
| 512 |
+
"loss": 2.0,
|
| 513 |
+
"step": 710
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.6724258697174877,
|
| 517 |
+
"grad_norm": 0.029984615635953022,
|
| 518 |
+
"learning_rate": 0.0001924543416401035,
|
| 519 |
+
"loss": 2.0028,
|
| 520 |
+
"step": 720
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.6817651179080084,
|
| 524 |
+
"grad_norm": 0.02915985673921391,
|
| 525 |
+
"learning_rate": 0.00019215714615874755,
|
| 526 |
+
"loss": 2.0031,
|
| 527 |
+
"step": 730
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.6911043660985291,
|
| 531 |
+
"grad_norm": 0.028305399777245336,
|
| 532 |
+
"learning_rate": 0.00019185444904138528,
|
| 533 |
+
"loss": 1.9924,
|
| 534 |
+
"step": 740
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.7004436142890498,
|
| 538 |
+
"grad_norm": 0.036720505429756495,
|
| 539 |
+
"learning_rate": 0.00019154626835855628,
|
| 540 |
+
"loss": 1.9981,
|
| 541 |
+
"step": 750
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.7097828624795703,
|
| 545 |
+
"grad_norm": 0.0287124048917296,
|
| 546 |
+
"learning_rate": 0.00019123262250816034,
|
| 547 |
+
"loss": 1.9868,
|
| 548 |
+
"step": 760
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.719122110670091,
|
| 552 |
+
"grad_norm": 0.03318092492837997,
|
| 553 |
+
"learning_rate": 0.00019091353021435915,
|
| 554 |
+
"loss": 1.9943,
|
| 555 |
+
"step": 770
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.7284613588606117,
|
| 559 |
+
"grad_norm": 0.054035272137015325,
|
| 560 |
+
"learning_rate": 0.00019058901052645844,
|
| 561 |
+
"loss": 1.9838,
|
| 562 |
+
"step": 780
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.7378006070511324,
|
| 566 |
+
"grad_norm": 0.03184392761983255,
|
| 567 |
+
"learning_rate": 0.00019025908281777078,
|
| 568 |
+
"loss": 1.982,
|
| 569 |
+
"step": 790
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.747139855241653,
|
| 573 |
+
"grad_norm": 0.029409948164434735,
|
| 574 |
+
"learning_rate": 0.00018992376678445908,
|
| 575 |
+
"loss": 1.9693,
|
| 576 |
+
"step": 800
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.7564791034321737,
|
| 580 |
+
"grad_norm": 0.029656963043919016,
|
| 581 |
+
"learning_rate": 0.00018958308244436064,
|
| 582 |
+
"loss": 1.9914,
|
| 583 |
+
"step": 810
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.7658183516226944,
|
| 587 |
+
"grad_norm": 0.030843610865326686,
|
| 588 |
+
"learning_rate": 0.00018923705013579233,
|
| 589 |
+
"loss": 1.9749,
|
| 590 |
+
"step": 820
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.7751575998132151,
|
| 594 |
+
"grad_norm": 0.0377584286045999,
|
| 595 |
+
"learning_rate": 0.00018888569051633613,
|
| 596 |
+
"loss": 1.9606,
|
| 597 |
+
"step": 830
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.7844968480037356,
|
| 601 |
+
"grad_norm": 0.03147699916274391,
|
| 602 |
+
"learning_rate": 0.00018852902456160616,
|
| 603 |
+
"loss": 1.9696,
|
| 604 |
+
"step": 840
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.7938360961942563,
|
| 608 |
+
"grad_norm": 0.029193153251471263,
|
| 609 |
+
"learning_rate": 0.0001881670735639963,
|
| 610 |
+
"loss": 1.9687,
|
| 611 |
+
"step": 850
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.803175344384777,
|
| 615 |
+
"grad_norm": 0.030201895228156087,
|
| 616 |
+
"learning_rate": 0.00018779985913140924,
|
| 617 |
+
"loss": 1.9678,
|
| 618 |
+
"step": 860
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.8125145925752977,
|
| 622 |
+
"grad_norm": 0.029272319485493213,
|
| 623 |
+
"learning_rate": 0.00018742740318596632,
|
| 624 |
+
"loss": 1.9697,
|
| 625 |
+
"step": 870
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.8218538407658184,
|
| 629 |
+
"grad_norm": 0.033740176465285654,
|
| 630 |
+
"learning_rate": 0.000187049727962699,
|
| 631 |
+
"loss": 1.9647,
|
| 632 |
+
"step": 880
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.831193088956339,
|
| 636 |
+
"grad_norm": 0.029539399251208593,
|
| 637 |
+
"learning_rate": 0.0001866668560082213,
|
| 638 |
+
"loss": 1.9627,
|
| 639 |
+
"step": 890
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.8405323371468597,
|
| 643 |
+
"grad_norm": 0.028666077337951026,
|
| 644 |
+
"learning_rate": 0.0001862788101793839,
|
| 645 |
+
"loss": 1.9529,
|
| 646 |
+
"step": 900
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.8498715853373804,
|
| 650 |
+
"grad_norm": 0.030280792492665805,
|
| 651 |
+
"learning_rate": 0.0001858856136419097,
|
| 652 |
+
"loss": 1.9536,
|
| 653 |
+
"step": 910
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.859210833527901,
|
| 657 |
+
"grad_norm": 0.03921536105057096,
|
| 658 |
+
"learning_rate": 0.0001854872898690106,
|
| 659 |
+
"loss": 1.9474,
|
| 660 |
+
"step": 920
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.8685500817184216,
|
| 664 |
+
"grad_norm": 0.030632523637038354,
|
| 665 |
+
"learning_rate": 0.0001850838626399865,
|
| 666 |
+
"loss": 1.9423,
|
| 667 |
+
"step": 930
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.8778893299089423,
|
| 671 |
+
"grad_norm": 0.04615147601979514,
|
| 672 |
+
"learning_rate": 0.00018467535603880548,
|
| 673 |
+
"loss": 1.946,
|
| 674 |
+
"step": 940
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.887228578099463,
|
| 678 |
+
"grad_norm": 0.028216236017006333,
|
| 679 |
+
"learning_rate": 0.00018426179445266616,
|
| 680 |
+
"loss": 1.9408,
|
| 681 |
+
"step": 950
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.8965678262899837,
|
| 685 |
+
"grad_norm": 0.0282407563402959,
|
| 686 |
+
"learning_rate": 0.00018384320257054177,
|
| 687 |
+
"loss": 1.9447,
|
| 688 |
+
"step": 960
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.9059070744805043,
|
| 692 |
+
"grad_norm": 0.029365880854687894,
|
| 693 |
+
"learning_rate": 0.0001834196053817062,
|
| 694 |
+
"loss": 1.9389,
|
| 695 |
+
"step": 970
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.915246322671025,
|
| 699 |
+
"grad_norm": 0.02855404439130719,
|
| 700 |
+
"learning_rate": 0.00018299102817424234,
|
| 701 |
+
"loss": 1.9425,
|
| 702 |
+
"step": 980
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.9245855708615457,
|
| 706 |
+
"grad_norm": 0.03238310984070135,
|
| 707 |
+
"learning_rate": 0.00018255749653353225,
|
| 708 |
+
"loss": 1.9392,
|
| 709 |
+
"step": 990
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.9339248190520663,
|
| 713 |
+
"grad_norm": 0.030115350805430388,
|
| 714 |
+
"learning_rate": 0.00018211903634072983,
|
| 715 |
+
"loss": 1.956,
|
| 716 |
+
"step": 1000
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.9432640672425869,
|
| 720 |
+
"grad_norm": 0.039090564032501135,
|
| 721 |
+
"learning_rate": 0.0001816756737712158,
|
| 722 |
+
"loss": 1.9358,
|
| 723 |
+
"step": 1010
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.9526033154331076,
|
| 727 |
+
"grad_norm": 0.028567954476327023,
|
| 728 |
+
"learning_rate": 0.000181227435293035,
|
| 729 |
+
"loss": 1.9342,
|
| 730 |
+
"step": 1020
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.9619425636236283,
|
| 734 |
+
"grad_norm": 0.028158653241284505,
|
| 735 |
+
"learning_rate": 0.00018077434766531624,
|
| 736 |
+
"loss": 1.9287,
|
| 737 |
+
"step": 1030
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.971281811814149,
|
| 741 |
+
"grad_norm": 0.02927795717651538,
|
| 742 |
+
"learning_rate": 0.00018031643793667504,
|
| 743 |
+
"loss": 1.9298,
|
| 744 |
+
"step": 1040
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.9806210600046696,
|
| 748 |
+
"grad_norm": 0.06298340584032344,
|
| 749 |
+
"learning_rate": 0.0001798537334435986,
|
| 750 |
+
"loss": 1.9303,
|
| 751 |
+
"step": 1050
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.9899603081951903,
|
| 755 |
+
"grad_norm": 0.03627278406983255,
|
| 756 |
+
"learning_rate": 0.00017938626180881407,
|
| 757 |
+
"loss": 1.9285,
|
| 758 |
+
"step": 1060
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.999299556385711,
|
| 762 |
+
"grad_norm": 0.03916823421329747,
|
| 763 |
+
"learning_rate": 0.00017891405093963938,
|
| 764 |
+
"loss": 1.9239,
|
| 765 |
+
"step": 1070
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 1.0087555451786132,
|
| 769 |
+
"grad_norm": 0.03383539251115568,
|
| 770 |
+
"learning_rate": 0.00017843712902631723,
|
| 771 |
+
"loss": 1.8855,
|
| 772 |
+
"step": 1080
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 1.0180947933691338,
|
| 776 |
+
"grad_norm": 0.02931021936560147,
|
| 777 |
+
"learning_rate": 0.00017795552454033224,
|
| 778 |
+
"loss": 1.8004,
|
| 779 |
+
"step": 1090
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 1.0274340415596543,
|
| 783 |
+
"grad_norm": 0.029173295095350292,
|
| 784 |
+
"learning_rate": 0.0001774692662327113,
|
| 785 |
+
"loss": 1.7912,
|
| 786 |
+
"step": 1100
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 1.0367732897501751,
|
| 790 |
+
"grad_norm": 0.035210065642974735,
|
| 791 |
+
"learning_rate": 0.000176978383132307,
|
| 792 |
+
"loss": 1.7902,
|
| 793 |
+
"step": 1110
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 1.0461125379406957,
|
| 797 |
+
"grad_norm": 0.029794447659573477,
|
| 798 |
+
"learning_rate": 0.00017648290454406475,
|
| 799 |
+
"loss": 1.8072,
|
| 800 |
+
"step": 1120
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 1.0554517861312165,
|
| 804 |
+
"grad_norm": 0.03194584938279939,
|
| 805 |
+
"learning_rate": 0.0001759828600472734,
|
| 806 |
+
"loss": 1.803,
|
| 807 |
+
"step": 1130
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 1.064791034321737,
|
| 811 |
+
"grad_norm": 0.031028415312581603,
|
| 812 |
+
"learning_rate": 0.00017547827949379924,
|
| 813 |
+
"loss": 1.7945,
|
| 814 |
+
"step": 1140
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 1.0741302825122578,
|
| 818 |
+
"grad_norm": 0.03313245828751237,
|
| 819 |
+
"learning_rate": 0.00017496919300630403,
|
| 820 |
+
"loss": 1.8139,
|
| 821 |
+
"step": 1150
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 1.0834695307027784,
|
| 825 |
+
"grad_norm": 0.03049431724979126,
|
| 826 |
+
"learning_rate": 0.00017445563097644664,
|
| 827 |
+
"loss": 1.8031,
|
| 828 |
+
"step": 1160
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 1.0928087788932992,
|
| 832 |
+
"grad_norm": 0.02880548705343715,
|
| 833 |
+
"learning_rate": 0.00017393762406306878,
|
| 834 |
+
"loss": 1.7974,
|
| 835 |
+
"step": 1170
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 1.1021480270838198,
|
| 839 |
+
"grad_norm": 0.03200427895977668,
|
| 840 |
+
"learning_rate": 0.00017341520319036469,
|
| 841 |
+
"loss": 1.7994,
|
| 842 |
+
"step": 1180
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 1.1114872752743403,
|
| 846 |
+
"grad_norm": 0.031293532815600045,
|
| 847 |
+
"learning_rate": 0.00017288839954603496,
|
| 848 |
+
"loss": 1.8073,
|
| 849 |
+
"step": 1190
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 1.1208265234648611,
|
| 853 |
+
"grad_norm": 0.032367211109345505,
|
| 854 |
+
"learning_rate": 0.00017235724457942468,
|
| 855 |
+
"loss": 1.7944,
|
| 856 |
+
"step": 1200
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 1.1301657716553817,
|
| 860 |
+
"grad_norm": 0.037783793923191374,
|
| 861 |
+
"learning_rate": 0.0001718217699996462,
|
| 862 |
+
"loss": 1.7948,
|
| 863 |
+
"step": 1210
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 1.1395050198459025,
|
| 867 |
+
"grad_norm": 0.02881083117349317,
|
| 868 |
+
"learning_rate": 0.00017128200777368567,
|
| 869 |
+
"loss": 1.8029,
|
| 870 |
+
"step": 1220
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 1.148844268036423,
|
| 874 |
+
"grad_norm": 0.032997408408175985,
|
| 875 |
+
"learning_rate": 0.00017073799012449524,
|
| 876 |
+
"loss": 1.7914,
|
| 877 |
+
"step": 1230
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 1.1581835162269438,
|
| 881 |
+
"grad_norm": 0.030263615801190885,
|
| 882 |
+
"learning_rate": 0.00017018974952906884,
|
| 883 |
+
"loss": 1.792,
|
| 884 |
+
"step": 1240
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 1.1675227644174644,
|
| 888 |
+
"grad_norm": 0.03286310429098484,
|
| 889 |
+
"learning_rate": 0.00016963731871650378,
|
| 890 |
+
"loss": 1.8149,
|
| 891 |
+
"step": 1250
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 1.1768620126079852,
|
| 895 |
+
"grad_norm": 0.031111621587597126,
|
| 896 |
+
"learning_rate": 0.00016908073066604663,
|
| 897 |
+
"loss": 1.8092,
|
| 898 |
+
"step": 1260
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 1.1862012607985057,
|
| 902 |
+
"grad_norm": 0.03372950172075241,
|
| 903 |
+
"learning_rate": 0.0001685200186051246,
|
| 904 |
+
"loss": 1.818,
|
| 905 |
+
"step": 1270
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 1.1955405089890263,
|
| 909 |
+
"grad_norm": 0.040782040436567434,
|
| 910 |
+
"learning_rate": 0.00016795521600736164,
|
| 911 |
+
"loss": 1.7999,
|
| 912 |
+
"step": 1280
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 1.204879757179547,
|
| 916 |
+
"grad_norm": 0.03451605168178924,
|
| 917 |
+
"learning_rate": 0.00016738635659058044,
|
| 918 |
+
"loss": 1.7945,
|
| 919 |
+
"step": 1290
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 1.2142190053700677,
|
| 923 |
+
"grad_norm": 0.03235681588882673,
|
| 924 |
+
"learning_rate": 0.00016681347431478933,
|
| 925 |
+
"loss": 1.8087,
|
| 926 |
+
"step": 1300
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 1.2235582535605884,
|
| 930 |
+
"grad_norm": 0.030750745605971932,
|
| 931 |
+
"learning_rate": 0.00016623660338015487,
|
| 932 |
+
"loss": 1.7995,
|
| 933 |
+
"step": 1310
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 1.232897501751109,
|
| 937 |
+
"grad_norm": 0.029444668665577274,
|
| 938 |
+
"learning_rate": 0.00016565577822496042,
|
| 939 |
+
"loss": 1.8025,
|
| 940 |
+
"step": 1320
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 1.2422367499416298,
|
| 944 |
+
"grad_norm": 0.038528856709584745,
|
| 945 |
+
"learning_rate": 0.00016507103352354996,
|
| 946 |
+
"loss": 1.7954,
|
| 947 |
+
"step": 1330
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 1.2515759981321504,
|
| 951 |
+
"grad_norm": 0.034217088004383035,
|
| 952 |
+
"learning_rate": 0.00016448240418425814,
|
| 953 |
+
"loss": 1.7962,
|
| 954 |
+
"step": 1340
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 1.260915246322671,
|
| 958 |
+
"grad_norm": 0.030205405393195585,
|
| 959 |
+
"learning_rate": 0.00016388992534732645,
|
| 960 |
+
"loss": 1.7973,
|
| 961 |
+
"step": 1350
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 1.2702544945131917,
|
| 965 |
+
"grad_norm": 0.029082218516562994,
|
| 966 |
+
"learning_rate": 0.00016329363238280528,
|
| 967 |
+
"loss": 1.796,
|
| 968 |
+
"step": 1360
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 1.2795937427037123,
|
| 972 |
+
"grad_norm": 0.029003887688766505,
|
| 973 |
+
"learning_rate": 0.00016269356088844238,
|
| 974 |
+
"loss": 1.7946,
|
| 975 |
+
"step": 1370
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 1.288932990894233,
|
| 979 |
+
"grad_norm": 0.03341157363649238,
|
| 980 |
+
"learning_rate": 0.00016208974668755779,
|
| 981 |
+
"loss": 1.7972,
|
| 982 |
+
"step": 1380
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 1.2982722390847536,
|
| 986 |
+
"grad_norm": 0.030614480844663026,
|
| 987 |
+
"learning_rate": 0.00016148222582690517,
|
| 988 |
+
"loss": 1.7973,
|
| 989 |
+
"step": 1390
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 1.3076114872752744,
|
| 993 |
+
"grad_norm": 0.029741346740467405,
|
| 994 |
+
"learning_rate": 0.00016087103457452,
|
| 995 |
+
"loss": 1.8076,
|
| 996 |
+
"step": 1400
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 1.316950735465795,
|
| 1000 |
+
"grad_norm": 0.029569313554185597,
|
| 1001 |
+
"learning_rate": 0.00016025620941755424,
|
| 1002 |
+
"loss": 1.8043,
|
| 1003 |
+
"step": 1410
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 1.3262899836563156,
|
| 1007 |
+
"grad_norm": 0.02947637404374054,
|
| 1008 |
+
"learning_rate": 0.0001596377870600983,
|
| 1009 |
+
"loss": 1.797,
|
| 1010 |
+
"step": 1420
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 1.3356292318468364,
|
| 1014 |
+
"grad_norm": 0.031005062093959545,
|
| 1015 |
+
"learning_rate": 0.00015901580442098968,
|
| 1016 |
+
"loss": 1.8086,
|
| 1017 |
+
"step": 1430
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 1.344968480037357,
|
| 1021 |
+
"grad_norm": 0.029493792984873927,
|
| 1022 |
+
"learning_rate": 0.00015839029863160922,
|
| 1023 |
+
"loss": 1.8026,
|
| 1024 |
+
"step": 1440
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 1.3543077282278777,
|
| 1028 |
+
"grad_norm": 0.0288068155951218,
|
| 1029 |
+
"learning_rate": 0.0001577613070336641,
|
| 1030 |
+
"loss": 1.7951,
|
| 1031 |
+
"step": 1450
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 1.3636469764183983,
|
| 1035 |
+
"grad_norm": 0.03380404824627639,
|
| 1036 |
+
"learning_rate": 0.00015712886717695885,
|
| 1037 |
+
"loss": 1.7938,
|
| 1038 |
+
"step": 1460
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 1.372986224608919,
|
| 1042 |
+
"grad_norm": 0.039744706189693335,
|
| 1043 |
+
"learning_rate": 0.0001564930168171536,
|
| 1044 |
+
"loss": 1.8016,
|
| 1045 |
+
"step": 1470
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 1.3823254727994396,
|
| 1049 |
+
"grad_norm": 0.030565530594285437,
|
| 1050 |
+
"learning_rate": 0.00015585379391351012,
|
| 1051 |
+
"loss": 1.7984,
|
| 1052 |
+
"step": 1480
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 1.3916647209899602,
|
| 1056 |
+
"grad_norm": 0.04009392805554255,
|
| 1057 |
+
"learning_rate": 0.00015521123662662567,
|
| 1058 |
+
"loss": 1.7999,
|
| 1059 |
+
"step": 1490
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 1.401003969180481,
|
| 1063 |
+
"grad_norm": 0.03516196009586836,
|
| 1064 |
+
"learning_rate": 0.000154565383316155,
|
| 1065 |
+
"loss": 1.7979,
|
| 1066 |
+
"step": 1500
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 1.4103432173710018,
|
| 1070 |
+
"grad_norm": 0.03534161399054556,
|
| 1071 |
+
"learning_rate": 0.0001539162725385202,
|
| 1072 |
+
"loss": 1.8057,
|
| 1073 |
+
"step": 1510
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 1.4196824655615223,
|
| 1077 |
+
"grad_norm": 0.028488879438601067,
|
| 1078 |
+
"learning_rate": 0.000153263943044609,
|
| 1079 |
+
"loss": 1.792,
|
| 1080 |
+
"step": 1520
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 1.429021713752043,
|
| 1084 |
+
"grad_norm": 0.03125154490954804,
|
| 1085 |
+
"learning_rate": 0.00015260843377746147,
|
| 1086 |
+
"loss": 1.8008,
|
| 1087 |
+
"step": 1530
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 1.4383609619425637,
|
| 1091 |
+
"grad_norm": 0.030194357488801882,
|
| 1092 |
+
"learning_rate": 0.00015194978386994507,
|
| 1093 |
+
"loss": 1.7948,
|
| 1094 |
+
"step": 1540
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 1.4477002101330843,
|
| 1098 |
+
"grad_norm": 0.03049246845786265,
|
| 1099 |
+
"learning_rate": 0.00015128803264241852,
|
| 1100 |
+
"loss": 1.7967,
|
| 1101 |
+
"step": 1550
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 1.4570394583236048,
|
| 1105 |
+
"grad_norm": 0.030497211097258083,
|
| 1106 |
+
"learning_rate": 0.0001506232196003844,
|
| 1107 |
+
"loss": 1.7894,
|
| 1108 |
+
"step": 1560
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 1.4663787065141256,
|
| 1112 |
+
"grad_norm": 0.028748806119737205,
|
| 1113 |
+
"learning_rate": 0.00014995538443213094,
|
| 1114 |
+
"loss": 1.806,
|
| 1115 |
+
"step": 1570
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 1.4757179547046464,
|
| 1119 |
+
"grad_norm": 0.036423750322912396,
|
| 1120 |
+
"learning_rate": 0.00014928456700636237,
|
| 1121 |
+
"loss": 1.7995,
|
| 1122 |
+
"step": 1580
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 1.485057202895167,
|
| 1126 |
+
"grad_norm": 0.039101516109204065,
|
| 1127 |
+
"learning_rate": 0.00014861080736981906,
|
| 1128 |
+
"loss": 1.8028,
|
| 1129 |
+
"step": 1590
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 1.4943964510856875,
|
| 1133 |
+
"grad_norm": 0.031368399541673815,
|
| 1134 |
+
"learning_rate": 0.00014793414574488663,
|
| 1135 |
+
"loss": 1.8005,
|
| 1136 |
+
"step": 1600
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 1.5037356992762083,
|
| 1140 |
+
"grad_norm": 0.029788484702512056,
|
| 1141 |
+
"learning_rate": 0.00014725462252719495,
|
| 1142 |
+
"loss": 1.7963,
|
| 1143 |
+
"step": 1610
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 1.5130749474667289,
|
| 1147 |
+
"grad_norm": 0.029719041811636312,
|
| 1148 |
+
"learning_rate": 0.00014657227828320635,
|
| 1149 |
+
"loss": 1.7957,
|
| 1150 |
+
"step": 1620
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 1.5224141956572494,
|
| 1154 |
+
"grad_norm": 0.02820041575417432,
|
| 1155 |
+
"learning_rate": 0.00014588715374779407,
|
| 1156 |
+
"loss": 1.7986,
|
| 1157 |
+
"step": 1630
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 1.5317534438477702,
|
| 1161 |
+
"grad_norm": 1.8322544897261024,
|
| 1162 |
+
"learning_rate": 0.0001451992898218102,
|
| 1163 |
+
"loss": 2.016,
|
| 1164 |
+
"step": 1640
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 1.541092692038291,
|
| 1168 |
+
"grad_norm": 0.8676995793107466,
|
| 1169 |
+
"learning_rate": 0.0001445087275696443,
|
| 1170 |
+
"loss": 2.1095,
|
| 1171 |
+
"step": 1650
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 1.5504319402288116,
|
| 1175 |
+
"grad_norm": 0.08688193434631736,
|
| 1176 |
+
"learning_rate": 0.00014381550821677155,
|
| 1177 |
+
"loss": 2.0497,
|
| 1178 |
+
"step": 1660
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 1.5597711884193322,
|
| 1182 |
+
"grad_norm": 0.18321381224589608,
|
| 1183 |
+
"learning_rate": 0.0001431196731472921,
|
| 1184 |
+
"loss": 1.9023,
|
| 1185 |
+
"step": 1670
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 1.569110436609853,
|
| 1189 |
+
"grad_norm": 0.058214343698110564,
|
| 1190 |
+
"learning_rate": 0.00014242126390145998,
|
| 1191 |
+
"loss": 1.8566,
|
| 1192 |
+
"step": 1680
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 1.5784496848003737,
|
| 1196 |
+
"grad_norm": 0.03965578147557666,
|
| 1197 |
+
"learning_rate": 0.0001417203221732036,
|
| 1198 |
+
"loss": 1.8206,
|
| 1199 |
+
"step": 1690
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 1.587788932990894,
|
| 1203 |
+
"grad_norm": 0.03131802880017099,
|
| 1204 |
+
"learning_rate": 0.00014101688980763658,
|
| 1205 |
+
"loss": 1.8272,
|
| 1206 |
+
"step": 1700
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 1.5971281811814149,
|
| 1210 |
+
"grad_norm": 0.02788722706683908,
|
| 1211 |
+
"learning_rate": 0.00014031100879855968,
|
| 1212 |
+
"loss": 1.8145,
|
| 1213 |
+
"step": 1710
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"epoch": 1.6064674293719357,
|
| 1217 |
+
"grad_norm": 0.02781057130092059,
|
| 1218 |
+
"learning_rate": 0.00013960272128595372,
|
| 1219 |
+
"loss": 1.8122,
|
| 1220 |
+
"step": 1720
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 1.6158066775624562,
|
| 1224 |
+
"grad_norm": 0.032067383734154756,
|
| 1225 |
+
"learning_rate": 0.00013889206955346403,
|
| 1226 |
+
"loss": 1.8064,
|
| 1227 |
+
"step": 1730
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 1.6251459257529768,
|
| 1231 |
+
"grad_norm": 0.03448807133884858,
|
| 1232 |
+
"learning_rate": 0.00013817909602587613,
|
| 1233 |
+
"loss": 1.8128,
|
| 1234 |
+
"step": 1740
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 1.6344851739434976,
|
| 1238 |
+
"grad_norm": 0.04127395288271696,
|
| 1239 |
+
"learning_rate": 0.00013746384326658305,
|
| 1240 |
+
"loss": 1.8041,
|
| 1241 |
+
"step": 1750
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 1.6438244221340184,
|
| 1245 |
+
"grad_norm": 0.030243192787820814,
|
| 1246 |
+
"learning_rate": 0.00013674635397504427,
|
| 1247 |
+
"loss": 1.803,
|
| 1248 |
+
"step": 1760
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 1.653163670324539,
|
| 1252 |
+
"grad_norm": 0.032183525625428915,
|
| 1253 |
+
"learning_rate": 0.00013602667098423687,
|
| 1254 |
+
"loss": 1.8092,
|
| 1255 |
+
"step": 1770
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"epoch": 1.6625029185150595,
|
| 1259 |
+
"grad_norm": 0.030391044676815377,
|
| 1260 |
+
"learning_rate": 0.00013530483725809818,
|
| 1261 |
+
"loss": 1.8039,
|
| 1262 |
+
"step": 1780
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 1.6718421667055803,
|
| 1266 |
+
"grad_norm": 0.03204756818238517,
|
| 1267 |
+
"learning_rate": 0.000134580895888961,
|
| 1268 |
+
"loss": 1.8017,
|
| 1269 |
+
"step": 1790
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 1.6811814148961008,
|
| 1273 |
+
"grad_norm": 0.031117112662107062,
|
| 1274 |
+
"learning_rate": 0.00013385489009498124,
|
| 1275 |
+
"loss": 1.8017,
|
| 1276 |
+
"step": 1800
|
| 1277 |
+
},
|
| 1278 |
+
{
|
| 1279 |
+
"epoch": 1.6905206630866214,
|
| 1280 |
+
"grad_norm": 0.028389293445401805,
|
| 1281 |
+
"learning_rate": 0.00013312686321755761,
|
| 1282 |
+
"loss": 1.811,
|
| 1283 |
+
"step": 1810
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 1.6998599112771422,
|
| 1287 |
+
"grad_norm": 4.908185097372493,
|
| 1288 |
+
"learning_rate": 0.0001323968587187443,
|
| 1289 |
+
"loss": 2.194,
|
| 1290 |
+
"step": 1820
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 1.709199159467663,
|
| 1294 |
+
"grad_norm": 0.2849452041194025,
|
| 1295 |
+
"learning_rate": 0.00013166492017865637,
|
| 1296 |
+
"loss": 2.0785,
|
| 1297 |
+
"step": 1830
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"epoch": 1.7185384076581836,
|
| 1301 |
+
"grad_norm": 0.10989252058989733,
|
| 1302 |
+
"learning_rate": 0.0001309310912928682,
|
| 1303 |
+
"loss": 1.986,
|
| 1304 |
+
"step": 1840
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 1.7278776558487041,
|
| 1308 |
+
"grad_norm": 0.057475612656740484,
|
| 1309 |
+
"learning_rate": 0.00013019541586980463,
|
| 1310 |
+
"loss": 1.8614,
|
| 1311 |
+
"step": 1850
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 1.737216904039225,
|
| 1315 |
+
"grad_norm": 0.034908181734207726,
|
| 1316 |
+
"learning_rate": 0.000129457937828126,
|
| 1317 |
+
"loss": 1.8326,
|
| 1318 |
+
"step": 1860
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"epoch": 1.7465561522297455,
|
| 1322 |
+
"grad_norm": 0.02892836681897248,
|
| 1323 |
+
"learning_rate": 0.00012871870119410614,
|
| 1324 |
+
"loss": 1.8243,
|
| 1325 |
+
"step": 1870
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 1.755895400420266,
|
| 1329 |
+
"grad_norm": 0.03311636981729384,
|
| 1330 |
+
"learning_rate": 0.00012797775009900397,
|
| 1331 |
+
"loss": 1.8183,
|
| 1332 |
+
"step": 1880
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 1.7652346486107868,
|
| 1336 |
+
"grad_norm": 0.03151917952358458,
|
| 1337 |
+
"learning_rate": 0.00012723512877642904,
|
| 1338 |
+
"loss": 1.8034,
|
| 1339 |
+
"step": 1890
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"epoch": 1.7745738968013076,
|
| 1343 |
+
"grad_norm": 0.028109921832296925,
|
| 1344 |
+
"learning_rate": 0.000126490881559701,
|
| 1345 |
+
"loss": 1.8129,
|
| 1346 |
+
"step": 1900
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 1.7839131449918282,
|
| 1350 |
+
"grad_norm": 0.030350462454962698,
|
| 1351 |
+
"learning_rate": 0.00012574505287920259,
|
| 1352 |
+
"loss": 1.8003,
|
| 1353 |
+
"step": 1910
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 1.7932523931823487,
|
| 1357 |
+
"grad_norm": 0.03131380630103849,
|
| 1358 |
+
"learning_rate": 0.00012499768725972754,
|
| 1359 |
+
"loss": 1.814,
|
| 1360 |
+
"step": 1920
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 1.8025916413728695,
|
| 1364 |
+
"grad_norm": 0.029450198273050322,
|
| 1365 |
+
"learning_rate": 0.00012424882931782243,
|
| 1366 |
+
"loss": 1.7998,
|
| 1367 |
+
"step": 1930
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 1.81193088956339,
|
| 1371 |
+
"grad_norm": 0.0310524261453681,
|
| 1372 |
+
"learning_rate": 0.0001234985237591231,
|
| 1373 |
+
"loss": 1.8078,
|
| 1374 |
+
"step": 1940
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 1.8212701377539107,
|
| 1378 |
+
"grad_norm": 0.029362038478982822,
|
| 1379 |
+
"learning_rate": 0.00012274681537568585,
|
| 1380 |
+
"loss": 1.8014,
|
| 1381 |
+
"step": 1950
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 1.8306093859444315,
|
| 1385 |
+
"grad_norm": 0.027166816460226118,
|
| 1386 |
+
"learning_rate": 0.00012199374904331337,
|
| 1387 |
+
"loss": 1.8021,
|
| 1388 |
+
"step": 1960
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 1.8399486341349522,
|
| 1392 |
+
"grad_norm": 0.03680509283276228,
|
| 1393 |
+
"learning_rate": 0.00012123936971887578,
|
| 1394 |
+
"loss": 1.7973,
|
| 1395 |
+
"step": 1970
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 1.8492878823254728,
|
| 1399 |
+
"grad_norm": 0.03135174840346185,
|
| 1400 |
+
"learning_rate": 0.0001204837224376267,
|
| 1401 |
+
"loss": 1.7874,
|
| 1402 |
+
"step": 1980
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 1.8586271305159934,
|
| 1406 |
+
"grad_norm": 0.02644533256389969,
|
| 1407 |
+
"learning_rate": 0.0001197268523105148,
|
| 1408 |
+
"loss": 1.798,
|
| 1409 |
+
"step": 1990
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"epoch": 1.8679663787065142,
|
| 1413 |
+
"grad_norm": 0.02999453651649614,
|
| 1414 |
+
"learning_rate": 0.00011896880452149077,
|
| 1415 |
+
"loss": 1.7957,
|
| 1416 |
+
"step": 2000
|
| 1417 |
+
},
|
| 1418 |
+
{
|
| 1419 |
+
"epoch": 1.877305626897035,
|
| 1420 |
+
"grad_norm": 0.026905209700322272,
|
| 1421 |
+
"learning_rate": 0.00011820962432480985,
|
| 1422 |
+
"loss": 1.793,
|
| 1423 |
+
"step": 2010
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"epoch": 1.8866448750875553,
|
| 1427 |
+
"grad_norm": 0.027263640323285022,
|
| 1428 |
+
"learning_rate": 0.00011744935704233005,
|
| 1429 |
+
"loss": 1.7974,
|
| 1430 |
+
"step": 2020
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 1.895984123278076,
|
| 1434 |
+
"grad_norm": 0.030479226063932337,
|
| 1435 |
+
"learning_rate": 0.00011668804806080693,
|
| 1436 |
+
"loss": 1.7898,
|
| 1437 |
+
"step": 2030
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 1.9053233714685969,
|
| 1441 |
+
"grad_norm": 0.030129902025534238,
|
| 1442 |
+
"learning_rate": 0.00011592574282918369,
|
| 1443 |
+
"loss": 1.7856,
|
| 1444 |
+
"step": 2040
|
| 1445 |
+
},
|
| 1446 |
+
{
|
| 1447 |
+
"epoch": 1.9146626196591174,
|
| 1448 |
+
"grad_norm": 0.027884976674153635,
|
| 1449 |
+
"learning_rate": 0.00011516248685587814,
|
| 1450 |
+
"loss": 1.7858,
|
| 1451 |
+
"step": 2050
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"epoch": 1.924001867849638,
|
| 1455 |
+
"grad_norm": 0.02925266011156687,
|
| 1456 |
+
"learning_rate": 0.00011439832570606586,
|
| 1457 |
+
"loss": 1.7876,
|
| 1458 |
+
"step": 2060
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 1.9333411160401588,
|
| 1462 |
+
"grad_norm": 0.028472914828616754,
|
| 1463 |
+
"learning_rate": 0.00011363330499895997,
|
| 1464 |
+
"loss": 1.7834,
|
| 1465 |
+
"step": 2070
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"epoch": 1.9426803642306796,
|
| 1469 |
+
"grad_norm": 0.025877740032137875,
|
| 1470 |
+
"learning_rate": 0.00011286747040508789,
|
| 1471 |
+
"loss": 1.7955,
|
| 1472 |
+
"step": 2080
|
| 1473 |
+
},
|
| 1474 |
+
{
|
| 1475 |
+
"epoch": 1.9520196124212001,
|
| 1476 |
+
"grad_norm": 0.02605295620697312,
|
| 1477 |
+
"learning_rate": 0.0001121008676435648,
|
| 1478 |
+
"loss": 1.7877,
|
| 1479 |
+
"step": 2090
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 1.9613588606117207,
|
| 1483 |
+
"grad_norm": 0.026887649929567867,
|
| 1484 |
+
"learning_rate": 0.00011133354247936423,
|
| 1485 |
+
"loss": 1.773,
|
| 1486 |
+
"step": 2100
|
| 1487 |
+
},
|
| 1488 |
+
{
|
| 1489 |
+
"epoch": 1.9706981088022415,
|
| 1490 |
+
"grad_norm": 0.027982045915154026,
|
| 1491 |
+
"learning_rate": 0.00011056554072058596,
|
| 1492 |
+
"loss": 1.7762,
|
| 1493 |
+
"step": 2110
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"epoch": 1.980037356992762,
|
| 1497 |
+
"grad_norm": 0.028077027059053006,
|
| 1498 |
+
"learning_rate": 0.0001097969082157215,
|
| 1499 |
+
"loss": 1.7963,
|
| 1500 |
+
"step": 2120
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 1.9893766051832826,
|
| 1504 |
+
"grad_norm": 0.027877078975954036,
|
| 1505 |
+
"learning_rate": 0.00010902769085091686,
|
| 1506 |
+
"loss": 1.7787,
|
| 1507 |
+
"step": 2130
|
| 1508 |
+
},
|
| 1509 |
+
{
|
| 1510 |
+
"epoch": 1.9987158533738034,
|
| 1511 |
+
"grad_norm": 0.026120077388738373,
|
| 1512 |
+
"learning_rate": 0.00010825793454723325,
|
| 1513 |
+
"loss": 1.7842,
|
| 1514 |
+
"step": 2140
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 2.0081718421667056,
|
| 1518 |
+
"grad_norm": 0.044810283079268924,
|
| 1519 |
+
"learning_rate": 0.00010748768525790569,
|
| 1520 |
+
"loss": 1.6591,
|
| 1521 |
+
"step": 2150
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 2.0175110903572264,
|
| 1525 |
+
"grad_norm": 0.03431848280739808,
|
| 1526 |
+
"learning_rate": 0.00010671698896559968,
|
| 1527 |
+
"loss": 1.5599,
|
| 1528 |
+
"step": 2160
|
| 1529 |
+
},
|
| 1530 |
+
{
|
| 1531 |
+
"epoch": 2.0268503385477468,
|
| 1532 |
+
"grad_norm": 0.04234332973849956,
|
| 1533 |
+
"learning_rate": 0.00010594589167966606,
|
| 1534 |
+
"loss": 1.5494,
|
| 1535 |
+
"step": 2170
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"epoch": 2.0361895867382676,
|
| 1539 |
+
"grad_norm": 0.03260321438171042,
|
| 1540 |
+
"learning_rate": 0.00010517443943339438,
|
| 1541 |
+
"loss": 1.5473,
|
| 1542 |
+
"step": 2180
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 2.0455288349287883,
|
| 1546 |
+
"grad_norm": 0.034116901745609114,
|
| 1547 |
+
"learning_rate": 0.00010440267828126478,
|
| 1548 |
+
"loss": 1.5464,
|
| 1549 |
+
"step": 2190
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"epoch": 2.0548680831193087,
|
| 1553 |
+
"grad_norm": 0.030992757239375807,
|
| 1554 |
+
"learning_rate": 0.00010363065429619858,
|
| 1555 |
+
"loss": 1.5514,
|
| 1556 |
+
"step": 2200
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 2.0642073313098295,
|
| 1560 |
+
"grad_norm": 0.03365516197786113,
|
| 1561 |
+
"learning_rate": 0.0001028584135668077,
|
| 1562 |
+
"loss": 1.5493,
|
| 1563 |
+
"step": 2210
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 2.0735465795003503,
|
| 1567 |
+
"grad_norm": 0.033293307482261586,
|
| 1568 |
+
"learning_rate": 0.00010208600219464355,
|
| 1569 |
+
"loss": 1.5426,
|
| 1570 |
+
"step": 2220
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 2.082885827690871,
|
| 1574 |
+
"grad_norm": 0.03653097737467338,
|
| 1575 |
+
"learning_rate": 0.00010131346629144451,
|
| 1576 |
+
"loss": 1.5471,
|
| 1577 |
+
"step": 2230
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 2.0922250758813914,
|
| 1581 |
+
"grad_norm": 0.03390291511697895,
|
| 1582 |
+
"learning_rate": 0.0001005408519763833,
|
| 1583 |
+
"loss": 1.5568,
|
| 1584 |
+
"step": 2240
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 2.101564324071912,
|
| 1588 |
+
"grad_norm": 0.03192694661852283,
|
| 1589 |
+
"learning_rate": 9.976820537331374e-05,
|
| 1590 |
+
"loss": 1.5452,
|
| 1591 |
+
"step": 2250
|
| 1592 |
+
},
|
| 1593 |
+
{
|
| 1594 |
+
"epoch": 2.110903572262433,
|
| 1595 |
+
"grad_norm": 0.03561740193515691,
|
| 1596 |
+
"learning_rate": 9.899557260801707e-05,
|
| 1597 |
+
"loss": 1.546,
|
| 1598 |
+
"step": 2260
|
| 1599 |
+
},
|
| 1600 |
+
{
|
| 1601 |
+
"epoch": 2.1202428204529538,
|
| 1602 |
+
"grad_norm": 0.029803732953068658,
|
| 1603 |
+
"learning_rate": 9.822299980544862e-05,
|
| 1604 |
+
"loss": 1.5533,
|
| 1605 |
+
"step": 2270
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 2.129582068643474,
|
| 1609 |
+
"grad_norm": 0.031232417271289125,
|
| 1610 |
+
"learning_rate": 9.745053308698392e-05,
|
| 1611 |
+
"loss": 1.5469,
|
| 1612 |
+
"step": 2280
|
| 1613 |
+
},
|
| 1614 |
+
{
|
| 1615 |
+
"epoch": 2.138921316833995,
|
| 1616 |
+
"grad_norm": 0.032434793780181034,
|
| 1617 |
+
"learning_rate": 9.667821856766548e-05,
|
| 1618 |
+
"loss": 1.5514,
|
| 1619 |
+
"step": 2290
|
| 1620 |
+
},
|
| 1621 |
+
{
|
| 1622 |
+
"epoch": 2.1482605650245157,
|
| 1623 |
+
"grad_norm": 0.03579370906405582,
|
| 1624 |
+
"learning_rate": 9.590610235344972e-05,
|
| 1625 |
+
"loss": 1.5577,
|
| 1626 |
+
"step": 2300
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"epoch": 2.157599813215036,
|
| 1630 |
+
"grad_norm": 0.029662202478648328,
|
| 1631 |
+
"learning_rate": 9.51342305384546e-05,
|
| 1632 |
+
"loss": 1.5543,
|
| 1633 |
+
"step": 2310
|
| 1634 |
+
},
|
| 1635 |
+
{
|
| 1636 |
+
"epoch": 2.166939061405557,
|
| 1637 |
+
"grad_norm": 0.03178715913934592,
|
| 1638 |
+
"learning_rate": 9.436264920220781e-05,
|
| 1639 |
+
"loss": 1.5579,
|
| 1640 |
+
"step": 2320
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 2.1762783095960776,
|
| 1644 |
+
"grad_norm": 0.03384008887051677,
|
| 1645 |
+
"learning_rate": 9.359140440689601e-05,
|
| 1646 |
+
"loss": 1.5595,
|
| 1647 |
+
"step": 2330
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 2.1856175577865984,
|
| 1651 |
+
"grad_norm": 0.03316450664408166,
|
| 1652 |
+
"learning_rate": 9.282054219461475e-05,
|
| 1653 |
+
"loss": 1.5556,
|
| 1654 |
+
"step": 2340
|
| 1655 |
+
},
|
| 1656 |
+
{
|
| 1657 |
+
"epoch": 2.1949568059771187,
|
| 1658 |
+
"grad_norm": 0.032176305552558876,
|
| 1659 |
+
"learning_rate": 9.205010858462007e-05,
|
| 1660 |
+
"loss": 1.5638,
|
| 1661 |
+
"step": 2350
|
| 1662 |
+
},
|
| 1663 |
+
{
|
| 1664 |
+
"epoch": 2.2042960541676395,
|
| 1665 |
+
"grad_norm": 0.031134335256756362,
|
| 1666 |
+
"learning_rate": 9.128014957058109e-05,
|
| 1667 |
+
"loss": 1.5629,
|
| 1668 |
+
"step": 2360
|
| 1669 |
+
},
|
| 1670 |
+
{
|
| 1671 |
+
"epoch": 2.2136353023581603,
|
| 1672 |
+
"grad_norm": 0.032205851810441756,
|
| 1673 |
+
"learning_rate": 9.051071111783436e-05,
|
| 1674 |
+
"loss": 1.5613,
|
| 1675 |
+
"step": 2370
|
| 1676 |
+
},
|
| 1677 |
+
{
|
| 1678 |
+
"epoch": 2.2229745505486807,
|
| 1679 |
+
"grad_norm": 0.029048245476020442,
|
| 1680 |
+
"learning_rate": 8.974183916063968e-05,
|
| 1681 |
+
"loss": 1.5594,
|
| 1682 |
+
"step": 2380
|
| 1683 |
+
},
|
| 1684 |
+
{
|
| 1685 |
+
"epoch": 2.2323137987392014,
|
| 1686 |
+
"grad_norm": 0.03183166054573621,
|
| 1687 |
+
"learning_rate": 8.897357959943795e-05,
|
| 1688 |
+
"loss": 1.5606,
|
| 1689 |
+
"step": 2390
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 2.2416530469297222,
|
| 1693 |
+
"grad_norm": 0.032309922117136916,
|
| 1694 |
+
"learning_rate": 8.820597829811109e-05,
|
| 1695 |
+
"loss": 1.5524,
|
| 1696 |
+
"step": 2400
|
| 1697 |
+
},
|
| 1698 |
+
{
|
| 1699 |
+
"epoch": 2.250992295120243,
|
| 1700 |
+
"grad_norm": 0.03598922231958808,
|
| 1701 |
+
"learning_rate": 8.743908108124388e-05,
|
| 1702 |
+
"loss": 1.5604,
|
| 1703 |
+
"step": 2410
|
| 1704 |
+
},
|
| 1705 |
+
{
|
| 1706 |
+
"epoch": 2.2603315433107634,
|
| 1707 |
+
"grad_norm": 0.03046424735786346,
|
| 1708 |
+
"learning_rate": 8.667293373138835e-05,
|
| 1709 |
+
"loss": 1.5598,
|
| 1710 |
+
"step": 2420
|
| 1711 |
+
},
|
| 1712 |
+
{
|
| 1713 |
+
"epoch": 2.269670791501284,
|
| 1714 |
+
"grad_norm": 0.030995453538377543,
|
| 1715 |
+
"learning_rate": 8.59075819863307e-05,
|
| 1716 |
+
"loss": 1.5652,
|
| 1717 |
+
"step": 2430
|
| 1718 |
+
},
|
| 1719 |
+
{
|
| 1720 |
+
"epoch": 2.279010039691805,
|
| 1721 |
+
"grad_norm": 0.029309020623010097,
|
| 1722 |
+
"learning_rate": 8.514307153636077e-05,
|
| 1723 |
+
"loss": 1.5651,
|
| 1724 |
+
"step": 2440
|
| 1725 |
+
},
|
| 1726 |
+
{
|
| 1727 |
+
"epoch": 2.2883492878823253,
|
| 1728 |
+
"grad_norm": 0.03158721106736763,
|
| 1729 |
+
"learning_rate": 8.437944802154434e-05,
|
| 1730 |
+
"loss": 1.5581,
|
| 1731 |
+
"step": 2450
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"epoch": 2.297688536072846,
|
| 1735 |
+
"grad_norm": 0.03168229084049938,
|
| 1736 |
+
"learning_rate": 8.361675702899871e-05,
|
| 1737 |
+
"loss": 1.5671,
|
| 1738 |
+
"step": 2460
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"epoch": 2.307027784263367,
|
| 1742 |
+
"grad_norm": 0.031335222148495136,
|
| 1743 |
+
"learning_rate": 8.2855044090171e-05,
|
| 1744 |
+
"loss": 1.5675,
|
| 1745 |
+
"step": 2470
|
| 1746 |
+
},
|
| 1747 |
+
{
|
| 1748 |
+
"epoch": 2.3163670324538876,
|
| 1749 |
+
"grad_norm": 0.031073847325941303,
|
| 1750 |
+
"learning_rate": 8.209435467811998e-05,
|
| 1751 |
+
"loss": 1.5624,
|
| 1752 |
+
"step": 2480
|
| 1753 |
+
},
|
| 1754 |
+
{
|
| 1755 |
+
"epoch": 2.325706280644408,
|
| 1756 |
+
"grad_norm": 0.030099100631045844,
|
| 1757 |
+
"learning_rate": 8.133473420480161e-05,
|
| 1758 |
+
"loss": 1.5606,
|
| 1759 |
+
"step": 2490
|
| 1760 |
+
},
|
| 1761 |
+
{
|
| 1762 |
+
"epoch": 2.3350455288349288,
|
| 1763 |
+
"grad_norm": 0.034147632950361176,
|
| 1764 |
+
"learning_rate": 8.057622801835788e-05,
|
| 1765 |
+
"loss": 1.5703,
|
| 1766 |
+
"step": 2500
|
| 1767 |
+
},
|
| 1768 |
+
{
|
| 1769 |
+
"epoch": 2.3443847770254496,
|
| 1770 |
+
"grad_norm": 0.03051580784550685,
|
| 1771 |
+
"learning_rate": 7.981888140040955e-05,
|
| 1772 |
+
"loss": 1.5731,
|
| 1773 |
+
"step": 2510
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"epoch": 2.3537240252159704,
|
| 1777 |
+
"grad_norm": 0.03068917065832597,
|
| 1778 |
+
"learning_rate": 7.9062739563353e-05,
|
| 1779 |
+
"loss": 1.5723,
|
| 1780 |
+
"step": 2520
|
| 1781 |
+
},
|
| 1782 |
+
{
|
| 1783 |
+
"epoch": 2.3630632734064907,
|
| 1784 |
+
"grad_norm": 0.02899547641705554,
|
| 1785 |
+
"learning_rate": 7.830784764766118e-05,
|
| 1786 |
+
"loss": 1.5691,
|
| 1787 |
+
"step": 2530
|
| 1788 |
+
},
|
| 1789 |
+
{
|
| 1790 |
+
"epoch": 2.3724025215970115,
|
| 1791 |
+
"grad_norm": 0.030965383166701443,
|
| 1792 |
+
"learning_rate": 7.755425071918858e-05,
|
| 1793 |
+
"loss": 1.5627,
|
| 1794 |
+
"step": 2540
|
| 1795 |
+
},
|
| 1796 |
+
{
|
| 1797 |
+
"epoch": 2.3817417697875323,
|
| 1798 |
+
"grad_norm": 0.03252440018336625,
|
| 1799 |
+
"learning_rate": 7.680199376648108e-05,
|
| 1800 |
+
"loss": 1.5536,
|
| 1801 |
+
"step": 2550
|
| 1802 |
+
},
|
| 1803 |
+
{
|
| 1804 |
+
"epoch": 2.3910810179780526,
|
| 1805 |
+
"grad_norm": 0.031720485449340044,
|
| 1806 |
+
"learning_rate": 7.605112169809008e-05,
|
| 1807 |
+
"loss": 1.5617,
|
| 1808 |
+
"step": 2560
|
| 1809 |
+
},
|
| 1810 |
+
{
|
| 1811 |
+
"epoch": 2.4004202661685734,
|
| 1812 |
+
"grad_norm": 0.031796658969132544,
|
| 1813 |
+
"learning_rate": 7.530167933989161e-05,
|
| 1814 |
+
"loss": 1.5595,
|
| 1815 |
+
"step": 2570
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"epoch": 2.409759514359094,
|
| 1819 |
+
"grad_norm": 0.03218288097429844,
|
| 1820 |
+
"learning_rate": 7.45537114324102e-05,
|
| 1821 |
+
"loss": 1.5628,
|
| 1822 |
+
"step": 2580
|
| 1823 |
+
},
|
| 1824 |
+
{
|
| 1825 |
+
"epoch": 2.4190987625496145,
|
| 1826 |
+
"grad_norm": 0.0305713183075559,
|
| 1827 |
+
"learning_rate": 7.380726262814814e-05,
|
| 1828 |
+
"loss": 1.5717,
|
| 1829 |
+
"step": 2590
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"epoch": 2.4284380107401353,
|
| 1833 |
+
"grad_norm": 0.06879342166341705,
|
| 1834 |
+
"learning_rate": 7.30623774889195e-05,
|
| 1835 |
+
"loss": 1.5726,
|
| 1836 |
+
"step": 2600
|
| 1837 |
+
},
|
| 1838 |
+
{
|
| 1839 |
+
"epoch": 2.437777258930656,
|
| 1840 |
+
"grad_norm": 0.04101428600237338,
|
| 1841 |
+
"learning_rate": 7.231910048319011e-05,
|
| 1842 |
+
"loss": 1.5679,
|
| 1843 |
+
"step": 2610
|
| 1844 |
+
},
|
| 1845 |
+
{
|
| 1846 |
+
"epoch": 2.447116507121177,
|
| 1847 |
+
"grad_norm": 0.031060002638443395,
|
| 1848 |
+
"learning_rate": 7.157747598342274e-05,
|
| 1849 |
+
"loss": 1.562,
|
| 1850 |
+
"step": 2620
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 2.4564557553116972,
|
| 1854 |
+
"grad_norm": 0.032302829437386466,
|
| 1855 |
+
"learning_rate": 7.083754826342816e-05,
|
| 1856 |
+
"loss": 1.5767,
|
| 1857 |
+
"step": 2630
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"epoch": 2.465795003502218,
|
| 1861 |
+
"grad_norm": 0.03111462744196413,
|
| 1862 |
+
"learning_rate": 7.009936149572205e-05,
|
| 1863 |
+
"loss": 1.5672,
|
| 1864 |
+
"step": 2640
|
| 1865 |
+
},
|
| 1866 |
+
{
|
| 1867 |
+
"epoch": 2.475134251692739,
|
| 1868 |
+
"grad_norm": 0.031134083521743777,
|
| 1869 |
+
"learning_rate": 6.936295974888807e-05,
|
| 1870 |
+
"loss": 1.5665,
|
| 1871 |
+
"step": 2650
|
| 1872 |
+
},
|
| 1873 |
+
{
|
| 1874 |
+
"epoch": 2.4844734998832596,
|
| 1875 |
+
"grad_norm": 0.030961556373721985,
|
| 1876 |
+
"learning_rate": 6.862838698494693e-05,
|
| 1877 |
+
"loss": 1.5608,
|
| 1878 |
+
"step": 2660
|
| 1879 |
+
},
|
| 1880 |
+
{
|
| 1881 |
+
"epoch": 2.49381274807378,
|
| 1882 |
+
"grad_norm": 0.03168121700432082,
|
| 1883 |
+
"learning_rate": 6.789568705673183e-05,
|
| 1884 |
+
"loss": 1.566,
|
| 1885 |
+
"step": 2670
|
| 1886 |
+
},
|
| 1887 |
+
{
|
| 1888 |
+
"epoch": 2.5031519962643007,
|
| 1889 |
+
"grad_norm": 0.030850372541726772,
|
| 1890 |
+
"learning_rate": 6.716490370527081e-05,
|
| 1891 |
+
"loss": 1.5651,
|
| 1892 |
+
"step": 2680
|
| 1893 |
+
},
|
| 1894 |
+
{
|
| 1895 |
+
"epoch": 2.5124912444548215,
|
| 1896 |
+
"grad_norm": 0.03076635908430861,
|
| 1897 |
+
"learning_rate": 6.643608055717519e-05,
|
| 1898 |
+
"loss": 1.5596,
|
| 1899 |
+
"step": 2690
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"epoch": 2.521830492645342,
|
| 1903 |
+
"grad_norm": 0.031897253741779714,
|
| 1904 |
+
"learning_rate": 6.570926112203528e-05,
|
| 1905 |
+
"loss": 1.5716,
|
| 1906 |
+
"step": 2700
|
| 1907 |
+
},
|
| 1908 |
+
{
|
| 1909 |
+
"epoch": 2.5311697408358627,
|
| 1910 |
+
"grad_norm": 0.03085546721246857,
|
| 1911 |
+
"learning_rate": 6.498448878982291e-05,
|
| 1912 |
+
"loss": 1.5647,
|
| 1913 |
+
"step": 2710
|
| 1914 |
+
},
|
| 1915 |
+
{
|
| 1916 |
+
"epoch": 2.5405089890263834,
|
| 1917 |
+
"grad_norm": 0.03127518794548787,
|
| 1918 |
+
"learning_rate": 6.426180682830107e-05,
|
| 1919 |
+
"loss": 1.5573,
|
| 1920 |
+
"step": 2720
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"epoch": 2.549848237216904,
|
| 1924 |
+
"grad_norm": 0.03196649247686066,
|
| 1925 |
+
"learning_rate": 6.354125838044098e-05,
|
| 1926 |
+
"loss": 1.5597,
|
| 1927 |
+
"step": 2730
|
| 1928 |
+
},
|
| 1929 |
+
{
|
| 1930 |
+
"epoch": 2.5591874854074246,
|
| 1931 |
+
"grad_norm": 0.030359755432035333,
|
| 1932 |
+
"learning_rate": 6.282288646184638e-05,
|
| 1933 |
+
"loss": 1.5625,
|
| 1934 |
+
"step": 2740
|
| 1935 |
+
},
|
| 1936 |
+
{
|
| 1937 |
+
"epoch": 2.5685267335979454,
|
| 1938 |
+
"grad_norm": 0.03030640438940187,
|
| 1939 |
+
"learning_rate": 6.210673395818571e-05,
|
| 1940 |
+
"loss": 1.5717,
|
| 1941 |
+
"step": 2750
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"epoch": 2.577865981788466,
|
| 1945 |
+
"grad_norm": 0.032197470232298186,
|
| 1946 |
+
"learning_rate": 6.139284362263185e-05,
|
| 1947 |
+
"loss": 1.5663,
|
| 1948 |
+
"step": 2760
|
| 1949 |
+
},
|
| 1950 |
+
{
|
| 1951 |
+
"epoch": 2.587205229978987,
|
| 1952 |
+
"grad_norm": 0.030983733397891462,
|
| 1953 |
+
"learning_rate": 6.0681258073309756e-05,
|
| 1954 |
+
"loss": 1.5657,
|
| 1955 |
+
"step": 2770
|
| 1956 |
+
},
|
| 1957 |
+
{
|
| 1958 |
+
"epoch": 2.5965444781695073,
|
| 1959 |
+
"grad_norm": 0.030427577702286164,
|
| 1960 |
+
"learning_rate": 5.9972019790752385e-05,
|
| 1961 |
+
"loss": 1.5708,
|
| 1962 |
+
"step": 2780
|
| 1963 |
+
},
|
| 1964 |
+
{
|
| 1965 |
+
"epoch": 2.605883726360028,
|
| 1966 |
+
"grad_norm": 0.032761226318855745,
|
| 1967 |
+
"learning_rate": 5.9265171115364495e-05,
|
| 1968 |
+
"loss": 1.5641,
|
| 1969 |
+
"step": 2790
|
| 1970 |
+
},
|
| 1971 |
+
{
|
| 1972 |
+
"epoch": 2.615222974550549,
|
| 1973 |
+
"grad_norm": 0.0317533648622182,
|
| 1974 |
+
"learning_rate": 5.856075424489511e-05,
|
| 1975 |
+
"loss": 1.5613,
|
| 1976 |
+
"step": 2800
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 2.624562222741069,
|
| 1980 |
+
"grad_norm": 0.03251887796623927,
|
| 1981 |
+
"learning_rate": 5.785881123191834e-05,
|
| 1982 |
+
"loss": 1.5644,
|
| 1983 |
+
"step": 2810
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"epoch": 2.63390147093159,
|
| 1987 |
+
"grad_norm": 0.033109556138937665,
|
| 1988 |
+
"learning_rate": 5.7159383981322866e-05,
|
| 1989 |
+
"loss": 1.5613,
|
| 1990 |
+
"step": 2820
|
| 1991 |
+
},
|
| 1992 |
+
{
|
| 1993 |
+
"epoch": 2.643240719122111,
|
| 1994 |
+
"grad_norm": 0.03190494841434546,
|
| 1995 |
+
"learning_rate": 5.646251424781044e-05,
|
| 1996 |
+
"loss": 1.5597,
|
| 1997 |
+
"step": 2830
|
| 1998 |
+
},
|
| 1999 |
+
{
|
| 2000 |
+
"epoch": 2.652579967312631,
|
| 2001 |
+
"grad_norm": 0.03131425467271855,
|
| 2002 |
+
"learning_rate": 5.576824363340293e-05,
|
| 2003 |
+
"loss": 1.5644,
|
| 2004 |
+
"step": 2840
|
| 2005 |
+
},
|
| 2006 |
+
{
|
| 2007 |
+
"epoch": 2.661919215503152,
|
| 2008 |
+
"grad_norm": 0.032580122114687284,
|
| 2009 |
+
"learning_rate": 5.507661358495904e-05,
|
| 2010 |
+
"loss": 1.5651,
|
| 2011 |
+
"step": 2850
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"epoch": 2.6712584636936727,
|
| 2015 |
+
"grad_norm": 0.031118294785578867,
|
| 2016 |
+
"learning_rate": 5.4387665391699814e-05,
|
| 2017 |
+
"loss": 1.5595,
|
| 2018 |
+
"step": 2860
|
| 2019 |
+
},
|
| 2020 |
+
{
|
| 2021 |
+
"epoch": 2.680597711884193,
|
| 2022 |
+
"grad_norm": 0.030454480461742643,
|
| 2023 |
+
"learning_rate": 5.370144018274371e-05,
|
| 2024 |
+
"loss": 1.5607,
|
| 2025 |
+
"step": 2870
|
| 2026 |
+
},
|
| 2027 |
+
{
|
| 2028 |
+
"epoch": 2.689936960074714,
|
| 2029 |
+
"grad_norm": 0.030828671799046907,
|
| 2030 |
+
"learning_rate": 5.301797892465148e-05,
|
| 2031 |
+
"loss": 1.5587,
|
| 2032 |
+
"step": 2880
|
| 2033 |
+
},
|
| 2034 |
+
{
|
| 2035 |
+
"epoch": 2.6992762082652346,
|
| 2036 |
+
"grad_norm": 0.030541588338347705,
|
| 2037 |
+
"learning_rate": 5.2337322418980204e-05,
|
| 2038 |
+
"loss": 1.5698,
|
| 2039 |
+
"step": 2890
|
| 2040 |
+
},
|
| 2041 |
+
{
|
| 2042 |
+
"epoch": 2.7086154564557554,
|
| 2043 |
+
"grad_norm": 0.030634684731728472,
|
| 2044 |
+
"learning_rate": 5.16595112998477e-05,
|
| 2045 |
+
"loss": 1.5628,
|
| 2046 |
+
"step": 2900
|
| 2047 |
+
},
|
| 2048 |
+
{
|
| 2049 |
+
"epoch": 2.717954704646276,
|
| 2050 |
+
"grad_norm": 0.03045168911848818,
|
| 2051 |
+
"learning_rate": 5.098458603150691e-05,
|
| 2052 |
+
"loss": 1.5544,
|
| 2053 |
+
"step": 2910
|
| 2054 |
+
},
|
| 2055 |
+
{
|
| 2056 |
+
"epoch": 2.7272939528367965,
|
| 2057 |
+
"grad_norm": 0.029966073421542574,
|
| 2058 |
+
"learning_rate": 5.0312586905929816e-05,
|
| 2059 |
+
"loss": 1.557,
|
| 2060 |
+
"step": 2920
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 2.7366332010273173,
|
| 2064 |
+
"grad_norm": 0.031203173596988765,
|
| 2065 |
+
"learning_rate": 4.964355404040232e-05,
|
| 2066 |
+
"loss": 1.5571,
|
| 2067 |
+
"step": 2930
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"epoch": 2.745972449217838,
|
| 2071 |
+
"grad_norm": 0.02933060802902336,
|
| 2072 |
+
"learning_rate": 4.897752737512944e-05,
|
| 2073 |
+
"loss": 1.5518,
|
| 2074 |
+
"step": 2940
|
| 2075 |
+
},
|
| 2076 |
+
{
|
| 2077 |
+
"epoch": 2.7553116974083585,
|
| 2078 |
+
"grad_norm": 0.03039237943996916,
|
| 2079 |
+
"learning_rate": 4.8314546670850594e-05,
|
| 2080 |
+
"loss": 1.5682,
|
| 2081 |
+
"step": 2950
|
| 2082 |
+
},
|
| 2083 |
+
{
|
| 2084 |
+
"epoch": 2.7646509455988793,
|
| 2085 |
+
"grad_norm": 0.03077504425768828,
|
| 2086 |
+
"learning_rate": 4.765465150646633e-05,
|
| 2087 |
+
"loss": 1.5618,
|
| 2088 |
+
"step": 2960
|
| 2089 |
+
},
|
| 2090 |
+
{
|
| 2091 |
+
"epoch": 2.7739901937894,
|
| 2092 |
+
"grad_norm": 0.02987361489256037,
|
| 2093 |
+
"learning_rate": 4.699788127667517e-05,
|
| 2094 |
+
"loss": 1.5657,
|
| 2095 |
+
"step": 2970
|
| 2096 |
+
},
|
| 2097 |
+
{
|
| 2098 |
+
"epoch": 2.7833294419799204,
|
| 2099 |
+
"grad_norm": 0.030823634404763923,
|
| 2100 |
+
"learning_rate": 4.634427518962209e-05,
|
| 2101 |
+
"loss": 1.5611,
|
| 2102 |
+
"step": 2980
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 2.792668690170441,
|
| 2106 |
+
"grad_norm": 0.031136974955910973,
|
| 2107 |
+
"learning_rate": 4.569387226455776e-05,
|
| 2108 |
+
"loss": 1.558,
|
| 2109 |
+
"step": 2990
|
| 2110 |
+
},
|
| 2111 |
+
{
|
| 2112 |
+
"epoch": 2.802007938360962,
|
| 2113 |
+
"grad_norm": 0.032345263568839946,
|
| 2114 |
+
"learning_rate": 4.5046711329508997e-05,
|
| 2115 |
+
"loss": 1.5567,
|
| 2116 |
+
"step": 3000
|
| 2117 |
+
},
|
| 2118 |
+
{
|
| 2119 |
+
"epoch": 2.8113471865514827,
|
| 2120 |
+
"grad_norm": 0.03075590840408306,
|
| 2121 |
+
"learning_rate": 4.440283101896112e-05,
|
| 2122 |
+
"loss": 1.5509,
|
| 2123 |
+
"step": 3010
|
| 2124 |
+
},
|
| 2125 |
+
{
|
| 2126 |
+
"epoch": 2.8206864347420035,
|
| 2127 |
+
"grad_norm": 0.03212380955577142,
|
| 2128 |
+
"learning_rate": 4.376226977155118e-05,
|
| 2129 |
+
"loss": 1.5549,
|
| 2130 |
+
"step": 3020
|
| 2131 |
+
},
|
| 2132 |
+
{
|
| 2133 |
+
"epoch": 2.830025682932524,
|
| 2134 |
+
"grad_norm": 0.030448994102361984,
|
| 2135 |
+
"learning_rate": 4.3125065827773535e-05,
|
| 2136 |
+
"loss": 1.5582,
|
| 2137 |
+
"step": 3030
|
| 2138 |
+
},
|
| 2139 |
+
{
|
| 2140 |
+
"epoch": 2.8393649311230447,
|
| 2141 |
+
"grad_norm": 0.02952309346631166,
|
| 2142 |
+
"learning_rate": 4.249125722769679e-05,
|
| 2143 |
+
"loss": 1.5621,
|
| 2144 |
+
"step": 3040
|
| 2145 |
+
},
|
| 2146 |
+
{
|
| 2147 |
+
"epoch": 2.8487041793135655,
|
| 2148 |
+
"grad_norm": 0.029801760584304334,
|
| 2149 |
+
"learning_rate": 4.18608818086928e-05,
|
| 2150 |
+
"loss": 1.5566,
|
| 2151 |
+
"step": 3050
|
| 2152 |
+
},
|
| 2153 |
+
{
|
| 2154 |
+
"epoch": 2.858043427504086,
|
| 2155 |
+
"grad_norm": 0.029682850572275397,
|
| 2156 |
+
"learning_rate": 4.12339772031781e-05,
|
| 2157 |
+
"loss": 1.563,
|
| 2158 |
+
"step": 3060
|
| 2159 |
+
},
|
| 2160 |
+
{
|
| 2161 |
+
"epoch": 2.8673826756946066,
|
| 2162 |
+
"grad_norm": 0.0295800536252474,
|
| 2163 |
+
"learning_rate": 4.061058083636702e-05,
|
| 2164 |
+
"loss": 1.5478,
|
| 2165 |
+
"step": 3070
|
| 2166 |
+
},
|
| 2167 |
+
{
|
| 2168 |
+
"epoch": 2.8767219238851274,
|
| 2169 |
+
"grad_norm": 0.029683305961870896,
|
| 2170 |
+
"learning_rate": 3.999072992403756e-05,
|
| 2171 |
+
"loss": 1.5628,
|
| 2172 |
+
"step": 3080
|
| 2173 |
+
},
|
| 2174 |
+
{
|
| 2175 |
+
"epoch": 2.8860611720756477,
|
| 2176 |
+
"grad_norm": 0.029644699672258072,
|
| 2177 |
+
"learning_rate": 3.93744614703098e-05,
|
| 2178 |
+
"loss": 1.5541,
|
| 2179 |
+
"step": 3090
|
| 2180 |
+
},
|
| 2181 |
+
{
|
| 2182 |
+
"epoch": 2.8954004202661685,
|
| 2183 |
+
"grad_norm": 0.030518095362273494,
|
| 2184 |
+
"learning_rate": 3.876181226543668e-05,
|
| 2185 |
+
"loss": 1.5702,
|
| 2186 |
+
"step": 3100
|
| 2187 |
+
}
|
| 2188 |
+
],
|
| 2189 |
+
"logging_steps": 10,
|
| 2190 |
+
"max_steps": 4280,
|
| 2191 |
+
"num_input_tokens_seen": 0,
|
| 2192 |
+
"num_train_epochs": 4,
|
| 2193 |
+
"save_steps": 100,
|
| 2194 |
+
"stateful_callbacks": {
|
| 2195 |
+
"TrainerControl": {
|
| 2196 |
+
"args": {
|
| 2197 |
+
"should_epoch_stop": false,
|
| 2198 |
+
"should_evaluate": false,
|
| 2199 |
+
"should_log": false,
|
| 2200 |
+
"should_save": true,
|
| 2201 |
+
"should_training_stop": false
|
| 2202 |
+
},
|
| 2203 |
+
"attributes": {}
|
| 2204 |
+
}
|
| 2205 |
+
},
|
| 2206 |
+
"total_flos": 2.5100743120772923e+20,
|
| 2207 |
+
"train_batch_size": 2,
|
| 2208 |
+
"trial_name": null,
|
| 2209 |
+
"trial_params": null
|
| 2210 |
+
}
|
l2-13b-ga/checkpoint-3100/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _has_callable(obj, fn):
|
| 252 |
+
attr = getattr(obj, fn, None)
|
| 253 |
+
return callable(attr)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 257 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 258 |
+
|
| 259 |
+
# Reconstruction protocol:
|
| 260 |
+
#
|
| 261 |
+
# XXX: document this
|
| 262 |
+
|
| 263 |
+
if debug:
|
| 264 |
+
for i in range(world_size):
|
| 265 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 267 |
+
|
| 268 |
+
# XXX: memory usage doubles here (zero2)
|
| 269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 270 |
+
merged_single_partition_of_fp32_groups = []
|
| 271 |
+
for i in range(num_param_groups):
|
| 272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 275 |
+
avail_numel = sum(
|
| 276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 277 |
+
|
| 278 |
+
if debug:
|
| 279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 281 |
+
# not asserting if there is a mismatch due to possible padding
|
| 282 |
+
print(f"Have {avail_numel} numels to process.")
|
| 283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 284 |
+
|
| 285 |
+
# params
|
| 286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 287 |
+
# out-of-core computing solution
|
| 288 |
+
total_numel = 0
|
| 289 |
+
total_params = 0
|
| 290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 291 |
+
offset = 0
|
| 292 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 293 |
+
for name, shape in shapes.items():
|
| 294 |
+
|
| 295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 296 |
+
total_numel += unpartitioned_numel
|
| 297 |
+
total_params += 1
|
| 298 |
+
|
| 299 |
+
if debug:
|
| 300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 302 |
+
offset += unpartitioned_numel
|
| 303 |
+
|
| 304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 308 |
+
align_to = 2 * world_size
|
| 309 |
+
|
| 310 |
+
def zero2_align(x):
|
| 311 |
+
return align_to * math.ceil(x / align_to)
|
| 312 |
+
|
| 313 |
+
if debug:
|
| 314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 315 |
+
|
| 316 |
+
offset = zero2_align(offset)
|
| 317 |
+
avail_numel = zero2_align(avail_numel)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
# Sanity check
|
| 323 |
+
if offset != avail_numel:
|
| 324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 325 |
+
|
| 326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 330 |
+
state_dict = OrderedDict()
|
| 331 |
+
|
| 332 |
+
# buffers
|
| 333 |
+
buffers = zero_model_states[0].buffers
|
| 334 |
+
state_dict.update(buffers)
|
| 335 |
+
if debug:
|
| 336 |
+
print(f"added {len(buffers)} buffers")
|
| 337 |
+
|
| 338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 339 |
+
|
| 340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 341 |
+
|
| 342 |
+
# recover shared parameters
|
| 343 |
+
for pair in zero_model_states[0].shared_params:
|
| 344 |
+
if pair[1] in state_dict:
|
| 345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 346 |
+
|
| 347 |
+
return state_dict
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 351 |
+
remainder = unpartitioned_numel % world_size
|
| 352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 354 |
+
return partitioned_numel, padding_numel
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 359 |
+
return
|
| 360 |
+
|
| 361 |
+
if debug:
|
| 362 |
+
for i in range(world_size):
|
| 363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 365 |
+
|
| 366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 367 |
+
wanted_params = len(frozen_param_shapes)
|
| 368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 372 |
+
|
| 373 |
+
total_params = 0
|
| 374 |
+
total_numel = 0
|
| 375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 376 |
+
total_params += 1
|
| 377 |
+
unpartitioned_numel = shape.numel()
|
| 378 |
+
total_numel += unpartitioned_numel
|
| 379 |
+
|
| 380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 382 |
+
|
| 383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 384 |
+
|
| 385 |
+
if debug:
|
| 386 |
+
print(
|
| 387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 394 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 398 |
+
|
| 399 |
+
# merge list of dicts, preserving order
|
| 400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 401 |
+
|
| 402 |
+
if debug:
|
| 403 |
+
for i in range(world_size):
|
| 404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 405 |
+
|
| 406 |
+
wanted_params = len(param_shapes)
|
| 407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 408 |
+
# not asserting if there is a mismatch due to possible padding
|
| 409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 412 |
+
|
| 413 |
+
# params
|
| 414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 415 |
+
# out-of-core computing solution
|
| 416 |
+
offset = 0
|
| 417 |
+
total_numel = 0
|
| 418 |
+
total_params = 0
|
| 419 |
+
for name, shape in param_shapes.items():
|
| 420 |
+
|
| 421 |
+
unpartitioned_numel = shape.numel()
|
| 422 |
+
total_numel += unpartitioned_numel
|
| 423 |
+
total_params += 1
|
| 424 |
+
|
| 425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 426 |
+
|
| 427 |
+
if debug:
|
| 428 |
+
print(
|
| 429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# XXX: memory usage doubles here
|
| 433 |
+
state_dict[name] = torch.cat(
|
| 434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 436 |
+
offset += partitioned_numel
|
| 437 |
+
|
| 438 |
+
offset *= world_size
|
| 439 |
+
|
| 440 |
+
# Sanity check
|
| 441 |
+
if offset != avail_numel:
|
| 442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 443 |
+
|
| 444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 448 |
+
state_dict = OrderedDict()
|
| 449 |
+
|
| 450 |
+
# buffers
|
| 451 |
+
buffers = zero_model_states[0].buffers
|
| 452 |
+
state_dict.update(buffers)
|
| 453 |
+
if debug:
|
| 454 |
+
print(f"added {len(buffers)} buffers")
|
| 455 |
+
|
| 456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 457 |
+
|
| 458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 459 |
+
|
| 460 |
+
# recover shared parameters
|
| 461 |
+
for pair in zero_model_states[0].shared_params:
|
| 462 |
+
if pair[1] in state_dict:
|
| 463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 464 |
+
|
| 465 |
+
return state_dict
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 469 |
+
"""
|
| 470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 472 |
+
via a model hub.
|
| 473 |
+
|
| 474 |
+
Args:
|
| 475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 477 |
+
|
| 478 |
+
Returns:
|
| 479 |
+
- pytorch ``state_dict``
|
| 480 |
+
|
| 481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 483 |
+
the checkpoint.
|
| 484 |
+
|
| 485 |
+
A typical usage might be ::
|
| 486 |
+
|
| 487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 488 |
+
# do the training and checkpoint saving
|
| 489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 490 |
+
model = model.cpu() # move to cpu
|
| 491 |
+
model.load_state_dict(state_dict)
|
| 492 |
+
# submit to model hub or save the model to share with others
|
| 493 |
+
|
| 494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 497 |
+
|
| 498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 499 |
+
|
| 500 |
+
"""
|
| 501 |
+
if tag is None:
|
| 502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 503 |
+
if os.path.isfile(latest_path):
|
| 504 |
+
with open(latest_path, 'r') as fd:
|
| 505 |
+
tag = fd.read().strip()
|
| 506 |
+
else:
|
| 507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 508 |
+
|
| 509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 510 |
+
|
| 511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 513 |
+
|
| 514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 518 |
+
"""
|
| 519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 521 |
+
|
| 522 |
+
Args:
|
| 523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 526 |
+
"""
|
| 527 |
+
|
| 528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 530 |
+
torch.save(state_dict, output_file)
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 534 |
+
"""
|
| 535 |
+
1. Put the provided model to cpu
|
| 536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 537 |
+
3. Load it into the provided model
|
| 538 |
+
|
| 539 |
+
Args:
|
| 540 |
+
- ``model``: the model object to update
|
| 541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 543 |
+
|
| 544 |
+
Returns:
|
| 545 |
+
- ``model`: modified model
|
| 546 |
+
|
| 547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 549 |
+
conveniently placed for you in the checkpoint folder.
|
| 550 |
+
|
| 551 |
+
A typical usage might be ::
|
| 552 |
+
|
| 553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 555 |
+
# submit to model hub or save the model to share with others
|
| 556 |
+
|
| 557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 560 |
+
|
| 561 |
+
"""
|
| 562 |
+
logger.info(f"Extracting fp32 weights")
|
| 563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 564 |
+
|
| 565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 566 |
+
model = model.cpu()
|
| 567 |
+
model.load_state_dict(state_dict, strict=False)
|
| 568 |
+
|
| 569 |
+
return model
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
if __name__ == "__main__":
|
| 573 |
+
|
| 574 |
+
parser = argparse.ArgumentParser()
|
| 575 |
+
parser.add_argument("checkpoint_dir",
|
| 576 |
+
type=str,
|
| 577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 578 |
+
parser.add_argument(
|
| 579 |
+
"output_file",
|
| 580 |
+
type=str,
|
| 581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 582 |
+
parser.add_argument("-t",
|
| 583 |
+
"--tag",
|
| 584 |
+
type=str,
|
| 585 |
+
default=None,
|
| 586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 588 |
+
args = parser.parse_args()
|
| 589 |
+
|
| 590 |
+
debug = args.debug
|
| 591 |
+
|
| 592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
q2.5-eu-en/checkpoint-1800/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-2400/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
q2.5-eu-en/checkpoint-2400/chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
q2.5-eu-en/checkpoint-2400/config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151643,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 896,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 4864,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 24,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 14,
|
| 16 |
+
"num_hidden_layers": 24,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.52.4",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"use_mrope": false,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 151665
|
| 29 |
+
}
|
q2.5-eu-en/checkpoint-2400/generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"transformers_version": "4.52.4"
|
| 6 |
+
}
|
q2.5-eu-en/checkpoint-2400/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2400
|
q2.5-eu-en/checkpoint-2400/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-2400/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
q2.5-eu-en/checkpoint-2400/tokenizer_config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|endoftext|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"split_special_tokens": false,
|
| 205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 206 |
+
"unk_token": null
|
| 207 |
+
}
|
q2.5-eu-en/checkpoint-2400/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-2400/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-2400/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
q2.5-eu-en/checkpoint-2700/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
q2.5-eu-en/checkpoint-2700/chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
q2.5-eu-en/checkpoint-2700/config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151643,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 896,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 4864,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 24,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 14,
|
| 16 |
+
"num_hidden_layers": 24,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.52.4",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"use_mrope": false,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 151665
|
| 29 |
+
}
|
q2.5-eu-en/checkpoint-2700/generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"transformers_version": "4.52.4"
|
| 6 |
+
}
|
q2.5-eu-en/checkpoint-2700/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2700
|
q2.5-eu-en/checkpoint-2700/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-2700/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
q2.5-eu-en/checkpoint-2700/tokenizer_config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|endoftext|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"split_special_tokens": false,
|
| 205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 206 |
+
"unk_token": null
|
| 207 |
+
}
|
q2.5-eu-en/checkpoint-2700/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-2700/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-2700/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
q2.5-eu-en/checkpoint-300/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
q2.5-eu-en/checkpoint-300/chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
q2.5-eu-en/checkpoint-300/config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151643,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 896,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 4864,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 24,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 14,
|
| 16 |
+
"num_hidden_layers": 24,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.52.4",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"use_mrope": false,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 151665
|
| 29 |
+
}
|
q2.5-eu-en/checkpoint-300/generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"transformers_version": "4.52.4"
|
| 6 |
+
}
|
q2.5-eu-en/checkpoint-300/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step300
|
q2.5-eu-en/checkpoint-300/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-300/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
q2.5-eu-en/checkpoint-300/tokenizer_config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|endoftext|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"split_special_tokens": false,
|
| 205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 206 |
+
"unk_token": null
|
| 207 |
+
}
|
q2.5-eu-en/checkpoint-300/trainer_state.json
ADDED
|
@@ -0,0 +1,1091 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 0.1009633587143999,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 300,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.00033654452904799967,
|
| 14 |
+
"grad_norm": 4.331892967224121,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 5.5158,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.0006730890580959993,
|
| 21 |
+
"grad_norm": 4.539519786834717,
|
| 22 |
+
"learning_rate": 6.711409395973154e-07,
|
| 23 |
+
"loss": 5.5718,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.0013461781161919987,
|
| 28 |
+
"grad_norm": 4.208465576171875,
|
| 29 |
+
"learning_rate": 2.013422818791946e-06,
|
| 30 |
+
"loss": 5.4905,
|
| 31 |
+
"step": 4
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.002019267174287998,
|
| 35 |
+
"grad_norm": 3.891338586807251,
|
| 36 |
+
"learning_rate": 3.3557046979865773e-06,
|
| 37 |
+
"loss": 5.4511,
|
| 38 |
+
"step": 6
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.0026923562323839974,
|
| 42 |
+
"grad_norm": 2.979590654373169,
|
| 43 |
+
"learning_rate": 4.697986577181209e-06,
|
| 44 |
+
"loss": 5.3311,
|
| 45 |
+
"step": 8
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.0033654452904799967,
|
| 49 |
+
"grad_norm": 3.1792373657226562,
|
| 50 |
+
"learning_rate": 6.04026845637584e-06,
|
| 51 |
+
"loss": 5.3782,
|
| 52 |
+
"step": 10
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.004038534348575996,
|
| 56 |
+
"grad_norm": 3.9909653663635254,
|
| 57 |
+
"learning_rate": 7.382550335570471e-06,
|
| 58 |
+
"loss": 5.2583,
|
| 59 |
+
"step": 12
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.004711623406671995,
|
| 63 |
+
"grad_norm": 3.31044340133667,
|
| 64 |
+
"learning_rate": 8.724832214765101e-06,
|
| 65 |
+
"loss": 5.3198,
|
| 66 |
+
"step": 14
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.005384712464767995,
|
| 70 |
+
"grad_norm": 3.3201687335968018,
|
| 71 |
+
"learning_rate": 1.006711409395973e-05,
|
| 72 |
+
"loss": 5.1138,
|
| 73 |
+
"step": 16
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.006057801522863994,
|
| 77 |
+
"grad_norm": 2.8034451007843018,
|
| 78 |
+
"learning_rate": 1.1409395973154363e-05,
|
| 79 |
+
"loss": 5.0022,
|
| 80 |
+
"step": 18
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.0067308905809599934,
|
| 84 |
+
"grad_norm": 2.044506072998047,
|
| 85 |
+
"learning_rate": 1.2751677852348994e-05,
|
| 86 |
+
"loss": 4.8879,
|
| 87 |
+
"step": 20
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.007403979639055993,
|
| 91 |
+
"grad_norm": 1.6194826364517212,
|
| 92 |
+
"learning_rate": 1.4093959731543624e-05,
|
| 93 |
+
"loss": 4.7436,
|
| 94 |
+
"step": 22
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.008077068697151992,
|
| 98 |
+
"grad_norm": 1.4383995532989502,
|
| 99 |
+
"learning_rate": 1.5436241610738255e-05,
|
| 100 |
+
"loss": 4.5798,
|
| 101 |
+
"step": 24
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.00875015775524799,
|
| 105 |
+
"grad_norm": 1.174633264541626,
|
| 106 |
+
"learning_rate": 1.6778523489932888e-05,
|
| 107 |
+
"loss": 4.4188,
|
| 108 |
+
"step": 26
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.00942324681334399,
|
| 112 |
+
"grad_norm": 1.1277130842208862,
|
| 113 |
+
"learning_rate": 1.8120805369127517e-05,
|
| 114 |
+
"loss": 4.4374,
|
| 115 |
+
"step": 28
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.01009633587143999,
|
| 119 |
+
"grad_norm": 1.0426617860794067,
|
| 120 |
+
"learning_rate": 1.946308724832215e-05,
|
| 121 |
+
"loss": 4.2195,
|
| 122 |
+
"step": 30
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.01076942492953599,
|
| 126 |
+
"grad_norm": 0.9180749654769897,
|
| 127 |
+
"learning_rate": 2.080536912751678e-05,
|
| 128 |
+
"loss": 4.1755,
|
| 129 |
+
"step": 32
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.011442513987631988,
|
| 133 |
+
"grad_norm": 1.0104376077651978,
|
| 134 |
+
"learning_rate": 2.2147651006711412e-05,
|
| 135 |
+
"loss": 4.0892,
|
| 136 |
+
"step": 34
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.012115603045727988,
|
| 140 |
+
"grad_norm": 0.9427777528762817,
|
| 141 |
+
"learning_rate": 2.348993288590604e-05,
|
| 142 |
+
"loss": 4.0498,
|
| 143 |
+
"step": 36
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.012788692103823987,
|
| 147 |
+
"grad_norm": 1.0120079517364502,
|
| 148 |
+
"learning_rate": 2.4832214765100674e-05,
|
| 149 |
+
"loss": 3.9471,
|
| 150 |
+
"step": 38
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.013461781161919987,
|
| 154 |
+
"grad_norm": 1.0842680931091309,
|
| 155 |
+
"learning_rate": 2.6174496644295304e-05,
|
| 156 |
+
"loss": 3.8882,
|
| 157 |
+
"step": 40
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.014134870220015985,
|
| 161 |
+
"grad_norm": 1.3515102863311768,
|
| 162 |
+
"learning_rate": 2.7516778523489933e-05,
|
| 163 |
+
"loss": 3.8274,
|
| 164 |
+
"step": 42
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.014807959278111986,
|
| 168 |
+
"grad_norm": 1.1003209352493286,
|
| 169 |
+
"learning_rate": 2.885906040268457e-05,
|
| 170 |
+
"loss": 3.7735,
|
| 171 |
+
"step": 44
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.015481048336207984,
|
| 175 |
+
"grad_norm": 0.9302487373352051,
|
| 176 |
+
"learning_rate": 3.02013422818792e-05,
|
| 177 |
+
"loss": 3.731,
|
| 178 |
+
"step": 46
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.016154137394303984,
|
| 182 |
+
"grad_norm": 1.0311543941497803,
|
| 183 |
+
"learning_rate": 3.1543624161073825e-05,
|
| 184 |
+
"loss": 3.6608,
|
| 185 |
+
"step": 48
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.016827226452399983,
|
| 189 |
+
"grad_norm": 1.0927435159683228,
|
| 190 |
+
"learning_rate": 3.288590604026846e-05,
|
| 191 |
+
"loss": 3.5962,
|
| 192 |
+
"step": 50
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.01750031551049598,
|
| 196 |
+
"grad_norm": 1.3255321979522705,
|
| 197 |
+
"learning_rate": 3.422818791946309e-05,
|
| 198 |
+
"loss": 3.5669,
|
| 199 |
+
"step": 52
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.018173404568591983,
|
| 203 |
+
"grad_norm": 0.9304305911064148,
|
| 204 |
+
"learning_rate": 3.557046979865772e-05,
|
| 205 |
+
"loss": 3.5456,
|
| 206 |
+
"step": 54
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.01884649362668798,
|
| 210 |
+
"grad_norm": 1.159280776977539,
|
| 211 |
+
"learning_rate": 3.6912751677852356e-05,
|
| 212 |
+
"loss": 3.5189,
|
| 213 |
+
"step": 56
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.01951958268478398,
|
| 217 |
+
"grad_norm": 0.9376134276390076,
|
| 218 |
+
"learning_rate": 3.8255033557046985e-05,
|
| 219 |
+
"loss": 3.432,
|
| 220 |
+
"step": 58
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.02019267174287998,
|
| 224 |
+
"grad_norm": 1.292802095413208,
|
| 225 |
+
"learning_rate": 3.959731543624161e-05,
|
| 226 |
+
"loss": 3.4564,
|
| 227 |
+
"step": 60
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.02086576080097598,
|
| 231 |
+
"grad_norm": 1.2383852005004883,
|
| 232 |
+
"learning_rate": 4.0939597315436244e-05,
|
| 233 |
+
"loss": 3.4194,
|
| 234 |
+
"step": 62
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.02153884985907198,
|
| 238 |
+
"grad_norm": 0.8546445369720459,
|
| 239 |
+
"learning_rate": 4.228187919463087e-05,
|
| 240 |
+
"loss": 3.3873,
|
| 241 |
+
"step": 64
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.022211938917167977,
|
| 245 |
+
"grad_norm": 1.4104743003845215,
|
| 246 |
+
"learning_rate": 4.36241610738255e-05,
|
| 247 |
+
"loss": 3.3647,
|
| 248 |
+
"step": 66
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.022885027975263976,
|
| 252 |
+
"grad_norm": 1.3548426628112793,
|
| 253 |
+
"learning_rate": 4.496644295302014e-05,
|
| 254 |
+
"loss": 3.3213,
|
| 255 |
+
"step": 68
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.023558117033359978,
|
| 259 |
+
"grad_norm": 1.1530455350875854,
|
| 260 |
+
"learning_rate": 4.630872483221477e-05,
|
| 261 |
+
"loss": 3.2789,
|
| 262 |
+
"step": 70
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.024231206091455976,
|
| 266 |
+
"grad_norm": 1.3092457056045532,
|
| 267 |
+
"learning_rate": 4.76510067114094e-05,
|
| 268 |
+
"loss": 3.2922,
|
| 269 |
+
"step": 72
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.024904295149551975,
|
| 273 |
+
"grad_norm": 1.577699065208435,
|
| 274 |
+
"learning_rate": 4.8993288590604034e-05,
|
| 275 |
+
"loss": 3.2308,
|
| 276 |
+
"step": 74
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.025577384207647973,
|
| 280 |
+
"grad_norm": 1.3348486423492432,
|
| 281 |
+
"learning_rate": 5.033557046979866e-05,
|
| 282 |
+
"loss": 3.2656,
|
| 283 |
+
"step": 76
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.026250473265743975,
|
| 287 |
+
"grad_norm": 1.1966625452041626,
|
| 288 |
+
"learning_rate": 5.167785234899329e-05,
|
| 289 |
+
"loss": 3.2703,
|
| 290 |
+
"step": 78
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.026923562323839974,
|
| 294 |
+
"grad_norm": 1.3125278949737549,
|
| 295 |
+
"learning_rate": 5.302013422818792e-05,
|
| 296 |
+
"loss": 3.2034,
|
| 297 |
+
"step": 80
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.027596651381935972,
|
| 301 |
+
"grad_norm": 1.1957862377166748,
|
| 302 |
+
"learning_rate": 5.436241610738255e-05,
|
| 303 |
+
"loss": 3.2476,
|
| 304 |
+
"step": 82
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.02826974044003197,
|
| 308 |
+
"grad_norm": 1.2177337408065796,
|
| 309 |
+
"learning_rate": 5.570469798657718e-05,
|
| 310 |
+
"loss": 3.2166,
|
| 311 |
+
"step": 84
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.028942829498127973,
|
| 315 |
+
"grad_norm": 0.8806389570236206,
|
| 316 |
+
"learning_rate": 5.704697986577181e-05,
|
| 317 |
+
"loss": 3.1722,
|
| 318 |
+
"step": 86
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.02961591855622397,
|
| 322 |
+
"grad_norm": 1.8180561065673828,
|
| 323 |
+
"learning_rate": 5.838926174496645e-05,
|
| 324 |
+
"loss": 3.1597,
|
| 325 |
+
"step": 88
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.03028900761431997,
|
| 329 |
+
"grad_norm": 1.1676297187805176,
|
| 330 |
+
"learning_rate": 5.973154362416108e-05,
|
| 331 |
+
"loss": 3.1829,
|
| 332 |
+
"step": 90
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.030962096672415968,
|
| 336 |
+
"grad_norm": 1.0163198709487915,
|
| 337 |
+
"learning_rate": 6.107382550335571e-05,
|
| 338 |
+
"loss": 3.1643,
|
| 339 |
+
"step": 92
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.03163518573051197,
|
| 343 |
+
"grad_norm": 1.0734015703201294,
|
| 344 |
+
"learning_rate": 6.241610738255034e-05,
|
| 345 |
+
"loss": 3.1692,
|
| 346 |
+
"step": 94
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.03230827478860797,
|
| 350 |
+
"grad_norm": 1.4144916534423828,
|
| 351 |
+
"learning_rate": 6.375838926174497e-05,
|
| 352 |
+
"loss": 3.1217,
|
| 353 |
+
"step": 96
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.03298136384670397,
|
| 357 |
+
"grad_norm": 1.5647915601730347,
|
| 358 |
+
"learning_rate": 6.51006711409396e-05,
|
| 359 |
+
"loss": 3.1324,
|
| 360 |
+
"step": 98
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.033654452904799965,
|
| 364 |
+
"grad_norm": 1.1999105215072632,
|
| 365 |
+
"learning_rate": 6.644295302013423e-05,
|
| 366 |
+
"loss": 3.1103,
|
| 367 |
+
"step": 100
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.03432754196289597,
|
| 371 |
+
"grad_norm": 1.512838363647461,
|
| 372 |
+
"learning_rate": 6.778523489932886e-05,
|
| 373 |
+
"loss": 3.1036,
|
| 374 |
+
"step": 102
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.03500063102099196,
|
| 378 |
+
"grad_norm": 1.1092990636825562,
|
| 379 |
+
"learning_rate": 6.912751677852349e-05,
|
| 380 |
+
"loss": 3.1244,
|
| 381 |
+
"step": 104
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.035673720079087964,
|
| 385 |
+
"grad_norm": 1.2763620615005493,
|
| 386 |
+
"learning_rate": 7.046979865771812e-05,
|
| 387 |
+
"loss": 3.0989,
|
| 388 |
+
"step": 106
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.036346809137183966,
|
| 392 |
+
"grad_norm": 1.2328648567199707,
|
| 393 |
+
"learning_rate": 7.181208053691275e-05,
|
| 394 |
+
"loss": 3.0506,
|
| 395 |
+
"step": 108
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.03701989819527996,
|
| 399 |
+
"grad_norm": 1.6039047241210938,
|
| 400 |
+
"learning_rate": 7.315436241610739e-05,
|
| 401 |
+
"loss": 3.0589,
|
| 402 |
+
"step": 110
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.03769298725337596,
|
| 406 |
+
"grad_norm": 1.7161307334899902,
|
| 407 |
+
"learning_rate": 7.449664429530202e-05,
|
| 408 |
+
"loss": 3.0296,
|
| 409 |
+
"step": 112
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.03836607631147196,
|
| 413 |
+
"grad_norm": 1.2628991603851318,
|
| 414 |
+
"learning_rate": 7.583892617449665e-05,
|
| 415 |
+
"loss": 3.063,
|
| 416 |
+
"step": 114
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.03903916536956796,
|
| 420 |
+
"grad_norm": 1.1414180994033813,
|
| 421 |
+
"learning_rate": 7.718120805369128e-05,
|
| 422 |
+
"loss": 3.0366,
|
| 423 |
+
"step": 116
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.03971225442766396,
|
| 427 |
+
"grad_norm": 1.5152932405471802,
|
| 428 |
+
"learning_rate": 7.852348993288591e-05,
|
| 429 |
+
"loss": 3.0241,
|
| 430 |
+
"step": 118
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.04038534348575996,
|
| 434 |
+
"grad_norm": 1.6119567155838013,
|
| 435 |
+
"learning_rate": 7.986577181208054e-05,
|
| 436 |
+
"loss": 3.0139,
|
| 437 |
+
"step": 120
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.04105843254385596,
|
| 441 |
+
"grad_norm": 1.6078091859817505,
|
| 442 |
+
"learning_rate": 8.120805369127518e-05,
|
| 443 |
+
"loss": 3.0288,
|
| 444 |
+
"step": 122
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.04173152160195196,
|
| 448 |
+
"grad_norm": 1.1092705726623535,
|
| 449 |
+
"learning_rate": 8.255033557046981e-05,
|
| 450 |
+
"loss": 2.9996,
|
| 451 |
+
"step": 124
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.042404610660047956,
|
| 455 |
+
"grad_norm": 1.2352242469787598,
|
| 456 |
+
"learning_rate": 8.389261744966444e-05,
|
| 457 |
+
"loss": 2.9872,
|
| 458 |
+
"step": 126
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.04307769971814396,
|
| 462 |
+
"grad_norm": 1.636400580406189,
|
| 463 |
+
"learning_rate": 8.523489932885907e-05,
|
| 464 |
+
"loss": 2.9814,
|
| 465 |
+
"step": 128
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.04375078877623995,
|
| 469 |
+
"grad_norm": 1.4877128601074219,
|
| 470 |
+
"learning_rate": 8.65771812080537e-05,
|
| 471 |
+
"loss": 2.9756,
|
| 472 |
+
"step": 130
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.044423877834335955,
|
| 476 |
+
"grad_norm": 1.2983709573745728,
|
| 477 |
+
"learning_rate": 8.791946308724833e-05,
|
| 478 |
+
"loss": 2.9756,
|
| 479 |
+
"step": 132
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.04509696689243196,
|
| 483 |
+
"grad_norm": 1.7350983619689941,
|
| 484 |
+
"learning_rate": 8.926174496644296e-05,
|
| 485 |
+
"loss": 2.9579,
|
| 486 |
+
"step": 134
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.04577005595052795,
|
| 490 |
+
"grad_norm": 0.978854775428772,
|
| 491 |
+
"learning_rate": 9.060402684563759e-05,
|
| 492 |
+
"loss": 2.9269,
|
| 493 |
+
"step": 136
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.046443145008623954,
|
| 497 |
+
"grad_norm": 1.362163782119751,
|
| 498 |
+
"learning_rate": 9.194630872483221e-05,
|
| 499 |
+
"loss": 2.99,
|
| 500 |
+
"step": 138
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.047116234066719956,
|
| 504 |
+
"grad_norm": 1.328202247619629,
|
| 505 |
+
"learning_rate": 9.328859060402684e-05,
|
| 506 |
+
"loss": 2.966,
|
| 507 |
+
"step": 140
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.04778932312481595,
|
| 511 |
+
"grad_norm": 1.2497445344924927,
|
| 512 |
+
"learning_rate": 9.463087248322147e-05,
|
| 513 |
+
"loss": 2.9254,
|
| 514 |
+
"step": 142
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.04846241218291195,
|
| 518 |
+
"grad_norm": 1.071092128753662,
|
| 519 |
+
"learning_rate": 9.59731543624161e-05,
|
| 520 |
+
"loss": 2.9597,
|
| 521 |
+
"step": 144
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.04913550124100795,
|
| 525 |
+
"grad_norm": 1.451729416847229,
|
| 526 |
+
"learning_rate": 9.731543624161075e-05,
|
| 527 |
+
"loss": 2.9605,
|
| 528 |
+
"step": 146
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.04980859029910395,
|
| 532 |
+
"grad_norm": 1.328731656074524,
|
| 533 |
+
"learning_rate": 9.865771812080538e-05,
|
| 534 |
+
"loss": 2.9493,
|
| 535 |
+
"step": 148
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.05048167935719995,
|
| 539 |
+
"grad_norm": 1.4675222635269165,
|
| 540 |
+
"learning_rate": 0.0001,
|
| 541 |
+
"loss": 2.9298,
|
| 542 |
+
"step": 150
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.05115476841529595,
|
| 546 |
+
"grad_norm": 1.208961009979248,
|
| 547 |
+
"learning_rate": 9.99998761551904e-05,
|
| 548 |
+
"loss": 2.9382,
|
| 549 |
+
"step": 152
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.05182785747339195,
|
| 553 |
+
"grad_norm": 1.0392056703567505,
|
| 554 |
+
"learning_rate": 9.999950462137508e-05,
|
| 555 |
+
"loss": 2.8829,
|
| 556 |
+
"step": 154
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.05250094653148795,
|
| 560 |
+
"grad_norm": 1.378711462020874,
|
| 561 |
+
"learning_rate": 9.999888540039458e-05,
|
| 562 |
+
"loss": 2.9041,
|
| 563 |
+
"step": 156
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.053174035589583946,
|
| 567 |
+
"grad_norm": 1.2687252759933472,
|
| 568 |
+
"learning_rate": 9.999801849531635e-05,
|
| 569 |
+
"loss": 2.9148,
|
| 570 |
+
"step": 158
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.05384712464767995,
|
| 574 |
+
"grad_norm": 1.2382102012634277,
|
| 575 |
+
"learning_rate": 9.999690391043487e-05,
|
| 576 |
+
"loss": 2.9107,
|
| 577 |
+
"step": 160
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.05452021370577594,
|
| 581 |
+
"grad_norm": 1.0215928554534912,
|
| 582 |
+
"learning_rate": 9.999554165127159e-05,
|
| 583 |
+
"loss": 2.9187,
|
| 584 |
+
"step": 162
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.055193302763871945,
|
| 588 |
+
"grad_norm": 1.2638540267944336,
|
| 589 |
+
"learning_rate": 9.99939317245748e-05,
|
| 590 |
+
"loss": 2.9261,
|
| 591 |
+
"step": 164
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.055866391821967946,
|
| 595 |
+
"grad_norm": 1.3826959133148193,
|
| 596 |
+
"learning_rate": 9.999207413831982e-05,
|
| 597 |
+
"loss": 2.8944,
|
| 598 |
+
"step": 166
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.05653948088006394,
|
| 602 |
+
"grad_norm": 1.0764875411987305,
|
| 603 |
+
"learning_rate": 9.998996890170867e-05,
|
| 604 |
+
"loss": 2.9031,
|
| 605 |
+
"step": 168
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.05721256993815994,
|
| 609 |
+
"grad_norm": 1.5163936614990234,
|
| 610 |
+
"learning_rate": 9.99876160251703e-05,
|
| 611 |
+
"loss": 2.8687,
|
| 612 |
+
"step": 170
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.057885658996255945,
|
| 616 |
+
"grad_norm": 1.5821291208267212,
|
| 617 |
+
"learning_rate": 9.998501552036037e-05,
|
| 618 |
+
"loss": 2.8828,
|
| 619 |
+
"step": 172
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.05855874805435194,
|
| 623 |
+
"grad_norm": 1.4572120904922485,
|
| 624 |
+
"learning_rate": 9.998216740016124e-05,
|
| 625 |
+
"loss": 2.8898,
|
| 626 |
+
"step": 174
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.05923183711244794,
|
| 630 |
+
"grad_norm": 1.2185218334197998,
|
| 631 |
+
"learning_rate": 9.99790716786819e-05,
|
| 632 |
+
"loss": 2.8456,
|
| 633 |
+
"step": 176
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.05990492617054394,
|
| 637 |
+
"grad_norm": 1.106446385383606,
|
| 638 |
+
"learning_rate": 9.99757283712579e-05,
|
| 639 |
+
"loss": 2.8793,
|
| 640 |
+
"step": 178
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.06057801522863994,
|
| 644 |
+
"grad_norm": 1.1448893547058105,
|
| 645 |
+
"learning_rate": 9.997213749445129e-05,
|
| 646 |
+
"loss": 2.8579,
|
| 647 |
+
"step": 180
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.06125110428673594,
|
| 651 |
+
"grad_norm": 1.1587834358215332,
|
| 652 |
+
"learning_rate": 9.996829906605056e-05,
|
| 653 |
+
"loss": 2.8839,
|
| 654 |
+
"step": 182
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.061924193344831936,
|
| 658 |
+
"grad_norm": 1.0969592332839966,
|
| 659 |
+
"learning_rate": 9.996421310507046e-05,
|
| 660 |
+
"loss": 2.8638,
|
| 661 |
+
"step": 184
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.06259728240292793,
|
| 665 |
+
"grad_norm": 0.9740116000175476,
|
| 666 |
+
"learning_rate": 9.9959879631752e-05,
|
| 667 |
+
"loss": 2.8455,
|
| 668 |
+
"step": 186
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.06327037146102393,
|
| 672 |
+
"grad_norm": 1.2307910919189453,
|
| 673 |
+
"learning_rate": 9.995529866756231e-05,
|
| 674 |
+
"loss": 2.8534,
|
| 675 |
+
"step": 188
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.06394346051911994,
|
| 679 |
+
"grad_norm": 1.5021939277648926,
|
| 680 |
+
"learning_rate": 9.995047023519452e-05,
|
| 681 |
+
"loss": 2.8469,
|
| 682 |
+
"step": 190
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.06461654957721594,
|
| 686 |
+
"grad_norm": 1.1044224500656128,
|
| 687 |
+
"learning_rate": 9.994539435856771e-05,
|
| 688 |
+
"loss": 2.8429,
|
| 689 |
+
"step": 192
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.06528963863531194,
|
| 693 |
+
"grad_norm": 1.4586883783340454,
|
| 694 |
+
"learning_rate": 9.99400710628267e-05,
|
| 695 |
+
"loss": 2.836,
|
| 696 |
+
"step": 194
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.06596272769340794,
|
| 700 |
+
"grad_norm": 1.2613426446914673,
|
| 701 |
+
"learning_rate": 9.993450037434199e-05,
|
| 702 |
+
"loss": 2.8243,
|
| 703 |
+
"step": 196
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.06663581675150393,
|
| 707 |
+
"grad_norm": 1.0347422361373901,
|
| 708 |
+
"learning_rate": 9.992868232070963e-05,
|
| 709 |
+
"loss": 2.7965,
|
| 710 |
+
"step": 198
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.06730890580959993,
|
| 714 |
+
"grad_norm": 2.1357574462890625,
|
| 715 |
+
"learning_rate": 9.992261693075103e-05,
|
| 716 |
+
"loss": 2.8486,
|
| 717 |
+
"step": 200
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.06798199486769593,
|
| 721 |
+
"grad_norm": 1.0357908010482788,
|
| 722 |
+
"learning_rate": 9.991630423451286e-05,
|
| 723 |
+
"loss": 2.8386,
|
| 724 |
+
"step": 202
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.06865508392579193,
|
| 728 |
+
"grad_norm": 1.1383159160614014,
|
| 729 |
+
"learning_rate": 9.990974426326696e-05,
|
| 730 |
+
"loss": 2.7874,
|
| 731 |
+
"step": 204
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.06932817298388794,
|
| 735 |
+
"grad_norm": 0.8452678322792053,
|
| 736 |
+
"learning_rate": 9.990293704951001e-05,
|
| 737 |
+
"loss": 2.786,
|
| 738 |
+
"step": 206
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.07000126204198392,
|
| 742 |
+
"grad_norm": 0.9482727646827698,
|
| 743 |
+
"learning_rate": 9.989588262696357e-05,
|
| 744 |
+
"loss": 2.8156,
|
| 745 |
+
"step": 208
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.07067435110007993,
|
| 749 |
+
"grad_norm": 0.8251766562461853,
|
| 750 |
+
"learning_rate": 9.988858103057378e-05,
|
| 751 |
+
"loss": 2.7588,
|
| 752 |
+
"step": 210
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.07134744015817593,
|
| 756 |
+
"grad_norm": 1.211065649986267,
|
| 757 |
+
"learning_rate": 9.988103229651121e-05,
|
| 758 |
+
"loss": 2.7623,
|
| 759 |
+
"step": 212
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.07202052921627193,
|
| 763 |
+
"grad_norm": 0.8990377187728882,
|
| 764 |
+
"learning_rate": 9.987323646217075e-05,
|
| 765 |
+
"loss": 2.8164,
|
| 766 |
+
"step": 214
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.07269361827436793,
|
| 770 |
+
"grad_norm": 0.9878025054931641,
|
| 771 |
+
"learning_rate": 9.986519356617132e-05,
|
| 772 |
+
"loss": 2.7847,
|
| 773 |
+
"step": 216
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.07336670733246392,
|
| 777 |
+
"grad_norm": 0.7551445364952087,
|
| 778 |
+
"learning_rate": 9.985690364835576e-05,
|
| 779 |
+
"loss": 2.8111,
|
| 780 |
+
"step": 218
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.07403979639055992,
|
| 784 |
+
"grad_norm": 0.9582260251045227,
|
| 785 |
+
"learning_rate": 9.984836674979062e-05,
|
| 786 |
+
"loss": 2.793,
|
| 787 |
+
"step": 220
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.07471288544865592,
|
| 791 |
+
"grad_norm": 0.8087739944458008,
|
| 792 |
+
"learning_rate": 9.983958291276591e-05,
|
| 793 |
+
"loss": 2.7464,
|
| 794 |
+
"step": 222
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.07538597450675193,
|
| 798 |
+
"grad_norm": 1.2373522520065308,
|
| 799 |
+
"learning_rate": 9.983055218079493e-05,
|
| 800 |
+
"loss": 2.7656,
|
| 801 |
+
"step": 224
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.07605906356484793,
|
| 805 |
+
"grad_norm": 0.9746289849281311,
|
| 806 |
+
"learning_rate": 9.982127459861408e-05,
|
| 807 |
+
"loss": 2.7765,
|
| 808 |
+
"step": 226
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.07673215262294392,
|
| 812 |
+
"grad_norm": 0.6946307420730591,
|
| 813 |
+
"learning_rate": 9.981175021218255e-05,
|
| 814 |
+
"loss": 2.7491,
|
| 815 |
+
"step": 228
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.07740524168103992,
|
| 819 |
+
"grad_norm": 0.8959107398986816,
|
| 820 |
+
"learning_rate": 9.980197906868215e-05,
|
| 821 |
+
"loss": 2.7565,
|
| 822 |
+
"step": 230
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.07807833073913592,
|
| 826 |
+
"grad_norm": 0.9889335036277771,
|
| 827 |
+
"learning_rate": 9.979196121651716e-05,
|
| 828 |
+
"loss": 2.7974,
|
| 829 |
+
"step": 232
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.07875141979723192,
|
| 833 |
+
"grad_norm": 0.9802746176719666,
|
| 834 |
+
"learning_rate": 9.978169670531388e-05,
|
| 835 |
+
"loss": 2.7772,
|
| 836 |
+
"step": 234
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.07942450885532792,
|
| 840 |
+
"grad_norm": 0.6934760808944702,
|
| 841 |
+
"learning_rate": 9.977118558592059e-05,
|
| 842 |
+
"loss": 2.7602,
|
| 843 |
+
"step": 236
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.08009759791342393,
|
| 847 |
+
"grad_norm": 0.8996357917785645,
|
| 848 |
+
"learning_rate": 9.97604279104072e-05,
|
| 849 |
+
"loss": 2.7669,
|
| 850 |
+
"step": 238
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.08077068697151991,
|
| 854 |
+
"grad_norm": 0.8844061493873596,
|
| 855 |
+
"learning_rate": 9.974942373206499e-05,
|
| 856 |
+
"loss": 2.7458,
|
| 857 |
+
"step": 240
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.08144377602961592,
|
| 861 |
+
"grad_norm": 1.023626685142517,
|
| 862 |
+
"learning_rate": 9.973817310540638e-05,
|
| 863 |
+
"loss": 2.7639,
|
| 864 |
+
"step": 242
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.08211686508771192,
|
| 868 |
+
"grad_norm": 0.8241132497787476,
|
| 869 |
+
"learning_rate": 9.972667608616466e-05,
|
| 870 |
+
"loss": 2.7457,
|
| 871 |
+
"step": 244
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.08278995414580792,
|
| 875 |
+
"grad_norm": 0.7864794135093689,
|
| 876 |
+
"learning_rate": 9.971493273129364e-05,
|
| 877 |
+
"loss": 2.763,
|
| 878 |
+
"step": 246
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.08346304320390392,
|
| 882 |
+
"grad_norm": 1.071751356124878,
|
| 883 |
+
"learning_rate": 9.970294309896747e-05,
|
| 884 |
+
"loss": 2.7347,
|
| 885 |
+
"step": 248
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.08413613226199991,
|
| 889 |
+
"grad_norm": 0.8978875279426575,
|
| 890 |
+
"learning_rate": 9.969070724858031e-05,
|
| 891 |
+
"loss": 2.7807,
|
| 892 |
+
"step": 250
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.08480922132009591,
|
| 896 |
+
"grad_norm": 0.9984204769134521,
|
| 897 |
+
"learning_rate": 9.967822524074602e-05,
|
| 898 |
+
"loss": 2.7399,
|
| 899 |
+
"step": 252
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.08548231037819191,
|
| 903 |
+
"grad_norm": 0.8611739873886108,
|
| 904 |
+
"learning_rate": 9.966549713729787e-05,
|
| 905 |
+
"loss": 2.753,
|
| 906 |
+
"step": 254
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.08615539943628792,
|
| 910 |
+
"grad_norm": 0.8647720217704773,
|
| 911 |
+
"learning_rate": 9.965252300128826e-05,
|
| 912 |
+
"loss": 2.7224,
|
| 913 |
+
"step": 256
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.08682848849438392,
|
| 917 |
+
"grad_norm": 0.8688477873802185,
|
| 918 |
+
"learning_rate": 9.963930289698833e-05,
|
| 919 |
+
"loss": 2.6879,
|
| 920 |
+
"step": 258
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.0875015775524799,
|
| 924 |
+
"grad_norm": 1.1445469856262207,
|
| 925 |
+
"learning_rate": 9.962583688988778e-05,
|
| 926 |
+
"loss": 2.739,
|
| 927 |
+
"step": 260
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.08817466661057591,
|
| 931 |
+
"grad_norm": 0.8668599128723145,
|
| 932 |
+
"learning_rate": 9.961212504669437e-05,
|
| 933 |
+
"loss": 2.6962,
|
| 934 |
+
"step": 262
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.08884775566867191,
|
| 938 |
+
"grad_norm": 0.905125617980957,
|
| 939 |
+
"learning_rate": 9.959816743533375e-05,
|
| 940 |
+
"loss": 2.7239,
|
| 941 |
+
"step": 264
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.08952084472676791,
|
| 945 |
+
"grad_norm": 0.8252028822898865,
|
| 946 |
+
"learning_rate": 9.958396412494901e-05,
|
| 947 |
+
"loss": 2.7381,
|
| 948 |
+
"step": 266
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.09019393378486391,
|
| 952 |
+
"grad_norm": 0.7380514740943909,
|
| 953 |
+
"learning_rate": 9.956951518590043e-05,
|
| 954 |
+
"loss": 2.7135,
|
| 955 |
+
"step": 268
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.09086702284295992,
|
| 959 |
+
"grad_norm": 0.7395239472389221,
|
| 960 |
+
"learning_rate": 9.955482068976502e-05,
|
| 961 |
+
"loss": 2.6954,
|
| 962 |
+
"step": 270
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.0915401119010559,
|
| 966 |
+
"grad_norm": 0.6564229726791382,
|
| 967 |
+
"learning_rate": 9.953988070933628e-05,
|
| 968 |
+
"loss": 2.7145,
|
| 969 |
+
"step": 272
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.0922132009591519,
|
| 973 |
+
"grad_norm": 0.7306910157203674,
|
| 974 |
+
"learning_rate": 9.952469531862378e-05,
|
| 975 |
+
"loss": 2.6951,
|
| 976 |
+
"step": 274
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.09288629001724791,
|
| 980 |
+
"grad_norm": 0.6810031533241272,
|
| 981 |
+
"learning_rate": 9.950926459285277e-05,
|
| 982 |
+
"loss": 2.7201,
|
| 983 |
+
"step": 276
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.09355937907534391,
|
| 987 |
+
"grad_norm": 0.6724168658256531,
|
| 988 |
+
"learning_rate": 9.949358860846388e-05,
|
| 989 |
+
"loss": 2.7112,
|
| 990 |
+
"step": 278
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.09423246813343991,
|
| 994 |
+
"grad_norm": 0.7065703272819519,
|
| 995 |
+
"learning_rate": 9.947766744311268e-05,
|
| 996 |
+
"loss": 2.6884,
|
| 997 |
+
"step": 280
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.0949055571915359,
|
| 1001 |
+
"grad_norm": 0.8231908679008484,
|
| 1002 |
+
"learning_rate": 9.946150117566931e-05,
|
| 1003 |
+
"loss": 2.7286,
|
| 1004 |
+
"step": 282
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.0955786462496319,
|
| 1008 |
+
"grad_norm": 0.9570270776748657,
|
| 1009 |
+
"learning_rate": 9.944508988621812e-05,
|
| 1010 |
+
"loss": 2.7166,
|
| 1011 |
+
"step": 284
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.0962517353077279,
|
| 1015 |
+
"grad_norm": 0.9357023239135742,
|
| 1016 |
+
"learning_rate": 9.94284336560572e-05,
|
| 1017 |
+
"loss": 2.6768,
|
| 1018 |
+
"step": 286
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.0969248243658239,
|
| 1022 |
+
"grad_norm": 0.6350796222686768,
|
| 1023 |
+
"learning_rate": 9.941153256769809e-05,
|
| 1024 |
+
"loss": 2.6921,
|
| 1025 |
+
"step": 288
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.09759791342391991,
|
| 1029 |
+
"grad_norm": 0.6700872778892517,
|
| 1030 |
+
"learning_rate": 9.939438670486525e-05,
|
| 1031 |
+
"loss": 2.6847,
|
| 1032 |
+
"step": 290
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 0.0982710024820159,
|
| 1036 |
+
"grad_norm": 0.6851752400398254,
|
| 1037 |
+
"learning_rate": 9.937699615249572e-05,
|
| 1038 |
+
"loss": 2.6586,
|
| 1039 |
+
"step": 292
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 0.0989440915401119,
|
| 1043 |
+
"grad_norm": 0.7098946571350098,
|
| 1044 |
+
"learning_rate": 9.935936099673871e-05,
|
| 1045 |
+
"loss": 2.6793,
|
| 1046 |
+
"step": 294
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.0996171805982079,
|
| 1050 |
+
"grad_norm": 0.680543839931488,
|
| 1051 |
+
"learning_rate": 9.934148132495511e-05,
|
| 1052 |
+
"loss": 2.6763,
|
| 1053 |
+
"step": 296
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.1002902696563039,
|
| 1057 |
+
"grad_norm": 0.6832155585289001,
|
| 1058 |
+
"learning_rate": 9.932335722571709e-05,
|
| 1059 |
+
"loss": 2.6768,
|
| 1060 |
+
"step": 298
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.1009633587143999,
|
| 1064 |
+
"grad_norm": 0.8236553072929382,
|
| 1065 |
+
"learning_rate": 9.930498878880768e-05,
|
| 1066 |
+
"loss": 2.6738,
|
| 1067 |
+
"step": 300
|
| 1068 |
+
}
|
| 1069 |
+
],
|
| 1070 |
+
"logging_steps": 2,
|
| 1071 |
+
"max_steps": 2972,
|
| 1072 |
+
"num_input_tokens_seen": 0,
|
| 1073 |
+
"num_train_epochs": 1,
|
| 1074 |
+
"save_steps": 300,
|
| 1075 |
+
"stateful_callbacks": {
|
| 1076 |
+
"TrainerControl": {
|
| 1077 |
+
"args": {
|
| 1078 |
+
"should_epoch_stop": false,
|
| 1079 |
+
"should_evaluate": false,
|
| 1080 |
+
"should_log": false,
|
| 1081 |
+
"should_save": true,
|
| 1082 |
+
"should_training_stop": false
|
| 1083 |
+
},
|
| 1084 |
+
"attributes": {}
|
| 1085 |
+
}
|
| 1086 |
+
},
|
| 1087 |
+
"total_flos": 3.377550336196608e+17,
|
| 1088 |
+
"train_batch_size": 16,
|
| 1089 |
+
"trial_name": null,
|
| 1090 |
+
"trial_params": null
|
| 1091 |
+
}
|
q2.5-eu-en/checkpoint-300/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
q2.5-eu-en/checkpoint-300/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
q2.5/checkpoint-12000/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
q2.5/checkpoint-12000/chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
q2.5/checkpoint-12000/config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"eos_token_id": 151643,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 896,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 4864,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 24,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 14,
|
| 16 |
+
"num_hidden_layers": 24,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.52.4",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"use_mrope": false,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 151665
|
| 29 |
+
}
|
q2.5/checkpoint-12000/generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"transformers_version": "4.52.4"
|
| 6 |
+
}
|
q2.5/checkpoint-12000/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step12000
|