tvkain commited on
Commit
7ca4168
·
verified ·
1 Parent(s): b1e8faf

Add files using upload-large-folder tool

Browse files
Files changed (49) hide show
  1. l2-13b-ga/checkpoint-1300/config.json +30 -0
  2. l2-13b-ga/checkpoint-1300/generation_config.json +10 -0
  3. l2-13b-ga/checkpoint-1300/latest +1 -0
  4. l2-13b-ga/checkpoint-1300/model.safetensors.index.json +370 -0
  5. l2-13b-ga/checkpoint-1300/special_tokens_map.json +23 -0
  6. l2-13b-ga/checkpoint-1300/tokenizer.json +0 -0
  7. l2-13b-ga/checkpoint-1300/tokenizer_config.json +42 -0
  8. l2-13b-ga/checkpoint-1300/trainer_state.json +950 -0
  9. l2-13b-ga/checkpoint-1300/zero_to_fp32.py +592 -0
  10. l2-13b-ga/checkpoint-1600/model.safetensors.index.json +370 -0
  11. l2-13b-ga/checkpoint-1600/tokenizer.json +0 -0
  12. l2-13b-ga/checkpoint-1600/trainer_state.json +1160 -0
  13. l2-13b-ga/checkpoint-1600/zero_to_fp32.py +592 -0
  14. l2-13b-ga/checkpoint-2500/config.json +30 -0
  15. l2-13b-ga/checkpoint-2500/generation_config.json +10 -0
  16. l2-13b-ga/checkpoint-2500/latest +1 -0
  17. l2-13b-ga/checkpoint-2500/model.safetensors.index.json +370 -0
  18. l2-13b-ga/checkpoint-2500/special_tokens_map.json +23 -0
  19. l2-13b-ga/checkpoint-2500/tokenizer.json +0 -0
  20. l2-13b-ga/checkpoint-2500/tokenizer_config.json +42 -0
  21. l2-13b-ga/checkpoint-2500/trainer_state.json +1790 -0
  22. l2-13b-ga/checkpoint-2500/zero_to_fp32.py +592 -0
  23. l2-13b-ga/checkpoint-3700/config.json +30 -0
  24. l2-13b-ga/checkpoint-3700/generation_config.json +10 -0
  25. l2-13b-ga/checkpoint-3700/latest +1 -0
  26. l2-13b-ga/checkpoint-3700/model.safetensors.index.json +370 -0
  27. l2-13b-ga/checkpoint-3700/special_tokens_map.json +23 -0
  28. l2-13b-ga/checkpoint-3700/tokenizer.json +0 -0
  29. l2-13b-ga/checkpoint-3700/tokenizer_config.json +42 -0
  30. l2-13b-ga/checkpoint-3700/trainer_state.json +2630 -0
  31. l2-13b-ga/checkpoint-3700/zero_to_fp32.py +592 -0
  32. l2-13b-ga/checkpoint-4280/config.json +30 -0
  33. l2-13b-ga/checkpoint-4280/generation_config.json +10 -0
  34. l2-13b-ga/checkpoint-4280/latest +1 -0
  35. l2-13b-ga/checkpoint-4280/model.safetensors.index.json +370 -0
  36. l2-13b-ga/checkpoint-4280/special_tokens_map.json +23 -0
  37. l2-13b-ga/checkpoint-4280/tokenizer.json +0 -0
  38. l2-13b-ga/checkpoint-4280/tokenizer_config.json +42 -0
  39. l2-13b-ga/checkpoint-4280/trainer_state.json +3036 -0
  40. l2-13b-ga/checkpoint-4280/zero_to_fp32.py +592 -0
  41. l2-13b-ga/checkpoint-700/config.json +30 -0
  42. l2-13b-ga/checkpoint-700/generation_config.json +10 -0
  43. l2-13b-ga/checkpoint-700/latest +1 -0
  44. l2-13b-ga/checkpoint-700/model.safetensors.index.json +370 -0
  45. l2-13b-ga/checkpoint-700/special_tokens_map.json +23 -0
  46. l2-13b-ga/checkpoint-700/tokenizer.json +0 -0
  47. l2-13b-ga/checkpoint-700/tokenizer_config.json +42 -0
  48. l2-13b-ga/checkpoint-700/trainer_state.json +530 -0
  49. l2-13b-ga/checkpoint-700/zero_to_fp32.py +592 -0
l2-13b-ga/checkpoint-1300/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-13b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
l2-13b-ga/checkpoint-1300/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
l2-13b-ga/checkpoint-1300/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1300
l2-13b-ga/checkpoint-1300/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
l2-13b-ga/checkpoint-1300/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
l2-13b-ga/checkpoint-1300/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
l2-13b-ga/checkpoint-1300/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
l2-13b-ga/checkpoint-1300/trainer_state.json ADDED
@@ -0,0 +1,950 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.2142190053700677,
5
+ "eval_steps": 500,
6
+ "global_step": 1300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0009339248190520663,
13
+ "grad_norm": 6.638877692627699,
14
+ "learning_rate": 9.345794392523364e-07,
15
+ "loss": 9.2917,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.009339248190520663,
20
+ "grad_norm": 1.1560921335705272,
21
+ "learning_rate": 9.345794392523365e-06,
22
+ "loss": 9.0876,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.018678496381041326,
27
+ "grad_norm": 0.8415132296956432,
28
+ "learning_rate": 1.869158878504673e-05,
29
+ "loss": 8.2164,
30
+ "step": 20
31
+ },
32
+ {
33
+ "epoch": 0.02801774457156199,
34
+ "grad_norm": 0.45381630992958155,
35
+ "learning_rate": 2.8037383177570094e-05,
36
+ "loss": 7.5184,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.03735699276208265,
41
+ "grad_norm": 0.8400636107958425,
42
+ "learning_rate": 3.738317757009346e-05,
43
+ "loss": 6.6507,
44
+ "step": 40
45
+ },
46
+ {
47
+ "epoch": 0.046696240952603316,
48
+ "grad_norm": 0.557696240829066,
49
+ "learning_rate": 4.672897196261683e-05,
50
+ "loss": 5.8909,
51
+ "step": 50
52
+ },
53
+ {
54
+ "epoch": 0.05603548914312398,
55
+ "grad_norm": 0.3971996057467842,
56
+ "learning_rate": 5.607476635514019e-05,
57
+ "loss": 5.4127,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 0.06537473733364464,
62
+ "grad_norm": 0.2932710540265688,
63
+ "learning_rate": 6.542056074766355e-05,
64
+ "loss": 5.0106,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.0747139855241653,
69
+ "grad_norm": 0.3682690443551033,
70
+ "learning_rate": 7.476635514018692e-05,
71
+ "loss": 4.6042,
72
+ "step": 80
73
+ },
74
+ {
75
+ "epoch": 0.08405323371468597,
76
+ "grad_norm": 0.3132971920011515,
77
+ "learning_rate": 8.411214953271028e-05,
78
+ "loss": 4.2031,
79
+ "step": 90
80
+ },
81
+ {
82
+ "epoch": 0.09339248190520663,
83
+ "grad_norm": 0.6731868159213446,
84
+ "learning_rate": 9.345794392523365e-05,
85
+ "loss": 3.9423,
86
+ "step": 100
87
+ },
88
+ {
89
+ "epoch": 0.1027317300957273,
90
+ "grad_norm": 0.27848867836763197,
91
+ "learning_rate": 0.000102803738317757,
92
+ "loss": 3.7157,
93
+ "step": 110
94
+ },
95
+ {
96
+ "epoch": 0.11207097828624796,
97
+ "grad_norm": 0.24642109032991807,
98
+ "learning_rate": 0.00011214953271028037,
99
+ "loss": 3.4516,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 0.12141022647676862,
104
+ "grad_norm": 0.25717384664029797,
105
+ "learning_rate": 0.00012149532710280373,
106
+ "loss": 3.2167,
107
+ "step": 130
108
+ },
109
+ {
110
+ "epoch": 0.13074947466728928,
111
+ "grad_norm": 0.20912922668565637,
112
+ "learning_rate": 0.0001308411214953271,
113
+ "loss": 3.0237,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.14008872285780993,
118
+ "grad_norm": 0.15805888388706113,
119
+ "learning_rate": 0.00014018691588785047,
120
+ "loss": 2.8529,
121
+ "step": 150
122
+ },
123
+ {
124
+ "epoch": 0.1494279710483306,
125
+ "grad_norm": 0.23370349497479534,
126
+ "learning_rate": 0.00014953271028037384,
127
+ "loss": 2.7078,
128
+ "step": 160
129
+ },
130
+ {
131
+ "epoch": 0.15876721923885126,
132
+ "grad_norm": 0.1802138633012483,
133
+ "learning_rate": 0.0001588785046728972,
134
+ "loss": 2.6115,
135
+ "step": 170
136
+ },
137
+ {
138
+ "epoch": 0.16810646742937194,
139
+ "grad_norm": 0.13354347610039718,
140
+ "learning_rate": 0.00016822429906542056,
141
+ "loss": 2.5309,
142
+ "step": 180
143
+ },
144
+ {
145
+ "epoch": 0.17744571561989259,
146
+ "grad_norm": 0.09414865188086892,
147
+ "learning_rate": 0.00017757009345794393,
148
+ "loss": 2.4452,
149
+ "step": 190
150
+ },
151
+ {
152
+ "epoch": 0.18678496381041326,
153
+ "grad_norm": 0.08333601554768896,
154
+ "learning_rate": 0.0001869158878504673,
155
+ "loss": 2.3832,
156
+ "step": 200
157
+ },
158
+ {
159
+ "epoch": 0.1961242120009339,
160
+ "grad_norm": 0.15926414699806835,
161
+ "learning_rate": 0.00019626168224299065,
162
+ "loss": 2.3492,
163
+ "step": 210
164
+ },
165
+ {
166
+ "epoch": 0.2054634601914546,
167
+ "grad_norm": 0.09492820761057012,
168
+ "learning_rate": 0.0001999989254250208,
169
+ "loss": 2.323,
170
+ "step": 220
171
+ },
172
+ {
173
+ "epoch": 0.21480270838197524,
174
+ "grad_norm": 0.0801349259356147,
175
+ "learning_rate": 0.00019999235866155886,
176
+ "loss": 2.2731,
177
+ "step": 230
178
+ },
179
+ {
180
+ "epoch": 0.22414195657249592,
181
+ "grad_norm": 0.12210960524693895,
182
+ "learning_rate": 0.00019997982251228469,
183
+ "loss": 2.2433,
184
+ "step": 240
185
+ },
186
+ {
187
+ "epoch": 0.23348120476301656,
188
+ "grad_norm": 3.14289498732125,
189
+ "learning_rate": 0.00019996131772558666,
190
+ "loss": 3.2769,
191
+ "step": 250
192
+ },
193
+ {
194
+ "epoch": 0.24282045295353724,
195
+ "grad_norm": 1.632940983166179,
196
+ "learning_rate": 0.00019993684540617132,
197
+ "loss": 4.9343,
198
+ "step": 260
199
+ },
200
+ {
201
+ "epoch": 0.2521597011440579,
202
+ "grad_norm": 3.4831252230225416,
203
+ "learning_rate": 0.00019990640701499736,
204
+ "loss": 4.2768,
205
+ "step": 270
206
+ },
207
+ {
208
+ "epoch": 0.26149894933457857,
209
+ "grad_norm": 1.6069045920523788,
210
+ "learning_rate": 0.00019987000436918874,
211
+ "loss": 5.9581,
212
+ "step": 280
213
+ },
214
+ {
215
+ "epoch": 0.27083819752509924,
216
+ "grad_norm": 0.2220907936615993,
217
+ "learning_rate": 0.00019982763964192585,
218
+ "loss": 3.8228,
219
+ "step": 290
220
+ },
221
+ {
222
+ "epoch": 0.28017744571561987,
223
+ "grad_norm": 0.24737284913291765,
224
+ "learning_rate": 0.00019977931536231596,
225
+ "loss": 3.1413,
226
+ "step": 300
227
+ },
228
+ {
229
+ "epoch": 0.28951669390614054,
230
+ "grad_norm": 4.010404518241152,
231
+ "learning_rate": 0.00019972503441524224,
232
+ "loss": 2.8432,
233
+ "step": 310
234
+ },
235
+ {
236
+ "epoch": 0.2988559420966612,
237
+ "grad_norm": 0.1515583580811596,
238
+ "learning_rate": 0.00019966480004119142,
239
+ "loss": 2.7859,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 0.3081951902871819,
244
+ "grad_norm": 0.11259395750650594,
245
+ "learning_rate": 0.00019959861583606045,
246
+ "loss": 2.5821,
247
+ "step": 330
248
+ },
249
+ {
250
+ "epoch": 0.3175344384777025,
251
+ "grad_norm": 0.22514797814956813,
252
+ "learning_rate": 0.00019952648575094183,
253
+ "loss": 2.4517,
254
+ "step": 340
255
+ },
256
+ {
257
+ "epoch": 0.3268736866682232,
258
+ "grad_norm": 0.08040136172033542,
259
+ "learning_rate": 0.00019944841409188767,
260
+ "loss": 2.3794,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 0.3362129348587439,
265
+ "grad_norm": 0.054758073593565354,
266
+ "learning_rate": 0.00019936440551965263,
267
+ "loss": 2.3232,
268
+ "step": 360
269
+ },
270
+ {
271
+ "epoch": 0.34555218304926455,
272
+ "grad_norm": 0.06742998909645591,
273
+ "learning_rate": 0.00019927446504941577,
274
+ "loss": 2.2776,
275
+ "step": 370
276
+ },
277
+ {
278
+ "epoch": 0.35489143123978517,
279
+ "grad_norm": 0.048780907584876736,
280
+ "learning_rate": 0.00019917859805048096,
281
+ "loss": 2.2376,
282
+ "step": 380
283
+ },
284
+ {
285
+ "epoch": 0.36423067943030585,
286
+ "grad_norm": 0.0475325963052214,
287
+ "learning_rate": 0.00019907681024595663,
288
+ "loss": 2.2191,
289
+ "step": 390
290
+ },
291
+ {
292
+ "epoch": 0.3735699276208265,
293
+ "grad_norm": 0.054089563211590065,
294
+ "learning_rate": 0.00019896910771241387,
295
+ "loss": 2.1961,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 0.3829091758113472,
300
+ "grad_norm": 0.21798406131864823,
301
+ "learning_rate": 0.00019885549687952372,
302
+ "loss": 2.2078,
303
+ "step": 410
304
+ },
305
+ {
306
+ "epoch": 0.3922484240018678,
307
+ "grad_norm": 0.8673185709111124,
308
+ "learning_rate": 0.00019873598452967338,
309
+ "loss": 2.3731,
310
+ "step": 420
311
+ },
312
+ {
313
+ "epoch": 0.4015876721923885,
314
+ "grad_norm": 0.22424350669971718,
315
+ "learning_rate": 0.0001986105777975613,
316
+ "loss": 2.6195,
317
+ "step": 430
318
+ },
319
+ {
320
+ "epoch": 0.4109269203829092,
321
+ "grad_norm": 0.307418135168262,
322
+ "learning_rate": 0.00019847928416977126,
323
+ "loss": 2.3624,
324
+ "step": 440
325
+ },
326
+ {
327
+ "epoch": 0.42026616857342985,
328
+ "grad_norm": 0.07944722668080402,
329
+ "learning_rate": 0.00019834211148432536,
330
+ "loss": 2.2799,
331
+ "step": 450
332
+ },
333
+ {
334
+ "epoch": 0.4296054167639505,
335
+ "grad_norm": 0.18146933758664588,
336
+ "learning_rate": 0.00019819906793021614,
337
+ "loss": 2.2177,
338
+ "step": 460
339
+ },
340
+ {
341
+ "epoch": 0.43894466495447115,
342
+ "grad_norm": 0.07035825837333018,
343
+ "learning_rate": 0.0001980501620469178,
344
+ "loss": 2.1767,
345
+ "step": 470
346
+ },
347
+ {
348
+ "epoch": 0.44828391314499183,
349
+ "grad_norm": 0.04596186944454228,
350
+ "learning_rate": 0.0001978954027238763,
351
+ "loss": 2.1598,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 0.4576231613355125,
356
+ "grad_norm": 0.041342347745088055,
357
+ "learning_rate": 0.0001977347991999786,
358
+ "loss": 2.131,
359
+ "step": 490
360
+ },
361
+ {
362
+ "epoch": 0.46696240952603313,
363
+ "grad_norm": 0.04172063219841485,
364
+ "learning_rate": 0.00019756836106300137,
365
+ "loss": 2.1231,
366
+ "step": 500
367
+ },
368
+ {
369
+ "epoch": 0.4763016577165538,
370
+ "grad_norm": 0.03373646457711144,
371
+ "learning_rate": 0.00019739609824903843,
372
+ "loss": 2.1146,
373
+ "step": 510
374
+ },
375
+ {
376
+ "epoch": 0.4856409059070745,
377
+ "grad_norm": 0.03736871030676605,
378
+ "learning_rate": 0.00019721802104190748,
379
+ "loss": 2.1003,
380
+ "step": 520
381
+ },
382
+ {
383
+ "epoch": 0.49498015409759516,
384
+ "grad_norm": 0.033931028038211034,
385
+ "learning_rate": 0.00019703414007253645,
386
+ "loss": 2.0983,
387
+ "step": 530
388
+ },
389
+ {
390
+ "epoch": 0.5043194022881158,
391
+ "grad_norm": 0.03790055446070549,
392
+ "learning_rate": 0.00019684446631832868,
393
+ "loss": 2.092,
394
+ "step": 540
395
+ },
396
+ {
397
+ "epoch": 0.5136586504786365,
398
+ "grad_norm": 0.030956192803893078,
399
+ "learning_rate": 0.00019664901110250758,
400
+ "loss": 2.0807,
401
+ "step": 550
402
+ },
403
+ {
404
+ "epoch": 0.5229978986691571,
405
+ "grad_norm": 0.03542530209935129,
406
+ "learning_rate": 0.00019644778609344068,
407
+ "loss": 2.0773,
408
+ "step": 560
409
+ },
410
+ {
411
+ "epoch": 0.5323371468596778,
412
+ "grad_norm": 0.040947757568902336,
413
+ "learning_rate": 0.00019624080330394306,
414
+ "loss": 2.0649,
415
+ "step": 570
416
+ },
417
+ {
418
+ "epoch": 0.5416763950501985,
419
+ "grad_norm": 0.034273415973688146,
420
+ "learning_rate": 0.00019602807509056018,
421
+ "loss": 2.0479,
422
+ "step": 580
423
+ },
424
+ {
425
+ "epoch": 0.5510156432407192,
426
+ "grad_norm": 0.031427481498873144,
427
+ "learning_rate": 0.00019580961415283028,
428
+ "loss": 2.0563,
429
+ "step": 590
430
+ },
431
+ {
432
+ "epoch": 0.5603548914312397,
433
+ "grad_norm": 0.03141549752041532,
434
+ "learning_rate": 0.00019558543353252611,
435
+ "loss": 2.0503,
436
+ "step": 600
437
+ },
438
+ {
439
+ "epoch": 0.5696941396217604,
440
+ "grad_norm": 0.033012392726428204,
441
+ "learning_rate": 0.00019535554661287652,
442
+ "loss": 2.0389,
443
+ "step": 610
444
+ },
445
+ {
446
+ "epoch": 0.5790333878122811,
447
+ "grad_norm": 0.02913261992661444,
448
+ "learning_rate": 0.0001951199671177673,
449
+ "loss": 2.036,
450
+ "step": 620
451
+ },
452
+ {
453
+ "epoch": 0.5883726360028018,
454
+ "grad_norm": 0.030543903708435332,
455
+ "learning_rate": 0.00019487870911092214,
456
+ "loss": 2.0326,
457
+ "step": 630
458
+ },
459
+ {
460
+ "epoch": 0.5977118841933224,
461
+ "grad_norm": 0.03215005545393897,
462
+ "learning_rate": 0.00019463178699506277,
463
+ "loss": 2.0231,
464
+ "step": 640
465
+ },
466
+ {
467
+ "epoch": 0.6070511323838431,
468
+ "grad_norm": 0.03823630791937631,
469
+ "learning_rate": 0.00019437921551104933,
470
+ "loss": 2.0293,
471
+ "step": 650
472
+ },
473
+ {
474
+ "epoch": 0.6163903805743638,
475
+ "grad_norm": 0.03200103149471209,
476
+ "learning_rate": 0.00019412100973700038,
477
+ "loss": 2.017,
478
+ "step": 660
479
+ },
480
+ {
481
+ "epoch": 0.6257296287648845,
482
+ "grad_norm": 0.03841804153577787,
483
+ "learning_rate": 0.00019385718508739262,
484
+ "loss": 2.0135,
485
+ "step": 670
486
+ },
487
+ {
488
+ "epoch": 0.635068876955405,
489
+ "grad_norm": 0.03052396655271533,
490
+ "learning_rate": 0.0001935877573121407,
491
+ "loss": 2.0237,
492
+ "step": 680
493
+ },
494
+ {
495
+ "epoch": 0.6444081251459257,
496
+ "grad_norm": 0.033817837533771815,
497
+ "learning_rate": 0.00019331274249565717,
498
+ "loss": 2.0069,
499
+ "step": 690
500
+ },
501
+ {
502
+ "epoch": 0.6537473733364464,
503
+ "grad_norm": 0.028286999650643876,
504
+ "learning_rate": 0.00019303215705589194,
505
+ "loss": 2.0112,
506
+ "step": 700
507
+ },
508
+ {
509
+ "epoch": 0.6630866215269671,
510
+ "grad_norm": 0.030693948626257357,
511
+ "learning_rate": 0.00019274601774335243,
512
+ "loss": 2.0,
513
+ "step": 710
514
+ },
515
+ {
516
+ "epoch": 0.6724258697174877,
517
+ "grad_norm": 0.029984615635953022,
518
+ "learning_rate": 0.0001924543416401035,
519
+ "loss": 2.0028,
520
+ "step": 720
521
+ },
522
+ {
523
+ "epoch": 0.6817651179080084,
524
+ "grad_norm": 0.02915985673921391,
525
+ "learning_rate": 0.00019215714615874755,
526
+ "loss": 2.0031,
527
+ "step": 730
528
+ },
529
+ {
530
+ "epoch": 0.6911043660985291,
531
+ "grad_norm": 0.028305399777245336,
532
+ "learning_rate": 0.00019185444904138528,
533
+ "loss": 1.9924,
534
+ "step": 740
535
+ },
536
+ {
537
+ "epoch": 0.7004436142890498,
538
+ "grad_norm": 0.036720505429756495,
539
+ "learning_rate": 0.00019154626835855628,
540
+ "loss": 1.9981,
541
+ "step": 750
542
+ },
543
+ {
544
+ "epoch": 0.7097828624795703,
545
+ "grad_norm": 0.0287124048917296,
546
+ "learning_rate": 0.00019123262250816034,
547
+ "loss": 1.9868,
548
+ "step": 760
549
+ },
550
+ {
551
+ "epoch": 0.719122110670091,
552
+ "grad_norm": 0.03318092492837997,
553
+ "learning_rate": 0.00019091353021435915,
554
+ "loss": 1.9943,
555
+ "step": 770
556
+ },
557
+ {
558
+ "epoch": 0.7284613588606117,
559
+ "grad_norm": 0.054035272137015325,
560
+ "learning_rate": 0.00019058901052645844,
561
+ "loss": 1.9838,
562
+ "step": 780
563
+ },
564
+ {
565
+ "epoch": 0.7378006070511324,
566
+ "grad_norm": 0.03184392761983255,
567
+ "learning_rate": 0.00019025908281777078,
568
+ "loss": 1.982,
569
+ "step": 790
570
+ },
571
+ {
572
+ "epoch": 0.747139855241653,
573
+ "grad_norm": 0.029409948164434735,
574
+ "learning_rate": 0.00018992376678445908,
575
+ "loss": 1.9693,
576
+ "step": 800
577
+ },
578
+ {
579
+ "epoch": 0.7564791034321737,
580
+ "grad_norm": 0.029656963043919016,
581
+ "learning_rate": 0.00018958308244436064,
582
+ "loss": 1.9914,
583
+ "step": 810
584
+ },
585
+ {
586
+ "epoch": 0.7658183516226944,
587
+ "grad_norm": 0.030843610865326686,
588
+ "learning_rate": 0.00018923705013579233,
589
+ "loss": 1.9749,
590
+ "step": 820
591
+ },
592
+ {
593
+ "epoch": 0.7751575998132151,
594
+ "grad_norm": 0.0377584286045999,
595
+ "learning_rate": 0.00018888569051633613,
596
+ "loss": 1.9606,
597
+ "step": 830
598
+ },
599
+ {
600
+ "epoch": 0.7844968480037356,
601
+ "grad_norm": 0.03147699916274391,
602
+ "learning_rate": 0.00018852902456160616,
603
+ "loss": 1.9696,
604
+ "step": 840
605
+ },
606
+ {
607
+ "epoch": 0.7938360961942563,
608
+ "grad_norm": 0.029193153251471263,
609
+ "learning_rate": 0.0001881670735639963,
610
+ "loss": 1.9687,
611
+ "step": 850
612
+ },
613
+ {
614
+ "epoch": 0.803175344384777,
615
+ "grad_norm": 0.030201895228156087,
616
+ "learning_rate": 0.00018779985913140924,
617
+ "loss": 1.9678,
618
+ "step": 860
619
+ },
620
+ {
621
+ "epoch": 0.8125145925752977,
622
+ "grad_norm": 0.029272319485493213,
623
+ "learning_rate": 0.00018742740318596632,
624
+ "loss": 1.9697,
625
+ "step": 870
626
+ },
627
+ {
628
+ "epoch": 0.8218538407658184,
629
+ "grad_norm": 0.033740176465285654,
630
+ "learning_rate": 0.000187049727962699,
631
+ "loss": 1.9647,
632
+ "step": 880
633
+ },
634
+ {
635
+ "epoch": 0.831193088956339,
636
+ "grad_norm": 0.029539399251208593,
637
+ "learning_rate": 0.0001866668560082213,
638
+ "loss": 1.9627,
639
+ "step": 890
640
+ },
641
+ {
642
+ "epoch": 0.8405323371468597,
643
+ "grad_norm": 0.028666077337951026,
644
+ "learning_rate": 0.0001862788101793839,
645
+ "loss": 1.9529,
646
+ "step": 900
647
+ },
648
+ {
649
+ "epoch": 0.8498715853373804,
650
+ "grad_norm": 0.030280792492665805,
651
+ "learning_rate": 0.0001858856136419097,
652
+ "loss": 1.9536,
653
+ "step": 910
654
+ },
655
+ {
656
+ "epoch": 0.859210833527901,
657
+ "grad_norm": 0.03921536105057096,
658
+ "learning_rate": 0.0001854872898690106,
659
+ "loss": 1.9474,
660
+ "step": 920
661
+ },
662
+ {
663
+ "epoch": 0.8685500817184216,
664
+ "grad_norm": 0.030632523637038354,
665
+ "learning_rate": 0.0001850838626399865,
666
+ "loss": 1.9423,
667
+ "step": 930
668
+ },
669
+ {
670
+ "epoch": 0.8778893299089423,
671
+ "grad_norm": 0.04615147601979514,
672
+ "learning_rate": 0.00018467535603880548,
673
+ "loss": 1.946,
674
+ "step": 940
675
+ },
676
+ {
677
+ "epoch": 0.887228578099463,
678
+ "grad_norm": 0.028216236017006333,
679
+ "learning_rate": 0.00018426179445266616,
680
+ "loss": 1.9408,
681
+ "step": 950
682
+ },
683
+ {
684
+ "epoch": 0.8965678262899837,
685
+ "grad_norm": 0.0282407563402959,
686
+ "learning_rate": 0.00018384320257054177,
687
+ "loss": 1.9447,
688
+ "step": 960
689
+ },
690
+ {
691
+ "epoch": 0.9059070744805043,
692
+ "grad_norm": 0.029365880854687894,
693
+ "learning_rate": 0.0001834196053817062,
694
+ "loss": 1.9389,
695
+ "step": 970
696
+ },
697
+ {
698
+ "epoch": 0.915246322671025,
699
+ "grad_norm": 0.02855404439130719,
700
+ "learning_rate": 0.00018299102817424234,
701
+ "loss": 1.9425,
702
+ "step": 980
703
+ },
704
+ {
705
+ "epoch": 0.9245855708615457,
706
+ "grad_norm": 0.03238310984070135,
707
+ "learning_rate": 0.00018255749653353225,
708
+ "loss": 1.9392,
709
+ "step": 990
710
+ },
711
+ {
712
+ "epoch": 0.9339248190520663,
713
+ "grad_norm": 0.030115350805430388,
714
+ "learning_rate": 0.00018211903634072983,
715
+ "loss": 1.956,
716
+ "step": 1000
717
+ },
718
+ {
719
+ "epoch": 0.9432640672425869,
720
+ "grad_norm": 0.039090564032501135,
721
+ "learning_rate": 0.0001816756737712158,
722
+ "loss": 1.9358,
723
+ "step": 1010
724
+ },
725
+ {
726
+ "epoch": 0.9526033154331076,
727
+ "grad_norm": 0.028567954476327023,
728
+ "learning_rate": 0.000181227435293035,
729
+ "loss": 1.9342,
730
+ "step": 1020
731
+ },
732
+ {
733
+ "epoch": 0.9619425636236283,
734
+ "grad_norm": 0.028158653241284505,
735
+ "learning_rate": 0.00018077434766531624,
736
+ "loss": 1.9287,
737
+ "step": 1030
738
+ },
739
+ {
740
+ "epoch": 0.971281811814149,
741
+ "grad_norm": 0.02927795717651538,
742
+ "learning_rate": 0.00018031643793667504,
743
+ "loss": 1.9298,
744
+ "step": 1040
745
+ },
746
+ {
747
+ "epoch": 0.9806210600046696,
748
+ "grad_norm": 0.06298340584032344,
749
+ "learning_rate": 0.0001798537334435986,
750
+ "loss": 1.9303,
751
+ "step": 1050
752
+ },
753
+ {
754
+ "epoch": 0.9899603081951903,
755
+ "grad_norm": 0.03627278406983255,
756
+ "learning_rate": 0.00017938626180881407,
757
+ "loss": 1.9285,
758
+ "step": 1060
759
+ },
760
+ {
761
+ "epoch": 0.999299556385711,
762
+ "grad_norm": 0.03916823421329747,
763
+ "learning_rate": 0.00017891405093963938,
764
+ "loss": 1.9239,
765
+ "step": 1070
766
+ },
767
+ {
768
+ "epoch": 1.0087555451786132,
769
+ "grad_norm": 0.03383539251115568,
770
+ "learning_rate": 0.00017843712902631723,
771
+ "loss": 1.8855,
772
+ "step": 1080
773
+ },
774
+ {
775
+ "epoch": 1.0180947933691338,
776
+ "grad_norm": 0.02931021936560147,
777
+ "learning_rate": 0.00017795552454033224,
778
+ "loss": 1.8004,
779
+ "step": 1090
780
+ },
781
+ {
782
+ "epoch": 1.0274340415596543,
783
+ "grad_norm": 0.029173295095350292,
784
+ "learning_rate": 0.0001774692662327113,
785
+ "loss": 1.7912,
786
+ "step": 1100
787
+ },
788
+ {
789
+ "epoch": 1.0367732897501751,
790
+ "grad_norm": 0.035210065642974735,
791
+ "learning_rate": 0.000176978383132307,
792
+ "loss": 1.7902,
793
+ "step": 1110
794
+ },
795
+ {
796
+ "epoch": 1.0461125379406957,
797
+ "grad_norm": 0.029794447659573477,
798
+ "learning_rate": 0.00017648290454406475,
799
+ "loss": 1.8072,
800
+ "step": 1120
801
+ },
802
+ {
803
+ "epoch": 1.0554517861312165,
804
+ "grad_norm": 0.03194584938279939,
805
+ "learning_rate": 0.0001759828600472734,
806
+ "loss": 1.803,
807
+ "step": 1130
808
+ },
809
+ {
810
+ "epoch": 1.064791034321737,
811
+ "grad_norm": 0.031028415312581603,
812
+ "learning_rate": 0.00017547827949379924,
813
+ "loss": 1.7945,
814
+ "step": 1140
815
+ },
816
+ {
817
+ "epoch": 1.0741302825122578,
818
+ "grad_norm": 0.03313245828751237,
819
+ "learning_rate": 0.00017496919300630403,
820
+ "loss": 1.8139,
821
+ "step": 1150
822
+ },
823
+ {
824
+ "epoch": 1.0834695307027784,
825
+ "grad_norm": 0.03049431724979126,
826
+ "learning_rate": 0.00017445563097644664,
827
+ "loss": 1.8031,
828
+ "step": 1160
829
+ },
830
+ {
831
+ "epoch": 1.0928087788932992,
832
+ "grad_norm": 0.02880548705343715,
833
+ "learning_rate": 0.00017393762406306878,
834
+ "loss": 1.7974,
835
+ "step": 1170
836
+ },
837
+ {
838
+ "epoch": 1.1021480270838198,
839
+ "grad_norm": 0.03200427895977668,
840
+ "learning_rate": 0.00017341520319036469,
841
+ "loss": 1.7994,
842
+ "step": 1180
843
+ },
844
+ {
845
+ "epoch": 1.1114872752743403,
846
+ "grad_norm": 0.031293532815600045,
847
+ "learning_rate": 0.00017288839954603496,
848
+ "loss": 1.8073,
849
+ "step": 1190
850
+ },
851
+ {
852
+ "epoch": 1.1208265234648611,
853
+ "grad_norm": 0.032367211109345505,
854
+ "learning_rate": 0.00017235724457942468,
855
+ "loss": 1.7944,
856
+ "step": 1200
857
+ },
858
+ {
859
+ "epoch": 1.1301657716553817,
860
+ "grad_norm": 0.037783793923191374,
861
+ "learning_rate": 0.0001718217699996462,
862
+ "loss": 1.7948,
863
+ "step": 1210
864
+ },
865
+ {
866
+ "epoch": 1.1395050198459025,
867
+ "grad_norm": 0.02881083117349317,
868
+ "learning_rate": 0.00017128200777368567,
869
+ "loss": 1.8029,
870
+ "step": 1220
871
+ },
872
+ {
873
+ "epoch": 1.148844268036423,
874
+ "grad_norm": 0.032997408408175985,
875
+ "learning_rate": 0.00017073799012449524,
876
+ "loss": 1.7914,
877
+ "step": 1230
878
+ },
879
+ {
880
+ "epoch": 1.1581835162269438,
881
+ "grad_norm": 0.030263615801190885,
882
+ "learning_rate": 0.00017018974952906884,
883
+ "loss": 1.792,
884
+ "step": 1240
885
+ },
886
+ {
887
+ "epoch": 1.1675227644174644,
888
+ "grad_norm": 0.03286310429098484,
889
+ "learning_rate": 0.00016963731871650378,
890
+ "loss": 1.8149,
891
+ "step": 1250
892
+ },
893
+ {
894
+ "epoch": 1.1768620126079852,
895
+ "grad_norm": 0.031111621587597126,
896
+ "learning_rate": 0.00016908073066604663,
897
+ "loss": 1.8092,
898
+ "step": 1260
899
+ },
900
+ {
901
+ "epoch": 1.1862012607985057,
902
+ "grad_norm": 0.03372950172075241,
903
+ "learning_rate": 0.0001685200186051246,
904
+ "loss": 1.818,
905
+ "step": 1270
906
+ },
907
+ {
908
+ "epoch": 1.1955405089890263,
909
+ "grad_norm": 0.040782040436567434,
910
+ "learning_rate": 0.00016795521600736164,
911
+ "loss": 1.7999,
912
+ "step": 1280
913
+ },
914
+ {
915
+ "epoch": 1.204879757179547,
916
+ "grad_norm": 0.03451605168178924,
917
+ "learning_rate": 0.00016738635659058044,
918
+ "loss": 1.7945,
919
+ "step": 1290
920
+ },
921
+ {
922
+ "epoch": 1.2142190053700677,
923
+ "grad_norm": 0.03235681588882673,
924
+ "learning_rate": 0.00016681347431478933,
925
+ "loss": 1.8087,
926
+ "step": 1300
927
+ }
928
+ ],
929
+ "logging_steps": 10,
930
+ "max_steps": 4280,
931
+ "num_input_tokens_seen": 0,
932
+ "num_train_epochs": 4,
933
+ "save_steps": 100,
934
+ "stateful_callbacks": {
935
+ "TrainerControl": {
936
+ "args": {
937
+ "should_epoch_stop": false,
938
+ "should_evaluate": false,
939
+ "should_log": false,
940
+ "should_save": true,
941
+ "should_training_stop": false
942
+ },
943
+ "attributes": {}
944
+ }
945
+ },
946
+ "total_flos": 1.0526118085398626e+20,
947
+ "train_batch_size": 2,
948
+ "trial_name": null,
949
+ "trial_params": null
950
+ }
l2-13b-ga/checkpoint-1300/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
l2-13b-ga/checkpoint-1600/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
l2-13b-ga/checkpoint-1600/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
l2-13b-ga/checkpoint-1600/trainer_state.json ADDED
@@ -0,0 +1,1160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.4943964510856875,
5
+ "eval_steps": 500,
6
+ "global_step": 1600,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0009339248190520663,
13
+ "grad_norm": 6.638877692627699,
14
+ "learning_rate": 9.345794392523364e-07,
15
+ "loss": 9.2917,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.009339248190520663,
20
+ "grad_norm": 1.1560921335705272,
21
+ "learning_rate": 9.345794392523365e-06,
22
+ "loss": 9.0876,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.018678496381041326,
27
+ "grad_norm": 0.8415132296956432,
28
+ "learning_rate": 1.869158878504673e-05,
29
+ "loss": 8.2164,
30
+ "step": 20
31
+ },
32
+ {
33
+ "epoch": 0.02801774457156199,
34
+ "grad_norm": 0.45381630992958155,
35
+ "learning_rate": 2.8037383177570094e-05,
36
+ "loss": 7.5184,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.03735699276208265,
41
+ "grad_norm": 0.8400636107958425,
42
+ "learning_rate": 3.738317757009346e-05,
43
+ "loss": 6.6507,
44
+ "step": 40
45
+ },
46
+ {
47
+ "epoch": 0.046696240952603316,
48
+ "grad_norm": 0.557696240829066,
49
+ "learning_rate": 4.672897196261683e-05,
50
+ "loss": 5.8909,
51
+ "step": 50
52
+ },
53
+ {
54
+ "epoch": 0.05603548914312398,
55
+ "grad_norm": 0.3971996057467842,
56
+ "learning_rate": 5.607476635514019e-05,
57
+ "loss": 5.4127,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 0.06537473733364464,
62
+ "grad_norm": 0.2932710540265688,
63
+ "learning_rate": 6.542056074766355e-05,
64
+ "loss": 5.0106,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.0747139855241653,
69
+ "grad_norm": 0.3682690443551033,
70
+ "learning_rate": 7.476635514018692e-05,
71
+ "loss": 4.6042,
72
+ "step": 80
73
+ },
74
+ {
75
+ "epoch": 0.08405323371468597,
76
+ "grad_norm": 0.3132971920011515,
77
+ "learning_rate": 8.411214953271028e-05,
78
+ "loss": 4.2031,
79
+ "step": 90
80
+ },
81
+ {
82
+ "epoch": 0.09339248190520663,
83
+ "grad_norm": 0.6731868159213446,
84
+ "learning_rate": 9.345794392523365e-05,
85
+ "loss": 3.9423,
86
+ "step": 100
87
+ },
88
+ {
89
+ "epoch": 0.1027317300957273,
90
+ "grad_norm": 0.27848867836763197,
91
+ "learning_rate": 0.000102803738317757,
92
+ "loss": 3.7157,
93
+ "step": 110
94
+ },
95
+ {
96
+ "epoch": 0.11207097828624796,
97
+ "grad_norm": 0.24642109032991807,
98
+ "learning_rate": 0.00011214953271028037,
99
+ "loss": 3.4516,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 0.12141022647676862,
104
+ "grad_norm": 0.25717384664029797,
105
+ "learning_rate": 0.00012149532710280373,
106
+ "loss": 3.2167,
107
+ "step": 130
108
+ },
109
+ {
110
+ "epoch": 0.13074947466728928,
111
+ "grad_norm": 0.20912922668565637,
112
+ "learning_rate": 0.0001308411214953271,
113
+ "loss": 3.0237,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.14008872285780993,
118
+ "grad_norm": 0.15805888388706113,
119
+ "learning_rate": 0.00014018691588785047,
120
+ "loss": 2.8529,
121
+ "step": 150
122
+ },
123
+ {
124
+ "epoch": 0.1494279710483306,
125
+ "grad_norm": 0.23370349497479534,
126
+ "learning_rate": 0.00014953271028037384,
127
+ "loss": 2.7078,
128
+ "step": 160
129
+ },
130
+ {
131
+ "epoch": 0.15876721923885126,
132
+ "grad_norm": 0.1802138633012483,
133
+ "learning_rate": 0.0001588785046728972,
134
+ "loss": 2.6115,
135
+ "step": 170
136
+ },
137
+ {
138
+ "epoch": 0.16810646742937194,
139
+ "grad_norm": 0.13354347610039718,
140
+ "learning_rate": 0.00016822429906542056,
141
+ "loss": 2.5309,
142
+ "step": 180
143
+ },
144
+ {
145
+ "epoch": 0.17744571561989259,
146
+ "grad_norm": 0.09414865188086892,
147
+ "learning_rate": 0.00017757009345794393,
148
+ "loss": 2.4452,
149
+ "step": 190
150
+ },
151
+ {
152
+ "epoch": 0.18678496381041326,
153
+ "grad_norm": 0.08333601554768896,
154
+ "learning_rate": 0.0001869158878504673,
155
+ "loss": 2.3832,
156
+ "step": 200
157
+ },
158
+ {
159
+ "epoch": 0.1961242120009339,
160
+ "grad_norm": 0.15926414699806835,
161
+ "learning_rate": 0.00019626168224299065,
162
+ "loss": 2.3492,
163
+ "step": 210
164
+ },
165
+ {
166
+ "epoch": 0.2054634601914546,
167
+ "grad_norm": 0.09492820761057012,
168
+ "learning_rate": 0.0001999989254250208,
169
+ "loss": 2.323,
170
+ "step": 220
171
+ },
172
+ {
173
+ "epoch": 0.21480270838197524,
174
+ "grad_norm": 0.0801349259356147,
175
+ "learning_rate": 0.00019999235866155886,
176
+ "loss": 2.2731,
177
+ "step": 230
178
+ },
179
+ {
180
+ "epoch": 0.22414195657249592,
181
+ "grad_norm": 0.12210960524693895,
182
+ "learning_rate": 0.00019997982251228469,
183
+ "loss": 2.2433,
184
+ "step": 240
185
+ },
186
+ {
187
+ "epoch": 0.23348120476301656,
188
+ "grad_norm": 3.14289498732125,
189
+ "learning_rate": 0.00019996131772558666,
190
+ "loss": 3.2769,
191
+ "step": 250
192
+ },
193
+ {
194
+ "epoch": 0.24282045295353724,
195
+ "grad_norm": 1.632940983166179,
196
+ "learning_rate": 0.00019993684540617132,
197
+ "loss": 4.9343,
198
+ "step": 260
199
+ },
200
+ {
201
+ "epoch": 0.2521597011440579,
202
+ "grad_norm": 3.4831252230225416,
203
+ "learning_rate": 0.00019990640701499736,
204
+ "loss": 4.2768,
205
+ "step": 270
206
+ },
207
+ {
208
+ "epoch": 0.26149894933457857,
209
+ "grad_norm": 1.6069045920523788,
210
+ "learning_rate": 0.00019987000436918874,
211
+ "loss": 5.9581,
212
+ "step": 280
213
+ },
214
+ {
215
+ "epoch": 0.27083819752509924,
216
+ "grad_norm": 0.2220907936615993,
217
+ "learning_rate": 0.00019982763964192585,
218
+ "loss": 3.8228,
219
+ "step": 290
220
+ },
221
+ {
222
+ "epoch": 0.28017744571561987,
223
+ "grad_norm": 0.24737284913291765,
224
+ "learning_rate": 0.00019977931536231596,
225
+ "loss": 3.1413,
226
+ "step": 300
227
+ },
228
+ {
229
+ "epoch": 0.28951669390614054,
230
+ "grad_norm": 4.010404518241152,
231
+ "learning_rate": 0.00019972503441524224,
232
+ "loss": 2.8432,
233
+ "step": 310
234
+ },
235
+ {
236
+ "epoch": 0.2988559420966612,
237
+ "grad_norm": 0.1515583580811596,
238
+ "learning_rate": 0.00019966480004119142,
239
+ "loss": 2.7859,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 0.3081951902871819,
244
+ "grad_norm": 0.11259395750650594,
245
+ "learning_rate": 0.00019959861583606045,
246
+ "loss": 2.5821,
247
+ "step": 330
248
+ },
249
+ {
250
+ "epoch": 0.3175344384777025,
251
+ "grad_norm": 0.22514797814956813,
252
+ "learning_rate": 0.00019952648575094183,
253
+ "loss": 2.4517,
254
+ "step": 340
255
+ },
256
+ {
257
+ "epoch": 0.3268736866682232,
258
+ "grad_norm": 0.08040136172033542,
259
+ "learning_rate": 0.00019944841409188767,
260
+ "loss": 2.3794,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 0.3362129348587439,
265
+ "grad_norm": 0.054758073593565354,
266
+ "learning_rate": 0.00019936440551965263,
267
+ "loss": 2.3232,
268
+ "step": 360
269
+ },
270
+ {
271
+ "epoch": 0.34555218304926455,
272
+ "grad_norm": 0.06742998909645591,
273
+ "learning_rate": 0.00019927446504941577,
274
+ "loss": 2.2776,
275
+ "step": 370
276
+ },
277
+ {
278
+ "epoch": 0.35489143123978517,
279
+ "grad_norm": 0.048780907584876736,
280
+ "learning_rate": 0.00019917859805048096,
281
+ "loss": 2.2376,
282
+ "step": 380
283
+ },
284
+ {
285
+ "epoch": 0.36423067943030585,
286
+ "grad_norm": 0.0475325963052214,
287
+ "learning_rate": 0.00019907681024595663,
288
+ "loss": 2.2191,
289
+ "step": 390
290
+ },
291
+ {
292
+ "epoch": 0.3735699276208265,
293
+ "grad_norm": 0.054089563211590065,
294
+ "learning_rate": 0.00019896910771241387,
295
+ "loss": 2.1961,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 0.3829091758113472,
300
+ "grad_norm": 0.21798406131864823,
301
+ "learning_rate": 0.00019885549687952372,
302
+ "loss": 2.2078,
303
+ "step": 410
304
+ },
305
+ {
306
+ "epoch": 0.3922484240018678,
307
+ "grad_norm": 0.8673185709111124,
308
+ "learning_rate": 0.00019873598452967338,
309
+ "loss": 2.3731,
310
+ "step": 420
311
+ },
312
+ {
313
+ "epoch": 0.4015876721923885,
314
+ "grad_norm": 0.22424350669971718,
315
+ "learning_rate": 0.0001986105777975613,
316
+ "loss": 2.6195,
317
+ "step": 430
318
+ },
319
+ {
320
+ "epoch": 0.4109269203829092,
321
+ "grad_norm": 0.307418135168262,
322
+ "learning_rate": 0.00019847928416977126,
323
+ "loss": 2.3624,
324
+ "step": 440
325
+ },
326
+ {
327
+ "epoch": 0.42026616857342985,
328
+ "grad_norm": 0.07944722668080402,
329
+ "learning_rate": 0.00019834211148432536,
330
+ "loss": 2.2799,
331
+ "step": 450
332
+ },
333
+ {
334
+ "epoch": 0.4296054167639505,
335
+ "grad_norm": 0.18146933758664588,
336
+ "learning_rate": 0.00019819906793021614,
337
+ "loss": 2.2177,
338
+ "step": 460
339
+ },
340
+ {
341
+ "epoch": 0.43894466495447115,
342
+ "grad_norm": 0.07035825837333018,
343
+ "learning_rate": 0.0001980501620469178,
344
+ "loss": 2.1767,
345
+ "step": 470
346
+ },
347
+ {
348
+ "epoch": 0.44828391314499183,
349
+ "grad_norm": 0.04596186944454228,
350
+ "learning_rate": 0.0001978954027238763,
351
+ "loss": 2.1598,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 0.4576231613355125,
356
+ "grad_norm": 0.041342347745088055,
357
+ "learning_rate": 0.0001977347991999786,
358
+ "loss": 2.131,
359
+ "step": 490
360
+ },
361
+ {
362
+ "epoch": 0.46696240952603313,
363
+ "grad_norm": 0.04172063219841485,
364
+ "learning_rate": 0.00019756836106300137,
365
+ "loss": 2.1231,
366
+ "step": 500
367
+ },
368
+ {
369
+ "epoch": 0.4763016577165538,
370
+ "grad_norm": 0.03373646457711144,
371
+ "learning_rate": 0.00019739609824903843,
372
+ "loss": 2.1146,
373
+ "step": 510
374
+ },
375
+ {
376
+ "epoch": 0.4856409059070745,
377
+ "grad_norm": 0.03736871030676605,
378
+ "learning_rate": 0.00019721802104190748,
379
+ "loss": 2.1003,
380
+ "step": 520
381
+ },
382
+ {
383
+ "epoch": 0.49498015409759516,
384
+ "grad_norm": 0.033931028038211034,
385
+ "learning_rate": 0.00019703414007253645,
386
+ "loss": 2.0983,
387
+ "step": 530
388
+ },
389
+ {
390
+ "epoch": 0.5043194022881158,
391
+ "grad_norm": 0.03790055446070549,
392
+ "learning_rate": 0.00019684446631832868,
393
+ "loss": 2.092,
394
+ "step": 540
395
+ },
396
+ {
397
+ "epoch": 0.5136586504786365,
398
+ "grad_norm": 0.030956192803893078,
399
+ "learning_rate": 0.00019664901110250758,
400
+ "loss": 2.0807,
401
+ "step": 550
402
+ },
403
+ {
404
+ "epoch": 0.5229978986691571,
405
+ "grad_norm": 0.03542530209935129,
406
+ "learning_rate": 0.00019644778609344068,
407
+ "loss": 2.0773,
408
+ "step": 560
409
+ },
410
+ {
411
+ "epoch": 0.5323371468596778,
412
+ "grad_norm": 0.040947757568902336,
413
+ "learning_rate": 0.00019624080330394306,
414
+ "loss": 2.0649,
415
+ "step": 570
416
+ },
417
+ {
418
+ "epoch": 0.5416763950501985,
419
+ "grad_norm": 0.034273415973688146,
420
+ "learning_rate": 0.00019602807509056018,
421
+ "loss": 2.0479,
422
+ "step": 580
423
+ },
424
+ {
425
+ "epoch": 0.5510156432407192,
426
+ "grad_norm": 0.031427481498873144,
427
+ "learning_rate": 0.00019580961415283028,
428
+ "loss": 2.0563,
429
+ "step": 590
430
+ },
431
+ {
432
+ "epoch": 0.5603548914312397,
433
+ "grad_norm": 0.03141549752041532,
434
+ "learning_rate": 0.00019558543353252611,
435
+ "loss": 2.0503,
436
+ "step": 600
437
+ },
438
+ {
439
+ "epoch": 0.5696941396217604,
440
+ "grad_norm": 0.033012392726428204,
441
+ "learning_rate": 0.00019535554661287652,
442
+ "loss": 2.0389,
443
+ "step": 610
444
+ },
445
+ {
446
+ "epoch": 0.5790333878122811,
447
+ "grad_norm": 0.02913261992661444,
448
+ "learning_rate": 0.0001951199671177673,
449
+ "loss": 2.036,
450
+ "step": 620
451
+ },
452
+ {
453
+ "epoch": 0.5883726360028018,
454
+ "grad_norm": 0.030543903708435332,
455
+ "learning_rate": 0.00019487870911092214,
456
+ "loss": 2.0326,
457
+ "step": 630
458
+ },
459
+ {
460
+ "epoch": 0.5977118841933224,
461
+ "grad_norm": 0.03215005545393897,
462
+ "learning_rate": 0.00019463178699506277,
463
+ "loss": 2.0231,
464
+ "step": 640
465
+ },
466
+ {
467
+ "epoch": 0.6070511323838431,
468
+ "grad_norm": 0.03823630791937631,
469
+ "learning_rate": 0.00019437921551104933,
470
+ "loss": 2.0293,
471
+ "step": 650
472
+ },
473
+ {
474
+ "epoch": 0.6163903805743638,
475
+ "grad_norm": 0.03200103149471209,
476
+ "learning_rate": 0.00019412100973700038,
477
+ "loss": 2.017,
478
+ "step": 660
479
+ },
480
+ {
481
+ "epoch": 0.6257296287648845,
482
+ "grad_norm": 0.03841804153577787,
483
+ "learning_rate": 0.00019385718508739262,
484
+ "loss": 2.0135,
485
+ "step": 670
486
+ },
487
+ {
488
+ "epoch": 0.635068876955405,
489
+ "grad_norm": 0.03052396655271533,
490
+ "learning_rate": 0.0001935877573121407,
491
+ "loss": 2.0237,
492
+ "step": 680
493
+ },
494
+ {
495
+ "epoch": 0.6444081251459257,
496
+ "grad_norm": 0.033817837533771815,
497
+ "learning_rate": 0.00019331274249565717,
498
+ "loss": 2.0069,
499
+ "step": 690
500
+ },
501
+ {
502
+ "epoch": 0.6537473733364464,
503
+ "grad_norm": 0.028286999650643876,
504
+ "learning_rate": 0.00019303215705589194,
505
+ "loss": 2.0112,
506
+ "step": 700
507
+ },
508
+ {
509
+ "epoch": 0.6630866215269671,
510
+ "grad_norm": 0.030693948626257357,
511
+ "learning_rate": 0.00019274601774335243,
512
+ "loss": 2.0,
513
+ "step": 710
514
+ },
515
+ {
516
+ "epoch": 0.6724258697174877,
517
+ "grad_norm": 0.029984615635953022,
518
+ "learning_rate": 0.0001924543416401035,
519
+ "loss": 2.0028,
520
+ "step": 720
521
+ },
522
+ {
523
+ "epoch": 0.6817651179080084,
524
+ "grad_norm": 0.02915985673921391,
525
+ "learning_rate": 0.00019215714615874755,
526
+ "loss": 2.0031,
527
+ "step": 730
528
+ },
529
+ {
530
+ "epoch": 0.6911043660985291,
531
+ "grad_norm": 0.028305399777245336,
532
+ "learning_rate": 0.00019185444904138528,
533
+ "loss": 1.9924,
534
+ "step": 740
535
+ },
536
+ {
537
+ "epoch": 0.7004436142890498,
538
+ "grad_norm": 0.036720505429756495,
539
+ "learning_rate": 0.00019154626835855628,
540
+ "loss": 1.9981,
541
+ "step": 750
542
+ },
543
+ {
544
+ "epoch": 0.7097828624795703,
545
+ "grad_norm": 0.0287124048917296,
546
+ "learning_rate": 0.00019123262250816034,
547
+ "loss": 1.9868,
548
+ "step": 760
549
+ },
550
+ {
551
+ "epoch": 0.719122110670091,
552
+ "grad_norm": 0.03318092492837997,
553
+ "learning_rate": 0.00019091353021435915,
554
+ "loss": 1.9943,
555
+ "step": 770
556
+ },
557
+ {
558
+ "epoch": 0.7284613588606117,
559
+ "grad_norm": 0.054035272137015325,
560
+ "learning_rate": 0.00019058901052645844,
561
+ "loss": 1.9838,
562
+ "step": 780
563
+ },
564
+ {
565
+ "epoch": 0.7378006070511324,
566
+ "grad_norm": 0.03184392761983255,
567
+ "learning_rate": 0.00019025908281777078,
568
+ "loss": 1.982,
569
+ "step": 790
570
+ },
571
+ {
572
+ "epoch": 0.747139855241653,
573
+ "grad_norm": 0.029409948164434735,
574
+ "learning_rate": 0.00018992376678445908,
575
+ "loss": 1.9693,
576
+ "step": 800
577
+ },
578
+ {
579
+ "epoch": 0.7564791034321737,
580
+ "grad_norm": 0.029656963043919016,
581
+ "learning_rate": 0.00018958308244436064,
582
+ "loss": 1.9914,
583
+ "step": 810
584
+ },
585
+ {
586
+ "epoch": 0.7658183516226944,
587
+ "grad_norm": 0.030843610865326686,
588
+ "learning_rate": 0.00018923705013579233,
589
+ "loss": 1.9749,
590
+ "step": 820
591
+ },
592
+ {
593
+ "epoch": 0.7751575998132151,
594
+ "grad_norm": 0.0377584286045999,
595
+ "learning_rate": 0.00018888569051633613,
596
+ "loss": 1.9606,
597
+ "step": 830
598
+ },
599
+ {
600
+ "epoch": 0.7844968480037356,
601
+ "grad_norm": 0.03147699916274391,
602
+ "learning_rate": 0.00018852902456160616,
603
+ "loss": 1.9696,
604
+ "step": 840
605
+ },
606
+ {
607
+ "epoch": 0.7938360961942563,
608
+ "grad_norm": 0.029193153251471263,
609
+ "learning_rate": 0.0001881670735639963,
610
+ "loss": 1.9687,
611
+ "step": 850
612
+ },
613
+ {
614
+ "epoch": 0.803175344384777,
615
+ "grad_norm": 0.030201895228156087,
616
+ "learning_rate": 0.00018779985913140924,
617
+ "loss": 1.9678,
618
+ "step": 860
619
+ },
620
+ {
621
+ "epoch": 0.8125145925752977,
622
+ "grad_norm": 0.029272319485493213,
623
+ "learning_rate": 0.00018742740318596632,
624
+ "loss": 1.9697,
625
+ "step": 870
626
+ },
627
+ {
628
+ "epoch": 0.8218538407658184,
629
+ "grad_norm": 0.033740176465285654,
630
+ "learning_rate": 0.000187049727962699,
631
+ "loss": 1.9647,
632
+ "step": 880
633
+ },
634
+ {
635
+ "epoch": 0.831193088956339,
636
+ "grad_norm": 0.029539399251208593,
637
+ "learning_rate": 0.0001866668560082213,
638
+ "loss": 1.9627,
639
+ "step": 890
640
+ },
641
+ {
642
+ "epoch": 0.8405323371468597,
643
+ "grad_norm": 0.028666077337951026,
644
+ "learning_rate": 0.0001862788101793839,
645
+ "loss": 1.9529,
646
+ "step": 900
647
+ },
648
+ {
649
+ "epoch": 0.8498715853373804,
650
+ "grad_norm": 0.030280792492665805,
651
+ "learning_rate": 0.0001858856136419097,
652
+ "loss": 1.9536,
653
+ "step": 910
654
+ },
655
+ {
656
+ "epoch": 0.859210833527901,
657
+ "grad_norm": 0.03921536105057096,
658
+ "learning_rate": 0.0001854872898690106,
659
+ "loss": 1.9474,
660
+ "step": 920
661
+ },
662
+ {
663
+ "epoch": 0.8685500817184216,
664
+ "grad_norm": 0.030632523637038354,
665
+ "learning_rate": 0.0001850838626399865,
666
+ "loss": 1.9423,
667
+ "step": 930
668
+ },
669
+ {
670
+ "epoch": 0.8778893299089423,
671
+ "grad_norm": 0.04615147601979514,
672
+ "learning_rate": 0.00018467535603880548,
673
+ "loss": 1.946,
674
+ "step": 940
675
+ },
676
+ {
677
+ "epoch": 0.887228578099463,
678
+ "grad_norm": 0.028216236017006333,
679
+ "learning_rate": 0.00018426179445266616,
680
+ "loss": 1.9408,
681
+ "step": 950
682
+ },
683
+ {
684
+ "epoch": 0.8965678262899837,
685
+ "grad_norm": 0.0282407563402959,
686
+ "learning_rate": 0.00018384320257054177,
687
+ "loss": 1.9447,
688
+ "step": 960
689
+ },
690
+ {
691
+ "epoch": 0.9059070744805043,
692
+ "grad_norm": 0.029365880854687894,
693
+ "learning_rate": 0.0001834196053817062,
694
+ "loss": 1.9389,
695
+ "step": 970
696
+ },
697
+ {
698
+ "epoch": 0.915246322671025,
699
+ "grad_norm": 0.02855404439130719,
700
+ "learning_rate": 0.00018299102817424234,
701
+ "loss": 1.9425,
702
+ "step": 980
703
+ },
704
+ {
705
+ "epoch": 0.9245855708615457,
706
+ "grad_norm": 0.03238310984070135,
707
+ "learning_rate": 0.00018255749653353225,
708
+ "loss": 1.9392,
709
+ "step": 990
710
+ },
711
+ {
712
+ "epoch": 0.9339248190520663,
713
+ "grad_norm": 0.030115350805430388,
714
+ "learning_rate": 0.00018211903634072983,
715
+ "loss": 1.956,
716
+ "step": 1000
717
+ },
718
+ {
719
+ "epoch": 0.9432640672425869,
720
+ "grad_norm": 0.039090564032501135,
721
+ "learning_rate": 0.0001816756737712158,
722
+ "loss": 1.9358,
723
+ "step": 1010
724
+ },
725
+ {
726
+ "epoch": 0.9526033154331076,
727
+ "grad_norm": 0.028567954476327023,
728
+ "learning_rate": 0.000181227435293035,
729
+ "loss": 1.9342,
730
+ "step": 1020
731
+ },
732
+ {
733
+ "epoch": 0.9619425636236283,
734
+ "grad_norm": 0.028158653241284505,
735
+ "learning_rate": 0.00018077434766531624,
736
+ "loss": 1.9287,
737
+ "step": 1030
738
+ },
739
+ {
740
+ "epoch": 0.971281811814149,
741
+ "grad_norm": 0.02927795717651538,
742
+ "learning_rate": 0.00018031643793667504,
743
+ "loss": 1.9298,
744
+ "step": 1040
745
+ },
746
+ {
747
+ "epoch": 0.9806210600046696,
748
+ "grad_norm": 0.06298340584032344,
749
+ "learning_rate": 0.0001798537334435986,
750
+ "loss": 1.9303,
751
+ "step": 1050
752
+ },
753
+ {
754
+ "epoch": 0.9899603081951903,
755
+ "grad_norm": 0.03627278406983255,
756
+ "learning_rate": 0.00017938626180881407,
757
+ "loss": 1.9285,
758
+ "step": 1060
759
+ },
760
+ {
761
+ "epoch": 0.999299556385711,
762
+ "grad_norm": 0.03916823421329747,
763
+ "learning_rate": 0.00017891405093963938,
764
+ "loss": 1.9239,
765
+ "step": 1070
766
+ },
767
+ {
768
+ "epoch": 1.0087555451786132,
769
+ "grad_norm": 0.03383539251115568,
770
+ "learning_rate": 0.00017843712902631723,
771
+ "loss": 1.8855,
772
+ "step": 1080
773
+ },
774
+ {
775
+ "epoch": 1.0180947933691338,
776
+ "grad_norm": 0.02931021936560147,
777
+ "learning_rate": 0.00017795552454033224,
778
+ "loss": 1.8004,
779
+ "step": 1090
780
+ },
781
+ {
782
+ "epoch": 1.0274340415596543,
783
+ "grad_norm": 0.029173295095350292,
784
+ "learning_rate": 0.0001774692662327113,
785
+ "loss": 1.7912,
786
+ "step": 1100
787
+ },
788
+ {
789
+ "epoch": 1.0367732897501751,
790
+ "grad_norm": 0.035210065642974735,
791
+ "learning_rate": 0.000176978383132307,
792
+ "loss": 1.7902,
793
+ "step": 1110
794
+ },
795
+ {
796
+ "epoch": 1.0461125379406957,
797
+ "grad_norm": 0.029794447659573477,
798
+ "learning_rate": 0.00017648290454406475,
799
+ "loss": 1.8072,
800
+ "step": 1120
801
+ },
802
+ {
803
+ "epoch": 1.0554517861312165,
804
+ "grad_norm": 0.03194584938279939,
805
+ "learning_rate": 0.0001759828600472734,
806
+ "loss": 1.803,
807
+ "step": 1130
808
+ },
809
+ {
810
+ "epoch": 1.064791034321737,
811
+ "grad_norm": 0.031028415312581603,
812
+ "learning_rate": 0.00017547827949379924,
813
+ "loss": 1.7945,
814
+ "step": 1140
815
+ },
816
+ {
817
+ "epoch": 1.0741302825122578,
818
+ "grad_norm": 0.03313245828751237,
819
+ "learning_rate": 0.00017496919300630403,
820
+ "loss": 1.8139,
821
+ "step": 1150
822
+ },
823
+ {
824
+ "epoch": 1.0834695307027784,
825
+ "grad_norm": 0.03049431724979126,
826
+ "learning_rate": 0.00017445563097644664,
827
+ "loss": 1.8031,
828
+ "step": 1160
829
+ },
830
+ {
831
+ "epoch": 1.0928087788932992,
832
+ "grad_norm": 0.02880548705343715,
833
+ "learning_rate": 0.00017393762406306878,
834
+ "loss": 1.7974,
835
+ "step": 1170
836
+ },
837
+ {
838
+ "epoch": 1.1021480270838198,
839
+ "grad_norm": 0.03200427895977668,
840
+ "learning_rate": 0.00017341520319036469,
841
+ "loss": 1.7994,
842
+ "step": 1180
843
+ },
844
+ {
845
+ "epoch": 1.1114872752743403,
846
+ "grad_norm": 0.031293532815600045,
847
+ "learning_rate": 0.00017288839954603496,
848
+ "loss": 1.8073,
849
+ "step": 1190
850
+ },
851
+ {
852
+ "epoch": 1.1208265234648611,
853
+ "grad_norm": 0.032367211109345505,
854
+ "learning_rate": 0.00017235724457942468,
855
+ "loss": 1.7944,
856
+ "step": 1200
857
+ },
858
+ {
859
+ "epoch": 1.1301657716553817,
860
+ "grad_norm": 0.037783793923191374,
861
+ "learning_rate": 0.0001718217699996462,
862
+ "loss": 1.7948,
863
+ "step": 1210
864
+ },
865
+ {
866
+ "epoch": 1.1395050198459025,
867
+ "grad_norm": 0.02881083117349317,
868
+ "learning_rate": 0.00017128200777368567,
869
+ "loss": 1.8029,
870
+ "step": 1220
871
+ },
872
+ {
873
+ "epoch": 1.148844268036423,
874
+ "grad_norm": 0.032997408408175985,
875
+ "learning_rate": 0.00017073799012449524,
876
+ "loss": 1.7914,
877
+ "step": 1230
878
+ },
879
+ {
880
+ "epoch": 1.1581835162269438,
881
+ "grad_norm": 0.030263615801190885,
882
+ "learning_rate": 0.00017018974952906884,
883
+ "loss": 1.792,
884
+ "step": 1240
885
+ },
886
+ {
887
+ "epoch": 1.1675227644174644,
888
+ "grad_norm": 0.03286310429098484,
889
+ "learning_rate": 0.00016963731871650378,
890
+ "loss": 1.8149,
891
+ "step": 1250
892
+ },
893
+ {
894
+ "epoch": 1.1768620126079852,
895
+ "grad_norm": 0.031111621587597126,
896
+ "learning_rate": 0.00016908073066604663,
897
+ "loss": 1.8092,
898
+ "step": 1260
899
+ },
900
+ {
901
+ "epoch": 1.1862012607985057,
902
+ "grad_norm": 0.03372950172075241,
903
+ "learning_rate": 0.0001685200186051246,
904
+ "loss": 1.818,
905
+ "step": 1270
906
+ },
907
+ {
908
+ "epoch": 1.1955405089890263,
909
+ "grad_norm": 0.040782040436567434,
910
+ "learning_rate": 0.00016795521600736164,
911
+ "loss": 1.7999,
912
+ "step": 1280
913
+ },
914
+ {
915
+ "epoch": 1.204879757179547,
916
+ "grad_norm": 0.03451605168178924,
917
+ "learning_rate": 0.00016738635659058044,
918
+ "loss": 1.7945,
919
+ "step": 1290
920
+ },
921
+ {
922
+ "epoch": 1.2142190053700677,
923
+ "grad_norm": 0.03235681588882673,
924
+ "learning_rate": 0.00016681347431478933,
925
+ "loss": 1.8087,
926
+ "step": 1300
927
+ },
928
+ {
929
+ "epoch": 1.2235582535605884,
930
+ "grad_norm": 0.030750745605971932,
931
+ "learning_rate": 0.00016623660338015487,
932
+ "loss": 1.7995,
933
+ "step": 1310
934
+ },
935
+ {
936
+ "epoch": 1.232897501751109,
937
+ "grad_norm": 0.029444668665577274,
938
+ "learning_rate": 0.00016565577822496042,
939
+ "loss": 1.8025,
940
+ "step": 1320
941
+ },
942
+ {
943
+ "epoch": 1.2422367499416298,
944
+ "grad_norm": 0.038528856709584745,
945
+ "learning_rate": 0.00016507103352354996,
946
+ "loss": 1.7954,
947
+ "step": 1330
948
+ },
949
+ {
950
+ "epoch": 1.2515759981321504,
951
+ "grad_norm": 0.034217088004383035,
952
+ "learning_rate": 0.00016448240418425814,
953
+ "loss": 1.7962,
954
+ "step": 1340
955
+ },
956
+ {
957
+ "epoch": 1.260915246322671,
958
+ "grad_norm": 0.030205405393195585,
959
+ "learning_rate": 0.00016388992534732645,
960
+ "loss": 1.7973,
961
+ "step": 1350
962
+ },
963
+ {
964
+ "epoch": 1.2702544945131917,
965
+ "grad_norm": 0.029082218516562994,
966
+ "learning_rate": 0.00016329363238280528,
967
+ "loss": 1.796,
968
+ "step": 1360
969
+ },
970
+ {
971
+ "epoch": 1.2795937427037123,
972
+ "grad_norm": 0.029003887688766505,
973
+ "learning_rate": 0.00016269356088844238,
974
+ "loss": 1.7946,
975
+ "step": 1370
976
+ },
977
+ {
978
+ "epoch": 1.288932990894233,
979
+ "grad_norm": 0.03341157363649238,
980
+ "learning_rate": 0.00016208974668755779,
981
+ "loss": 1.7972,
982
+ "step": 1380
983
+ },
984
+ {
985
+ "epoch": 1.2982722390847536,
986
+ "grad_norm": 0.030614480844663026,
987
+ "learning_rate": 0.00016148222582690517,
988
+ "loss": 1.7973,
989
+ "step": 1390
990
+ },
991
+ {
992
+ "epoch": 1.3076114872752744,
993
+ "grad_norm": 0.029741346740467405,
994
+ "learning_rate": 0.00016087103457452,
995
+ "loss": 1.8076,
996
+ "step": 1400
997
+ },
998
+ {
999
+ "epoch": 1.316950735465795,
1000
+ "grad_norm": 0.029569313554185597,
1001
+ "learning_rate": 0.00016025620941755424,
1002
+ "loss": 1.8043,
1003
+ "step": 1410
1004
+ },
1005
+ {
1006
+ "epoch": 1.3262899836563156,
1007
+ "grad_norm": 0.02947637404374054,
1008
+ "learning_rate": 0.0001596377870600983,
1009
+ "loss": 1.797,
1010
+ "step": 1420
1011
+ },
1012
+ {
1013
+ "epoch": 1.3356292318468364,
1014
+ "grad_norm": 0.031005062093959545,
1015
+ "learning_rate": 0.00015901580442098968,
1016
+ "loss": 1.8086,
1017
+ "step": 1430
1018
+ },
1019
+ {
1020
+ "epoch": 1.344968480037357,
1021
+ "grad_norm": 0.029493792984873927,
1022
+ "learning_rate": 0.00015839029863160922,
1023
+ "loss": 1.8026,
1024
+ "step": 1440
1025
+ },
1026
+ {
1027
+ "epoch": 1.3543077282278777,
1028
+ "grad_norm": 0.0288068155951218,
1029
+ "learning_rate": 0.0001577613070336641,
1030
+ "loss": 1.7951,
1031
+ "step": 1450
1032
+ },
1033
+ {
1034
+ "epoch": 1.3636469764183983,
1035
+ "grad_norm": 0.03380404824627639,
1036
+ "learning_rate": 0.00015712886717695885,
1037
+ "loss": 1.7938,
1038
+ "step": 1460
1039
+ },
1040
+ {
1041
+ "epoch": 1.372986224608919,
1042
+ "grad_norm": 0.039744706189693335,
1043
+ "learning_rate": 0.0001564930168171536,
1044
+ "loss": 1.8016,
1045
+ "step": 1470
1046
+ },
1047
+ {
1048
+ "epoch": 1.3823254727994396,
1049
+ "grad_norm": 0.030565530594285437,
1050
+ "learning_rate": 0.00015585379391351012,
1051
+ "loss": 1.7984,
1052
+ "step": 1480
1053
+ },
1054
+ {
1055
+ "epoch": 1.3916647209899602,
1056
+ "grad_norm": 0.04009392805554255,
1057
+ "learning_rate": 0.00015521123662662567,
1058
+ "loss": 1.7999,
1059
+ "step": 1490
1060
+ },
1061
+ {
1062
+ "epoch": 1.401003969180481,
1063
+ "grad_norm": 0.03516196009586836,
1064
+ "learning_rate": 0.000154565383316155,
1065
+ "loss": 1.7979,
1066
+ "step": 1500
1067
+ },
1068
+ {
1069
+ "epoch": 1.4103432173710018,
1070
+ "grad_norm": 0.03534161399054556,
1071
+ "learning_rate": 0.0001539162725385202,
1072
+ "loss": 1.8057,
1073
+ "step": 1510
1074
+ },
1075
+ {
1076
+ "epoch": 1.4196824655615223,
1077
+ "grad_norm": 0.028488879438601067,
1078
+ "learning_rate": 0.000153263943044609,
1079
+ "loss": 1.792,
1080
+ "step": 1520
1081
+ },
1082
+ {
1083
+ "epoch": 1.429021713752043,
1084
+ "grad_norm": 0.03125154490954804,
1085
+ "learning_rate": 0.00015260843377746147,
1086
+ "loss": 1.8008,
1087
+ "step": 1530
1088
+ },
1089
+ {
1090
+ "epoch": 1.4383609619425637,
1091
+ "grad_norm": 0.030194357488801882,
1092
+ "learning_rate": 0.00015194978386994507,
1093
+ "loss": 1.7948,
1094
+ "step": 1540
1095
+ },
1096
+ {
1097
+ "epoch": 1.4477002101330843,
1098
+ "grad_norm": 0.03049246845786265,
1099
+ "learning_rate": 0.00015128803264241852,
1100
+ "loss": 1.7967,
1101
+ "step": 1550
1102
+ },
1103
+ {
1104
+ "epoch": 1.4570394583236048,
1105
+ "grad_norm": 0.030497211097258083,
1106
+ "learning_rate": 0.0001506232196003844,
1107
+ "loss": 1.7894,
1108
+ "step": 1560
1109
+ },
1110
+ {
1111
+ "epoch": 1.4663787065141256,
1112
+ "grad_norm": 0.028748806119737205,
1113
+ "learning_rate": 0.00014995538443213094,
1114
+ "loss": 1.806,
1115
+ "step": 1570
1116
+ },
1117
+ {
1118
+ "epoch": 1.4757179547046464,
1119
+ "grad_norm": 0.036423750322912396,
1120
+ "learning_rate": 0.00014928456700636237,
1121
+ "loss": 1.7995,
1122
+ "step": 1580
1123
+ },
1124
+ {
1125
+ "epoch": 1.485057202895167,
1126
+ "grad_norm": 0.039101516109204065,
1127
+ "learning_rate": 0.00014861080736981906,
1128
+ "loss": 1.8028,
1129
+ "step": 1590
1130
+ },
1131
+ {
1132
+ "epoch": 1.4943964510856875,
1133
+ "grad_norm": 0.031368399541673815,
1134
+ "learning_rate": 0.00014793414574488663,
1135
+ "loss": 1.8005,
1136
+ "step": 1600
1137
+ }
1138
+ ],
1139
+ "logging_steps": 10,
1140
+ "max_steps": 4280,
1141
+ "num_input_tokens_seen": 0,
1142
+ "num_train_epochs": 4,
1143
+ "save_steps": 100,
1144
+ "stateful_callbacks": {
1145
+ "TrainerControl": {
1146
+ "args": {
1147
+ "should_epoch_stop": false,
1148
+ "should_evaluate": false,
1149
+ "should_log": false,
1150
+ "should_save": true,
1151
+ "should_training_stop": false
1152
+ },
1153
+ "attributes": {}
1154
+ }
1155
+ },
1156
+ "total_flos": 1.2955222257961009e+20,
1157
+ "train_batch_size": 2,
1158
+ "trial_name": null,
1159
+ "trial_params": null
1160
+ }
l2-13b-ga/checkpoint-1600/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
l2-13b-ga/checkpoint-2500/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-13b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
l2-13b-ga/checkpoint-2500/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
l2-13b-ga/checkpoint-2500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2500
l2-13b-ga/checkpoint-2500/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
l2-13b-ga/checkpoint-2500/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
l2-13b-ga/checkpoint-2500/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
l2-13b-ga/checkpoint-2500/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
l2-13b-ga/checkpoint-2500/trainer_state.json ADDED
@@ -0,0 +1,1790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.3350455288349288,
5
+ "eval_steps": 500,
6
+ "global_step": 2500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0009339248190520663,
13
+ "grad_norm": 6.638877692627699,
14
+ "learning_rate": 9.345794392523364e-07,
15
+ "loss": 9.2917,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.009339248190520663,
20
+ "grad_norm": 1.1560921335705272,
21
+ "learning_rate": 9.345794392523365e-06,
22
+ "loss": 9.0876,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.018678496381041326,
27
+ "grad_norm": 0.8415132296956432,
28
+ "learning_rate": 1.869158878504673e-05,
29
+ "loss": 8.2164,
30
+ "step": 20
31
+ },
32
+ {
33
+ "epoch": 0.02801774457156199,
34
+ "grad_norm": 0.45381630992958155,
35
+ "learning_rate": 2.8037383177570094e-05,
36
+ "loss": 7.5184,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.03735699276208265,
41
+ "grad_norm": 0.8400636107958425,
42
+ "learning_rate": 3.738317757009346e-05,
43
+ "loss": 6.6507,
44
+ "step": 40
45
+ },
46
+ {
47
+ "epoch": 0.046696240952603316,
48
+ "grad_norm": 0.557696240829066,
49
+ "learning_rate": 4.672897196261683e-05,
50
+ "loss": 5.8909,
51
+ "step": 50
52
+ },
53
+ {
54
+ "epoch": 0.05603548914312398,
55
+ "grad_norm": 0.3971996057467842,
56
+ "learning_rate": 5.607476635514019e-05,
57
+ "loss": 5.4127,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 0.06537473733364464,
62
+ "grad_norm": 0.2932710540265688,
63
+ "learning_rate": 6.542056074766355e-05,
64
+ "loss": 5.0106,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.0747139855241653,
69
+ "grad_norm": 0.3682690443551033,
70
+ "learning_rate": 7.476635514018692e-05,
71
+ "loss": 4.6042,
72
+ "step": 80
73
+ },
74
+ {
75
+ "epoch": 0.08405323371468597,
76
+ "grad_norm": 0.3132971920011515,
77
+ "learning_rate": 8.411214953271028e-05,
78
+ "loss": 4.2031,
79
+ "step": 90
80
+ },
81
+ {
82
+ "epoch": 0.09339248190520663,
83
+ "grad_norm": 0.6731868159213446,
84
+ "learning_rate": 9.345794392523365e-05,
85
+ "loss": 3.9423,
86
+ "step": 100
87
+ },
88
+ {
89
+ "epoch": 0.1027317300957273,
90
+ "grad_norm": 0.27848867836763197,
91
+ "learning_rate": 0.000102803738317757,
92
+ "loss": 3.7157,
93
+ "step": 110
94
+ },
95
+ {
96
+ "epoch": 0.11207097828624796,
97
+ "grad_norm": 0.24642109032991807,
98
+ "learning_rate": 0.00011214953271028037,
99
+ "loss": 3.4516,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 0.12141022647676862,
104
+ "grad_norm": 0.25717384664029797,
105
+ "learning_rate": 0.00012149532710280373,
106
+ "loss": 3.2167,
107
+ "step": 130
108
+ },
109
+ {
110
+ "epoch": 0.13074947466728928,
111
+ "grad_norm": 0.20912922668565637,
112
+ "learning_rate": 0.0001308411214953271,
113
+ "loss": 3.0237,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.14008872285780993,
118
+ "grad_norm": 0.15805888388706113,
119
+ "learning_rate": 0.00014018691588785047,
120
+ "loss": 2.8529,
121
+ "step": 150
122
+ },
123
+ {
124
+ "epoch": 0.1494279710483306,
125
+ "grad_norm": 0.23370349497479534,
126
+ "learning_rate": 0.00014953271028037384,
127
+ "loss": 2.7078,
128
+ "step": 160
129
+ },
130
+ {
131
+ "epoch": 0.15876721923885126,
132
+ "grad_norm": 0.1802138633012483,
133
+ "learning_rate": 0.0001588785046728972,
134
+ "loss": 2.6115,
135
+ "step": 170
136
+ },
137
+ {
138
+ "epoch": 0.16810646742937194,
139
+ "grad_norm": 0.13354347610039718,
140
+ "learning_rate": 0.00016822429906542056,
141
+ "loss": 2.5309,
142
+ "step": 180
143
+ },
144
+ {
145
+ "epoch": 0.17744571561989259,
146
+ "grad_norm": 0.09414865188086892,
147
+ "learning_rate": 0.00017757009345794393,
148
+ "loss": 2.4452,
149
+ "step": 190
150
+ },
151
+ {
152
+ "epoch": 0.18678496381041326,
153
+ "grad_norm": 0.08333601554768896,
154
+ "learning_rate": 0.0001869158878504673,
155
+ "loss": 2.3832,
156
+ "step": 200
157
+ },
158
+ {
159
+ "epoch": 0.1961242120009339,
160
+ "grad_norm": 0.15926414699806835,
161
+ "learning_rate": 0.00019626168224299065,
162
+ "loss": 2.3492,
163
+ "step": 210
164
+ },
165
+ {
166
+ "epoch": 0.2054634601914546,
167
+ "grad_norm": 0.09492820761057012,
168
+ "learning_rate": 0.0001999989254250208,
169
+ "loss": 2.323,
170
+ "step": 220
171
+ },
172
+ {
173
+ "epoch": 0.21480270838197524,
174
+ "grad_norm": 0.0801349259356147,
175
+ "learning_rate": 0.00019999235866155886,
176
+ "loss": 2.2731,
177
+ "step": 230
178
+ },
179
+ {
180
+ "epoch": 0.22414195657249592,
181
+ "grad_norm": 0.12210960524693895,
182
+ "learning_rate": 0.00019997982251228469,
183
+ "loss": 2.2433,
184
+ "step": 240
185
+ },
186
+ {
187
+ "epoch": 0.23348120476301656,
188
+ "grad_norm": 3.14289498732125,
189
+ "learning_rate": 0.00019996131772558666,
190
+ "loss": 3.2769,
191
+ "step": 250
192
+ },
193
+ {
194
+ "epoch": 0.24282045295353724,
195
+ "grad_norm": 1.632940983166179,
196
+ "learning_rate": 0.00019993684540617132,
197
+ "loss": 4.9343,
198
+ "step": 260
199
+ },
200
+ {
201
+ "epoch": 0.2521597011440579,
202
+ "grad_norm": 3.4831252230225416,
203
+ "learning_rate": 0.00019990640701499736,
204
+ "loss": 4.2768,
205
+ "step": 270
206
+ },
207
+ {
208
+ "epoch": 0.26149894933457857,
209
+ "grad_norm": 1.6069045920523788,
210
+ "learning_rate": 0.00019987000436918874,
211
+ "loss": 5.9581,
212
+ "step": 280
213
+ },
214
+ {
215
+ "epoch": 0.27083819752509924,
216
+ "grad_norm": 0.2220907936615993,
217
+ "learning_rate": 0.00019982763964192585,
218
+ "loss": 3.8228,
219
+ "step": 290
220
+ },
221
+ {
222
+ "epoch": 0.28017744571561987,
223
+ "grad_norm": 0.24737284913291765,
224
+ "learning_rate": 0.00019977931536231596,
225
+ "loss": 3.1413,
226
+ "step": 300
227
+ },
228
+ {
229
+ "epoch": 0.28951669390614054,
230
+ "grad_norm": 4.010404518241152,
231
+ "learning_rate": 0.00019972503441524224,
232
+ "loss": 2.8432,
233
+ "step": 310
234
+ },
235
+ {
236
+ "epoch": 0.2988559420966612,
237
+ "grad_norm": 0.1515583580811596,
238
+ "learning_rate": 0.00019966480004119142,
239
+ "loss": 2.7859,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 0.3081951902871819,
244
+ "grad_norm": 0.11259395750650594,
245
+ "learning_rate": 0.00019959861583606045,
246
+ "loss": 2.5821,
247
+ "step": 330
248
+ },
249
+ {
250
+ "epoch": 0.3175344384777025,
251
+ "grad_norm": 0.22514797814956813,
252
+ "learning_rate": 0.00019952648575094183,
253
+ "loss": 2.4517,
254
+ "step": 340
255
+ },
256
+ {
257
+ "epoch": 0.3268736866682232,
258
+ "grad_norm": 0.08040136172033542,
259
+ "learning_rate": 0.00019944841409188767,
260
+ "loss": 2.3794,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 0.3362129348587439,
265
+ "grad_norm": 0.054758073593565354,
266
+ "learning_rate": 0.00019936440551965263,
267
+ "loss": 2.3232,
268
+ "step": 360
269
+ },
270
+ {
271
+ "epoch": 0.34555218304926455,
272
+ "grad_norm": 0.06742998909645591,
273
+ "learning_rate": 0.00019927446504941577,
274
+ "loss": 2.2776,
275
+ "step": 370
276
+ },
277
+ {
278
+ "epoch": 0.35489143123978517,
279
+ "grad_norm": 0.048780907584876736,
280
+ "learning_rate": 0.00019917859805048096,
281
+ "loss": 2.2376,
282
+ "step": 380
283
+ },
284
+ {
285
+ "epoch": 0.36423067943030585,
286
+ "grad_norm": 0.0475325963052214,
287
+ "learning_rate": 0.00019907681024595663,
288
+ "loss": 2.2191,
289
+ "step": 390
290
+ },
291
+ {
292
+ "epoch": 0.3735699276208265,
293
+ "grad_norm": 0.054089563211590065,
294
+ "learning_rate": 0.00019896910771241387,
295
+ "loss": 2.1961,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 0.3829091758113472,
300
+ "grad_norm": 0.21798406131864823,
301
+ "learning_rate": 0.00019885549687952372,
302
+ "loss": 2.2078,
303
+ "step": 410
304
+ },
305
+ {
306
+ "epoch": 0.3922484240018678,
307
+ "grad_norm": 0.8673185709111124,
308
+ "learning_rate": 0.00019873598452967338,
309
+ "loss": 2.3731,
310
+ "step": 420
311
+ },
312
+ {
313
+ "epoch": 0.4015876721923885,
314
+ "grad_norm": 0.22424350669971718,
315
+ "learning_rate": 0.0001986105777975613,
316
+ "loss": 2.6195,
317
+ "step": 430
318
+ },
319
+ {
320
+ "epoch": 0.4109269203829092,
321
+ "grad_norm": 0.307418135168262,
322
+ "learning_rate": 0.00019847928416977126,
323
+ "loss": 2.3624,
324
+ "step": 440
325
+ },
326
+ {
327
+ "epoch": 0.42026616857342985,
328
+ "grad_norm": 0.07944722668080402,
329
+ "learning_rate": 0.00019834211148432536,
330
+ "loss": 2.2799,
331
+ "step": 450
332
+ },
333
+ {
334
+ "epoch": 0.4296054167639505,
335
+ "grad_norm": 0.18146933758664588,
336
+ "learning_rate": 0.00019819906793021614,
337
+ "loss": 2.2177,
338
+ "step": 460
339
+ },
340
+ {
341
+ "epoch": 0.43894466495447115,
342
+ "grad_norm": 0.07035825837333018,
343
+ "learning_rate": 0.0001980501620469178,
344
+ "loss": 2.1767,
345
+ "step": 470
346
+ },
347
+ {
348
+ "epoch": 0.44828391314499183,
349
+ "grad_norm": 0.04596186944454228,
350
+ "learning_rate": 0.0001978954027238763,
351
+ "loss": 2.1598,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 0.4576231613355125,
356
+ "grad_norm": 0.041342347745088055,
357
+ "learning_rate": 0.0001977347991999786,
358
+ "loss": 2.131,
359
+ "step": 490
360
+ },
361
+ {
362
+ "epoch": 0.46696240952603313,
363
+ "grad_norm": 0.04172063219841485,
364
+ "learning_rate": 0.00019756836106300137,
365
+ "loss": 2.1231,
366
+ "step": 500
367
+ },
368
+ {
369
+ "epoch": 0.4763016577165538,
370
+ "grad_norm": 0.03373646457711144,
371
+ "learning_rate": 0.00019739609824903843,
372
+ "loss": 2.1146,
373
+ "step": 510
374
+ },
375
+ {
376
+ "epoch": 0.4856409059070745,
377
+ "grad_norm": 0.03736871030676605,
378
+ "learning_rate": 0.00019721802104190748,
379
+ "loss": 2.1003,
380
+ "step": 520
381
+ },
382
+ {
383
+ "epoch": 0.49498015409759516,
384
+ "grad_norm": 0.033931028038211034,
385
+ "learning_rate": 0.00019703414007253645,
386
+ "loss": 2.0983,
387
+ "step": 530
388
+ },
389
+ {
390
+ "epoch": 0.5043194022881158,
391
+ "grad_norm": 0.03790055446070549,
392
+ "learning_rate": 0.00019684446631832868,
393
+ "loss": 2.092,
394
+ "step": 540
395
+ },
396
+ {
397
+ "epoch": 0.5136586504786365,
398
+ "grad_norm": 0.030956192803893078,
399
+ "learning_rate": 0.00019664901110250758,
400
+ "loss": 2.0807,
401
+ "step": 550
402
+ },
403
+ {
404
+ "epoch": 0.5229978986691571,
405
+ "grad_norm": 0.03542530209935129,
406
+ "learning_rate": 0.00019644778609344068,
407
+ "loss": 2.0773,
408
+ "step": 560
409
+ },
410
+ {
411
+ "epoch": 0.5323371468596778,
412
+ "grad_norm": 0.040947757568902336,
413
+ "learning_rate": 0.00019624080330394306,
414
+ "loss": 2.0649,
415
+ "step": 570
416
+ },
417
+ {
418
+ "epoch": 0.5416763950501985,
419
+ "grad_norm": 0.034273415973688146,
420
+ "learning_rate": 0.00019602807509056018,
421
+ "loss": 2.0479,
422
+ "step": 580
423
+ },
424
+ {
425
+ "epoch": 0.5510156432407192,
426
+ "grad_norm": 0.031427481498873144,
427
+ "learning_rate": 0.00019580961415283028,
428
+ "loss": 2.0563,
429
+ "step": 590
430
+ },
431
+ {
432
+ "epoch": 0.5603548914312397,
433
+ "grad_norm": 0.03141549752041532,
434
+ "learning_rate": 0.00019558543353252611,
435
+ "loss": 2.0503,
436
+ "step": 600
437
+ },
438
+ {
439
+ "epoch": 0.5696941396217604,
440
+ "grad_norm": 0.033012392726428204,
441
+ "learning_rate": 0.00019535554661287652,
442
+ "loss": 2.0389,
443
+ "step": 610
444
+ },
445
+ {
446
+ "epoch": 0.5790333878122811,
447
+ "grad_norm": 0.02913261992661444,
448
+ "learning_rate": 0.0001951199671177673,
449
+ "loss": 2.036,
450
+ "step": 620
451
+ },
452
+ {
453
+ "epoch": 0.5883726360028018,
454
+ "grad_norm": 0.030543903708435332,
455
+ "learning_rate": 0.00019487870911092214,
456
+ "loss": 2.0326,
457
+ "step": 630
458
+ },
459
+ {
460
+ "epoch": 0.5977118841933224,
461
+ "grad_norm": 0.03215005545393897,
462
+ "learning_rate": 0.00019463178699506277,
463
+ "loss": 2.0231,
464
+ "step": 640
465
+ },
466
+ {
467
+ "epoch": 0.6070511323838431,
468
+ "grad_norm": 0.03823630791937631,
469
+ "learning_rate": 0.00019437921551104933,
470
+ "loss": 2.0293,
471
+ "step": 650
472
+ },
473
+ {
474
+ "epoch": 0.6163903805743638,
475
+ "grad_norm": 0.03200103149471209,
476
+ "learning_rate": 0.00019412100973700038,
477
+ "loss": 2.017,
478
+ "step": 660
479
+ },
480
+ {
481
+ "epoch": 0.6257296287648845,
482
+ "grad_norm": 0.03841804153577787,
483
+ "learning_rate": 0.00019385718508739262,
484
+ "loss": 2.0135,
485
+ "step": 670
486
+ },
487
+ {
488
+ "epoch": 0.635068876955405,
489
+ "grad_norm": 0.03052396655271533,
490
+ "learning_rate": 0.0001935877573121407,
491
+ "loss": 2.0237,
492
+ "step": 680
493
+ },
494
+ {
495
+ "epoch": 0.6444081251459257,
496
+ "grad_norm": 0.033817837533771815,
497
+ "learning_rate": 0.00019331274249565717,
498
+ "loss": 2.0069,
499
+ "step": 690
500
+ },
501
+ {
502
+ "epoch": 0.6537473733364464,
503
+ "grad_norm": 0.028286999650643876,
504
+ "learning_rate": 0.00019303215705589194,
505
+ "loss": 2.0112,
506
+ "step": 700
507
+ },
508
+ {
509
+ "epoch": 0.6630866215269671,
510
+ "grad_norm": 0.030693948626257357,
511
+ "learning_rate": 0.00019274601774335243,
512
+ "loss": 2.0,
513
+ "step": 710
514
+ },
515
+ {
516
+ "epoch": 0.6724258697174877,
517
+ "grad_norm": 0.029984615635953022,
518
+ "learning_rate": 0.0001924543416401035,
519
+ "loss": 2.0028,
520
+ "step": 720
521
+ },
522
+ {
523
+ "epoch": 0.6817651179080084,
524
+ "grad_norm": 0.02915985673921391,
525
+ "learning_rate": 0.00019215714615874755,
526
+ "loss": 2.0031,
527
+ "step": 730
528
+ },
529
+ {
530
+ "epoch": 0.6911043660985291,
531
+ "grad_norm": 0.028305399777245336,
532
+ "learning_rate": 0.00019185444904138528,
533
+ "loss": 1.9924,
534
+ "step": 740
535
+ },
536
+ {
537
+ "epoch": 0.7004436142890498,
538
+ "grad_norm": 0.036720505429756495,
539
+ "learning_rate": 0.00019154626835855628,
540
+ "loss": 1.9981,
541
+ "step": 750
542
+ },
543
+ {
544
+ "epoch": 0.7097828624795703,
545
+ "grad_norm": 0.0287124048917296,
546
+ "learning_rate": 0.00019123262250816034,
547
+ "loss": 1.9868,
548
+ "step": 760
549
+ },
550
+ {
551
+ "epoch": 0.719122110670091,
552
+ "grad_norm": 0.03318092492837997,
553
+ "learning_rate": 0.00019091353021435915,
554
+ "loss": 1.9943,
555
+ "step": 770
556
+ },
557
+ {
558
+ "epoch": 0.7284613588606117,
559
+ "grad_norm": 0.054035272137015325,
560
+ "learning_rate": 0.00019058901052645844,
561
+ "loss": 1.9838,
562
+ "step": 780
563
+ },
564
+ {
565
+ "epoch": 0.7378006070511324,
566
+ "grad_norm": 0.03184392761983255,
567
+ "learning_rate": 0.00019025908281777078,
568
+ "loss": 1.982,
569
+ "step": 790
570
+ },
571
+ {
572
+ "epoch": 0.747139855241653,
573
+ "grad_norm": 0.029409948164434735,
574
+ "learning_rate": 0.00018992376678445908,
575
+ "loss": 1.9693,
576
+ "step": 800
577
+ },
578
+ {
579
+ "epoch": 0.7564791034321737,
580
+ "grad_norm": 0.029656963043919016,
581
+ "learning_rate": 0.00018958308244436064,
582
+ "loss": 1.9914,
583
+ "step": 810
584
+ },
585
+ {
586
+ "epoch": 0.7658183516226944,
587
+ "grad_norm": 0.030843610865326686,
588
+ "learning_rate": 0.00018923705013579233,
589
+ "loss": 1.9749,
590
+ "step": 820
591
+ },
592
+ {
593
+ "epoch": 0.7751575998132151,
594
+ "grad_norm": 0.0377584286045999,
595
+ "learning_rate": 0.00018888569051633613,
596
+ "loss": 1.9606,
597
+ "step": 830
598
+ },
599
+ {
600
+ "epoch": 0.7844968480037356,
601
+ "grad_norm": 0.03147699916274391,
602
+ "learning_rate": 0.00018852902456160616,
603
+ "loss": 1.9696,
604
+ "step": 840
605
+ },
606
+ {
607
+ "epoch": 0.7938360961942563,
608
+ "grad_norm": 0.029193153251471263,
609
+ "learning_rate": 0.0001881670735639963,
610
+ "loss": 1.9687,
611
+ "step": 850
612
+ },
613
+ {
614
+ "epoch": 0.803175344384777,
615
+ "grad_norm": 0.030201895228156087,
616
+ "learning_rate": 0.00018779985913140924,
617
+ "loss": 1.9678,
618
+ "step": 860
619
+ },
620
+ {
621
+ "epoch": 0.8125145925752977,
622
+ "grad_norm": 0.029272319485493213,
623
+ "learning_rate": 0.00018742740318596632,
624
+ "loss": 1.9697,
625
+ "step": 870
626
+ },
627
+ {
628
+ "epoch": 0.8218538407658184,
629
+ "grad_norm": 0.033740176465285654,
630
+ "learning_rate": 0.000187049727962699,
631
+ "loss": 1.9647,
632
+ "step": 880
633
+ },
634
+ {
635
+ "epoch": 0.831193088956339,
636
+ "grad_norm": 0.029539399251208593,
637
+ "learning_rate": 0.0001866668560082213,
638
+ "loss": 1.9627,
639
+ "step": 890
640
+ },
641
+ {
642
+ "epoch": 0.8405323371468597,
643
+ "grad_norm": 0.028666077337951026,
644
+ "learning_rate": 0.0001862788101793839,
645
+ "loss": 1.9529,
646
+ "step": 900
647
+ },
648
+ {
649
+ "epoch": 0.8498715853373804,
650
+ "grad_norm": 0.030280792492665805,
651
+ "learning_rate": 0.0001858856136419097,
652
+ "loss": 1.9536,
653
+ "step": 910
654
+ },
655
+ {
656
+ "epoch": 0.859210833527901,
657
+ "grad_norm": 0.03921536105057096,
658
+ "learning_rate": 0.0001854872898690106,
659
+ "loss": 1.9474,
660
+ "step": 920
661
+ },
662
+ {
663
+ "epoch": 0.8685500817184216,
664
+ "grad_norm": 0.030632523637038354,
665
+ "learning_rate": 0.0001850838626399865,
666
+ "loss": 1.9423,
667
+ "step": 930
668
+ },
669
+ {
670
+ "epoch": 0.8778893299089423,
671
+ "grad_norm": 0.04615147601979514,
672
+ "learning_rate": 0.00018467535603880548,
673
+ "loss": 1.946,
674
+ "step": 940
675
+ },
676
+ {
677
+ "epoch": 0.887228578099463,
678
+ "grad_norm": 0.028216236017006333,
679
+ "learning_rate": 0.00018426179445266616,
680
+ "loss": 1.9408,
681
+ "step": 950
682
+ },
683
+ {
684
+ "epoch": 0.8965678262899837,
685
+ "grad_norm": 0.0282407563402959,
686
+ "learning_rate": 0.00018384320257054177,
687
+ "loss": 1.9447,
688
+ "step": 960
689
+ },
690
+ {
691
+ "epoch": 0.9059070744805043,
692
+ "grad_norm": 0.029365880854687894,
693
+ "learning_rate": 0.0001834196053817062,
694
+ "loss": 1.9389,
695
+ "step": 970
696
+ },
697
+ {
698
+ "epoch": 0.915246322671025,
699
+ "grad_norm": 0.02855404439130719,
700
+ "learning_rate": 0.00018299102817424234,
701
+ "loss": 1.9425,
702
+ "step": 980
703
+ },
704
+ {
705
+ "epoch": 0.9245855708615457,
706
+ "grad_norm": 0.03238310984070135,
707
+ "learning_rate": 0.00018255749653353225,
708
+ "loss": 1.9392,
709
+ "step": 990
710
+ },
711
+ {
712
+ "epoch": 0.9339248190520663,
713
+ "grad_norm": 0.030115350805430388,
714
+ "learning_rate": 0.00018211903634072983,
715
+ "loss": 1.956,
716
+ "step": 1000
717
+ },
718
+ {
719
+ "epoch": 0.9432640672425869,
720
+ "grad_norm": 0.039090564032501135,
721
+ "learning_rate": 0.0001816756737712158,
722
+ "loss": 1.9358,
723
+ "step": 1010
724
+ },
725
+ {
726
+ "epoch": 0.9526033154331076,
727
+ "grad_norm": 0.028567954476327023,
728
+ "learning_rate": 0.000181227435293035,
729
+ "loss": 1.9342,
730
+ "step": 1020
731
+ },
732
+ {
733
+ "epoch": 0.9619425636236283,
734
+ "grad_norm": 0.028158653241284505,
735
+ "learning_rate": 0.00018077434766531624,
736
+ "loss": 1.9287,
737
+ "step": 1030
738
+ },
739
+ {
740
+ "epoch": 0.971281811814149,
741
+ "grad_norm": 0.02927795717651538,
742
+ "learning_rate": 0.00018031643793667504,
743
+ "loss": 1.9298,
744
+ "step": 1040
745
+ },
746
+ {
747
+ "epoch": 0.9806210600046696,
748
+ "grad_norm": 0.06298340584032344,
749
+ "learning_rate": 0.0001798537334435986,
750
+ "loss": 1.9303,
751
+ "step": 1050
752
+ },
753
+ {
754
+ "epoch": 0.9899603081951903,
755
+ "grad_norm": 0.03627278406983255,
756
+ "learning_rate": 0.00017938626180881407,
757
+ "loss": 1.9285,
758
+ "step": 1060
759
+ },
760
+ {
761
+ "epoch": 0.999299556385711,
762
+ "grad_norm": 0.03916823421329747,
763
+ "learning_rate": 0.00017891405093963938,
764
+ "loss": 1.9239,
765
+ "step": 1070
766
+ },
767
+ {
768
+ "epoch": 1.0087555451786132,
769
+ "grad_norm": 0.03383539251115568,
770
+ "learning_rate": 0.00017843712902631723,
771
+ "loss": 1.8855,
772
+ "step": 1080
773
+ },
774
+ {
775
+ "epoch": 1.0180947933691338,
776
+ "grad_norm": 0.02931021936560147,
777
+ "learning_rate": 0.00017795552454033224,
778
+ "loss": 1.8004,
779
+ "step": 1090
780
+ },
781
+ {
782
+ "epoch": 1.0274340415596543,
783
+ "grad_norm": 0.029173295095350292,
784
+ "learning_rate": 0.0001774692662327113,
785
+ "loss": 1.7912,
786
+ "step": 1100
787
+ },
788
+ {
789
+ "epoch": 1.0367732897501751,
790
+ "grad_norm": 0.035210065642974735,
791
+ "learning_rate": 0.000176978383132307,
792
+ "loss": 1.7902,
793
+ "step": 1110
794
+ },
795
+ {
796
+ "epoch": 1.0461125379406957,
797
+ "grad_norm": 0.029794447659573477,
798
+ "learning_rate": 0.00017648290454406475,
799
+ "loss": 1.8072,
800
+ "step": 1120
801
+ },
802
+ {
803
+ "epoch": 1.0554517861312165,
804
+ "grad_norm": 0.03194584938279939,
805
+ "learning_rate": 0.0001759828600472734,
806
+ "loss": 1.803,
807
+ "step": 1130
808
+ },
809
+ {
810
+ "epoch": 1.064791034321737,
811
+ "grad_norm": 0.031028415312581603,
812
+ "learning_rate": 0.00017547827949379924,
813
+ "loss": 1.7945,
814
+ "step": 1140
815
+ },
816
+ {
817
+ "epoch": 1.0741302825122578,
818
+ "grad_norm": 0.03313245828751237,
819
+ "learning_rate": 0.00017496919300630403,
820
+ "loss": 1.8139,
821
+ "step": 1150
822
+ },
823
+ {
824
+ "epoch": 1.0834695307027784,
825
+ "grad_norm": 0.03049431724979126,
826
+ "learning_rate": 0.00017445563097644664,
827
+ "loss": 1.8031,
828
+ "step": 1160
829
+ },
830
+ {
831
+ "epoch": 1.0928087788932992,
832
+ "grad_norm": 0.02880548705343715,
833
+ "learning_rate": 0.00017393762406306878,
834
+ "loss": 1.7974,
835
+ "step": 1170
836
+ },
837
+ {
838
+ "epoch": 1.1021480270838198,
839
+ "grad_norm": 0.03200427895977668,
840
+ "learning_rate": 0.00017341520319036469,
841
+ "loss": 1.7994,
842
+ "step": 1180
843
+ },
844
+ {
845
+ "epoch": 1.1114872752743403,
846
+ "grad_norm": 0.031293532815600045,
847
+ "learning_rate": 0.00017288839954603496,
848
+ "loss": 1.8073,
849
+ "step": 1190
850
+ },
851
+ {
852
+ "epoch": 1.1208265234648611,
853
+ "grad_norm": 0.032367211109345505,
854
+ "learning_rate": 0.00017235724457942468,
855
+ "loss": 1.7944,
856
+ "step": 1200
857
+ },
858
+ {
859
+ "epoch": 1.1301657716553817,
860
+ "grad_norm": 0.037783793923191374,
861
+ "learning_rate": 0.0001718217699996462,
862
+ "loss": 1.7948,
863
+ "step": 1210
864
+ },
865
+ {
866
+ "epoch": 1.1395050198459025,
867
+ "grad_norm": 0.02881083117349317,
868
+ "learning_rate": 0.00017128200777368567,
869
+ "loss": 1.8029,
870
+ "step": 1220
871
+ },
872
+ {
873
+ "epoch": 1.148844268036423,
874
+ "grad_norm": 0.032997408408175985,
875
+ "learning_rate": 0.00017073799012449524,
876
+ "loss": 1.7914,
877
+ "step": 1230
878
+ },
879
+ {
880
+ "epoch": 1.1581835162269438,
881
+ "grad_norm": 0.030263615801190885,
882
+ "learning_rate": 0.00017018974952906884,
883
+ "loss": 1.792,
884
+ "step": 1240
885
+ },
886
+ {
887
+ "epoch": 1.1675227644174644,
888
+ "grad_norm": 0.03286310429098484,
889
+ "learning_rate": 0.00016963731871650378,
890
+ "loss": 1.8149,
891
+ "step": 1250
892
+ },
893
+ {
894
+ "epoch": 1.1768620126079852,
895
+ "grad_norm": 0.031111621587597126,
896
+ "learning_rate": 0.00016908073066604663,
897
+ "loss": 1.8092,
898
+ "step": 1260
899
+ },
900
+ {
901
+ "epoch": 1.1862012607985057,
902
+ "grad_norm": 0.03372950172075241,
903
+ "learning_rate": 0.0001685200186051246,
904
+ "loss": 1.818,
905
+ "step": 1270
906
+ },
907
+ {
908
+ "epoch": 1.1955405089890263,
909
+ "grad_norm": 0.040782040436567434,
910
+ "learning_rate": 0.00016795521600736164,
911
+ "loss": 1.7999,
912
+ "step": 1280
913
+ },
914
+ {
915
+ "epoch": 1.204879757179547,
916
+ "grad_norm": 0.03451605168178924,
917
+ "learning_rate": 0.00016738635659058044,
918
+ "loss": 1.7945,
919
+ "step": 1290
920
+ },
921
+ {
922
+ "epoch": 1.2142190053700677,
923
+ "grad_norm": 0.03235681588882673,
924
+ "learning_rate": 0.00016681347431478933,
925
+ "loss": 1.8087,
926
+ "step": 1300
927
+ },
928
+ {
929
+ "epoch": 1.2235582535605884,
930
+ "grad_norm": 0.030750745605971932,
931
+ "learning_rate": 0.00016623660338015487,
932
+ "loss": 1.7995,
933
+ "step": 1310
934
+ },
935
+ {
936
+ "epoch": 1.232897501751109,
937
+ "grad_norm": 0.029444668665577274,
938
+ "learning_rate": 0.00016565577822496042,
939
+ "loss": 1.8025,
940
+ "step": 1320
941
+ },
942
+ {
943
+ "epoch": 1.2422367499416298,
944
+ "grad_norm": 0.038528856709584745,
945
+ "learning_rate": 0.00016507103352354996,
946
+ "loss": 1.7954,
947
+ "step": 1330
948
+ },
949
+ {
950
+ "epoch": 1.2515759981321504,
951
+ "grad_norm": 0.034217088004383035,
952
+ "learning_rate": 0.00016448240418425814,
953
+ "loss": 1.7962,
954
+ "step": 1340
955
+ },
956
+ {
957
+ "epoch": 1.260915246322671,
958
+ "grad_norm": 0.030205405393195585,
959
+ "learning_rate": 0.00016388992534732645,
960
+ "loss": 1.7973,
961
+ "step": 1350
962
+ },
963
+ {
964
+ "epoch": 1.2702544945131917,
965
+ "grad_norm": 0.029082218516562994,
966
+ "learning_rate": 0.00016329363238280528,
967
+ "loss": 1.796,
968
+ "step": 1360
969
+ },
970
+ {
971
+ "epoch": 1.2795937427037123,
972
+ "grad_norm": 0.029003887688766505,
973
+ "learning_rate": 0.00016269356088844238,
974
+ "loss": 1.7946,
975
+ "step": 1370
976
+ },
977
+ {
978
+ "epoch": 1.288932990894233,
979
+ "grad_norm": 0.03341157363649238,
980
+ "learning_rate": 0.00016208974668755779,
981
+ "loss": 1.7972,
982
+ "step": 1380
983
+ },
984
+ {
985
+ "epoch": 1.2982722390847536,
986
+ "grad_norm": 0.030614480844663026,
987
+ "learning_rate": 0.00016148222582690517,
988
+ "loss": 1.7973,
989
+ "step": 1390
990
+ },
991
+ {
992
+ "epoch": 1.3076114872752744,
993
+ "grad_norm": 0.029741346740467405,
994
+ "learning_rate": 0.00016087103457452,
995
+ "loss": 1.8076,
996
+ "step": 1400
997
+ },
998
+ {
999
+ "epoch": 1.316950735465795,
1000
+ "grad_norm": 0.029569313554185597,
1001
+ "learning_rate": 0.00016025620941755424,
1002
+ "loss": 1.8043,
1003
+ "step": 1410
1004
+ },
1005
+ {
1006
+ "epoch": 1.3262899836563156,
1007
+ "grad_norm": 0.02947637404374054,
1008
+ "learning_rate": 0.0001596377870600983,
1009
+ "loss": 1.797,
1010
+ "step": 1420
1011
+ },
1012
+ {
1013
+ "epoch": 1.3356292318468364,
1014
+ "grad_norm": 0.031005062093959545,
1015
+ "learning_rate": 0.00015901580442098968,
1016
+ "loss": 1.8086,
1017
+ "step": 1430
1018
+ },
1019
+ {
1020
+ "epoch": 1.344968480037357,
1021
+ "grad_norm": 0.029493792984873927,
1022
+ "learning_rate": 0.00015839029863160922,
1023
+ "loss": 1.8026,
1024
+ "step": 1440
1025
+ },
1026
+ {
1027
+ "epoch": 1.3543077282278777,
1028
+ "grad_norm": 0.0288068155951218,
1029
+ "learning_rate": 0.0001577613070336641,
1030
+ "loss": 1.7951,
1031
+ "step": 1450
1032
+ },
1033
+ {
1034
+ "epoch": 1.3636469764183983,
1035
+ "grad_norm": 0.03380404824627639,
1036
+ "learning_rate": 0.00015712886717695885,
1037
+ "loss": 1.7938,
1038
+ "step": 1460
1039
+ },
1040
+ {
1041
+ "epoch": 1.372986224608919,
1042
+ "grad_norm": 0.039744706189693335,
1043
+ "learning_rate": 0.0001564930168171536,
1044
+ "loss": 1.8016,
1045
+ "step": 1470
1046
+ },
1047
+ {
1048
+ "epoch": 1.3823254727994396,
1049
+ "grad_norm": 0.030565530594285437,
1050
+ "learning_rate": 0.00015585379391351012,
1051
+ "loss": 1.7984,
1052
+ "step": 1480
1053
+ },
1054
+ {
1055
+ "epoch": 1.3916647209899602,
1056
+ "grad_norm": 0.04009392805554255,
1057
+ "learning_rate": 0.00015521123662662567,
1058
+ "loss": 1.7999,
1059
+ "step": 1490
1060
+ },
1061
+ {
1062
+ "epoch": 1.401003969180481,
1063
+ "grad_norm": 0.03516196009586836,
1064
+ "learning_rate": 0.000154565383316155,
1065
+ "loss": 1.7979,
1066
+ "step": 1500
1067
+ },
1068
+ {
1069
+ "epoch": 1.4103432173710018,
1070
+ "grad_norm": 0.03534161399054556,
1071
+ "learning_rate": 0.0001539162725385202,
1072
+ "loss": 1.8057,
1073
+ "step": 1510
1074
+ },
1075
+ {
1076
+ "epoch": 1.4196824655615223,
1077
+ "grad_norm": 0.028488879438601067,
1078
+ "learning_rate": 0.000153263943044609,
1079
+ "loss": 1.792,
1080
+ "step": 1520
1081
+ },
1082
+ {
1083
+ "epoch": 1.429021713752043,
1084
+ "grad_norm": 0.03125154490954804,
1085
+ "learning_rate": 0.00015260843377746147,
1086
+ "loss": 1.8008,
1087
+ "step": 1530
1088
+ },
1089
+ {
1090
+ "epoch": 1.4383609619425637,
1091
+ "grad_norm": 0.030194357488801882,
1092
+ "learning_rate": 0.00015194978386994507,
1093
+ "loss": 1.7948,
1094
+ "step": 1540
1095
+ },
1096
+ {
1097
+ "epoch": 1.4477002101330843,
1098
+ "grad_norm": 0.03049246845786265,
1099
+ "learning_rate": 0.00015128803264241852,
1100
+ "loss": 1.7967,
1101
+ "step": 1550
1102
+ },
1103
+ {
1104
+ "epoch": 1.4570394583236048,
1105
+ "grad_norm": 0.030497211097258083,
1106
+ "learning_rate": 0.0001506232196003844,
1107
+ "loss": 1.7894,
1108
+ "step": 1560
1109
+ },
1110
+ {
1111
+ "epoch": 1.4663787065141256,
1112
+ "grad_norm": 0.028748806119737205,
1113
+ "learning_rate": 0.00014995538443213094,
1114
+ "loss": 1.806,
1115
+ "step": 1570
1116
+ },
1117
+ {
1118
+ "epoch": 1.4757179547046464,
1119
+ "grad_norm": 0.036423750322912396,
1120
+ "learning_rate": 0.00014928456700636237,
1121
+ "loss": 1.7995,
1122
+ "step": 1580
1123
+ },
1124
+ {
1125
+ "epoch": 1.485057202895167,
1126
+ "grad_norm": 0.039101516109204065,
1127
+ "learning_rate": 0.00014861080736981906,
1128
+ "loss": 1.8028,
1129
+ "step": 1590
1130
+ },
1131
+ {
1132
+ "epoch": 1.4943964510856875,
1133
+ "grad_norm": 0.031368399541673815,
1134
+ "learning_rate": 0.00014793414574488663,
1135
+ "loss": 1.8005,
1136
+ "step": 1600
1137
+ },
1138
+ {
1139
+ "epoch": 1.5037356992762083,
1140
+ "grad_norm": 0.029788484702512056,
1141
+ "learning_rate": 0.00014725462252719495,
1142
+ "loss": 1.7963,
1143
+ "step": 1610
1144
+ },
1145
+ {
1146
+ "epoch": 1.5130749474667289,
1147
+ "grad_norm": 0.029719041811636312,
1148
+ "learning_rate": 0.00014657227828320635,
1149
+ "loss": 1.7957,
1150
+ "step": 1620
1151
+ },
1152
+ {
1153
+ "epoch": 1.5224141956572494,
1154
+ "grad_norm": 0.02820041575417432,
1155
+ "learning_rate": 0.00014588715374779407,
1156
+ "loss": 1.7986,
1157
+ "step": 1630
1158
+ },
1159
+ {
1160
+ "epoch": 1.5317534438477702,
1161
+ "grad_norm": 1.8322544897261024,
1162
+ "learning_rate": 0.0001451992898218102,
1163
+ "loss": 2.016,
1164
+ "step": 1640
1165
+ },
1166
+ {
1167
+ "epoch": 1.541092692038291,
1168
+ "grad_norm": 0.8676995793107466,
1169
+ "learning_rate": 0.0001445087275696443,
1170
+ "loss": 2.1095,
1171
+ "step": 1650
1172
+ },
1173
+ {
1174
+ "epoch": 1.5504319402288116,
1175
+ "grad_norm": 0.08688193434631736,
1176
+ "learning_rate": 0.00014381550821677155,
1177
+ "loss": 2.0497,
1178
+ "step": 1660
1179
+ },
1180
+ {
1181
+ "epoch": 1.5597711884193322,
1182
+ "grad_norm": 0.18321381224589608,
1183
+ "learning_rate": 0.0001431196731472921,
1184
+ "loss": 1.9023,
1185
+ "step": 1670
1186
+ },
1187
+ {
1188
+ "epoch": 1.569110436609853,
1189
+ "grad_norm": 0.058214343698110564,
1190
+ "learning_rate": 0.00014242126390145998,
1191
+ "loss": 1.8566,
1192
+ "step": 1680
1193
+ },
1194
+ {
1195
+ "epoch": 1.5784496848003737,
1196
+ "grad_norm": 0.03965578147557666,
1197
+ "learning_rate": 0.0001417203221732036,
1198
+ "loss": 1.8206,
1199
+ "step": 1690
1200
+ },
1201
+ {
1202
+ "epoch": 1.587788932990894,
1203
+ "grad_norm": 0.03131802880017099,
1204
+ "learning_rate": 0.00014101688980763658,
1205
+ "loss": 1.8272,
1206
+ "step": 1700
1207
+ },
1208
+ {
1209
+ "epoch": 1.5971281811814149,
1210
+ "grad_norm": 0.02788722706683908,
1211
+ "learning_rate": 0.00014031100879855968,
1212
+ "loss": 1.8145,
1213
+ "step": 1710
1214
+ },
1215
+ {
1216
+ "epoch": 1.6064674293719357,
1217
+ "grad_norm": 0.02781057130092059,
1218
+ "learning_rate": 0.00013960272128595372,
1219
+ "loss": 1.8122,
1220
+ "step": 1720
1221
+ },
1222
+ {
1223
+ "epoch": 1.6158066775624562,
1224
+ "grad_norm": 0.032067383734154756,
1225
+ "learning_rate": 0.00013889206955346403,
1226
+ "loss": 1.8064,
1227
+ "step": 1730
1228
+ },
1229
+ {
1230
+ "epoch": 1.6251459257529768,
1231
+ "grad_norm": 0.03448807133884858,
1232
+ "learning_rate": 0.00013817909602587613,
1233
+ "loss": 1.8128,
1234
+ "step": 1740
1235
+ },
1236
+ {
1237
+ "epoch": 1.6344851739434976,
1238
+ "grad_norm": 0.04127395288271696,
1239
+ "learning_rate": 0.00013746384326658305,
1240
+ "loss": 1.8041,
1241
+ "step": 1750
1242
+ },
1243
+ {
1244
+ "epoch": 1.6438244221340184,
1245
+ "grad_norm": 0.030243192787820814,
1246
+ "learning_rate": 0.00013674635397504427,
1247
+ "loss": 1.803,
1248
+ "step": 1760
1249
+ },
1250
+ {
1251
+ "epoch": 1.653163670324539,
1252
+ "grad_norm": 0.032183525625428915,
1253
+ "learning_rate": 0.00013602667098423687,
1254
+ "loss": 1.8092,
1255
+ "step": 1770
1256
+ },
1257
+ {
1258
+ "epoch": 1.6625029185150595,
1259
+ "grad_norm": 0.030391044676815377,
1260
+ "learning_rate": 0.00013530483725809818,
1261
+ "loss": 1.8039,
1262
+ "step": 1780
1263
+ },
1264
+ {
1265
+ "epoch": 1.6718421667055803,
1266
+ "grad_norm": 0.03204756818238517,
1267
+ "learning_rate": 0.000134580895888961,
1268
+ "loss": 1.8017,
1269
+ "step": 1790
1270
+ },
1271
+ {
1272
+ "epoch": 1.6811814148961008,
1273
+ "grad_norm": 0.031117112662107062,
1274
+ "learning_rate": 0.00013385489009498124,
1275
+ "loss": 1.8017,
1276
+ "step": 1800
1277
+ },
1278
+ {
1279
+ "epoch": 1.6905206630866214,
1280
+ "grad_norm": 0.028389293445401805,
1281
+ "learning_rate": 0.00013312686321755761,
1282
+ "loss": 1.811,
1283
+ "step": 1810
1284
+ },
1285
+ {
1286
+ "epoch": 1.6998599112771422,
1287
+ "grad_norm": 4.908185097372493,
1288
+ "learning_rate": 0.0001323968587187443,
1289
+ "loss": 2.194,
1290
+ "step": 1820
1291
+ },
1292
+ {
1293
+ "epoch": 1.709199159467663,
1294
+ "grad_norm": 0.2849452041194025,
1295
+ "learning_rate": 0.00013166492017865637,
1296
+ "loss": 2.0785,
1297
+ "step": 1830
1298
+ },
1299
+ {
1300
+ "epoch": 1.7185384076581836,
1301
+ "grad_norm": 0.10989252058989733,
1302
+ "learning_rate": 0.0001309310912928682,
1303
+ "loss": 1.986,
1304
+ "step": 1840
1305
+ },
1306
+ {
1307
+ "epoch": 1.7278776558487041,
1308
+ "grad_norm": 0.057475612656740484,
1309
+ "learning_rate": 0.00013019541586980463,
1310
+ "loss": 1.8614,
1311
+ "step": 1850
1312
+ },
1313
+ {
1314
+ "epoch": 1.737216904039225,
1315
+ "grad_norm": 0.034908181734207726,
1316
+ "learning_rate": 0.000129457937828126,
1317
+ "loss": 1.8326,
1318
+ "step": 1860
1319
+ },
1320
+ {
1321
+ "epoch": 1.7465561522297455,
1322
+ "grad_norm": 0.02892836681897248,
1323
+ "learning_rate": 0.00012871870119410614,
1324
+ "loss": 1.8243,
1325
+ "step": 1870
1326
+ },
1327
+ {
1328
+ "epoch": 1.755895400420266,
1329
+ "grad_norm": 0.03311636981729384,
1330
+ "learning_rate": 0.00012797775009900397,
1331
+ "loss": 1.8183,
1332
+ "step": 1880
1333
+ },
1334
+ {
1335
+ "epoch": 1.7652346486107868,
1336
+ "grad_norm": 0.03151917952358458,
1337
+ "learning_rate": 0.00012723512877642904,
1338
+ "loss": 1.8034,
1339
+ "step": 1890
1340
+ },
1341
+ {
1342
+ "epoch": 1.7745738968013076,
1343
+ "grad_norm": 0.028109921832296925,
1344
+ "learning_rate": 0.000126490881559701,
1345
+ "loss": 1.8129,
1346
+ "step": 1900
1347
+ },
1348
+ {
1349
+ "epoch": 1.7839131449918282,
1350
+ "grad_norm": 0.030350462454962698,
1351
+ "learning_rate": 0.00012574505287920259,
1352
+ "loss": 1.8003,
1353
+ "step": 1910
1354
+ },
1355
+ {
1356
+ "epoch": 1.7932523931823487,
1357
+ "grad_norm": 0.03131380630103849,
1358
+ "learning_rate": 0.00012499768725972754,
1359
+ "loss": 1.814,
1360
+ "step": 1920
1361
+ },
1362
+ {
1363
+ "epoch": 1.8025916413728695,
1364
+ "grad_norm": 0.029450198273050322,
1365
+ "learning_rate": 0.00012424882931782243,
1366
+ "loss": 1.7998,
1367
+ "step": 1930
1368
+ },
1369
+ {
1370
+ "epoch": 1.81193088956339,
1371
+ "grad_norm": 0.0310524261453681,
1372
+ "learning_rate": 0.0001234985237591231,
1373
+ "loss": 1.8078,
1374
+ "step": 1940
1375
+ },
1376
+ {
1377
+ "epoch": 1.8212701377539107,
1378
+ "grad_norm": 0.029362038478982822,
1379
+ "learning_rate": 0.00012274681537568585,
1380
+ "loss": 1.8014,
1381
+ "step": 1950
1382
+ },
1383
+ {
1384
+ "epoch": 1.8306093859444315,
1385
+ "grad_norm": 0.027166816460226118,
1386
+ "learning_rate": 0.00012199374904331337,
1387
+ "loss": 1.8021,
1388
+ "step": 1960
1389
+ },
1390
+ {
1391
+ "epoch": 1.8399486341349522,
1392
+ "grad_norm": 0.03680509283276228,
1393
+ "learning_rate": 0.00012123936971887578,
1394
+ "loss": 1.7973,
1395
+ "step": 1970
1396
+ },
1397
+ {
1398
+ "epoch": 1.8492878823254728,
1399
+ "grad_norm": 0.03135174840346185,
1400
+ "learning_rate": 0.0001204837224376267,
1401
+ "loss": 1.7874,
1402
+ "step": 1980
1403
+ },
1404
+ {
1405
+ "epoch": 1.8586271305159934,
1406
+ "grad_norm": 0.02644533256389969,
1407
+ "learning_rate": 0.0001197268523105148,
1408
+ "loss": 1.798,
1409
+ "step": 1990
1410
+ },
1411
+ {
1412
+ "epoch": 1.8679663787065142,
1413
+ "grad_norm": 0.02999453651649614,
1414
+ "learning_rate": 0.00011896880452149077,
1415
+ "loss": 1.7957,
1416
+ "step": 2000
1417
+ },
1418
+ {
1419
+ "epoch": 1.877305626897035,
1420
+ "grad_norm": 0.026905209700322272,
1421
+ "learning_rate": 0.00011820962432480985,
1422
+ "loss": 1.793,
1423
+ "step": 2010
1424
+ },
1425
+ {
1426
+ "epoch": 1.8866448750875553,
1427
+ "grad_norm": 0.027263640323285022,
1428
+ "learning_rate": 0.00011744935704233005,
1429
+ "loss": 1.7974,
1430
+ "step": 2020
1431
+ },
1432
+ {
1433
+ "epoch": 1.895984123278076,
1434
+ "grad_norm": 0.030479226063932337,
1435
+ "learning_rate": 0.00011668804806080693,
1436
+ "loss": 1.7898,
1437
+ "step": 2030
1438
+ },
1439
+ {
1440
+ "epoch": 1.9053233714685969,
1441
+ "grad_norm": 0.030129902025534238,
1442
+ "learning_rate": 0.00011592574282918369,
1443
+ "loss": 1.7856,
1444
+ "step": 2040
1445
+ },
1446
+ {
1447
+ "epoch": 1.9146626196591174,
1448
+ "grad_norm": 0.027884976674153635,
1449
+ "learning_rate": 0.00011516248685587814,
1450
+ "loss": 1.7858,
1451
+ "step": 2050
1452
+ },
1453
+ {
1454
+ "epoch": 1.924001867849638,
1455
+ "grad_norm": 0.02925266011156687,
1456
+ "learning_rate": 0.00011439832570606586,
1457
+ "loss": 1.7876,
1458
+ "step": 2060
1459
+ },
1460
+ {
1461
+ "epoch": 1.9333411160401588,
1462
+ "grad_norm": 0.028472914828616754,
1463
+ "learning_rate": 0.00011363330499895997,
1464
+ "loss": 1.7834,
1465
+ "step": 2070
1466
+ },
1467
+ {
1468
+ "epoch": 1.9426803642306796,
1469
+ "grad_norm": 0.025877740032137875,
1470
+ "learning_rate": 0.00011286747040508789,
1471
+ "loss": 1.7955,
1472
+ "step": 2080
1473
+ },
1474
+ {
1475
+ "epoch": 1.9520196124212001,
1476
+ "grad_norm": 0.02605295620697312,
1477
+ "learning_rate": 0.0001121008676435648,
1478
+ "loss": 1.7877,
1479
+ "step": 2090
1480
+ },
1481
+ {
1482
+ "epoch": 1.9613588606117207,
1483
+ "grad_norm": 0.026887649929567867,
1484
+ "learning_rate": 0.00011133354247936423,
1485
+ "loss": 1.773,
1486
+ "step": 2100
1487
+ },
1488
+ {
1489
+ "epoch": 1.9706981088022415,
1490
+ "grad_norm": 0.027982045915154026,
1491
+ "learning_rate": 0.00011056554072058596,
1492
+ "loss": 1.7762,
1493
+ "step": 2110
1494
+ },
1495
+ {
1496
+ "epoch": 1.980037356992762,
1497
+ "grad_norm": 0.028077027059053006,
1498
+ "learning_rate": 0.0001097969082157215,
1499
+ "loss": 1.7963,
1500
+ "step": 2120
1501
+ },
1502
+ {
1503
+ "epoch": 1.9893766051832826,
1504
+ "grad_norm": 0.027877078975954036,
1505
+ "learning_rate": 0.00010902769085091686,
1506
+ "loss": 1.7787,
1507
+ "step": 2130
1508
+ },
1509
+ {
1510
+ "epoch": 1.9987158533738034,
1511
+ "grad_norm": 0.026120077388738373,
1512
+ "learning_rate": 0.00010825793454723325,
1513
+ "loss": 1.7842,
1514
+ "step": 2140
1515
+ },
1516
+ {
1517
+ "epoch": 2.0081718421667056,
1518
+ "grad_norm": 0.044810283079268924,
1519
+ "learning_rate": 0.00010748768525790569,
1520
+ "loss": 1.6591,
1521
+ "step": 2150
1522
+ },
1523
+ {
1524
+ "epoch": 2.0175110903572264,
1525
+ "grad_norm": 0.03431848280739808,
1526
+ "learning_rate": 0.00010671698896559968,
1527
+ "loss": 1.5599,
1528
+ "step": 2160
1529
+ },
1530
+ {
1531
+ "epoch": 2.0268503385477468,
1532
+ "grad_norm": 0.04234332973849956,
1533
+ "learning_rate": 0.00010594589167966606,
1534
+ "loss": 1.5494,
1535
+ "step": 2170
1536
+ },
1537
+ {
1538
+ "epoch": 2.0361895867382676,
1539
+ "grad_norm": 0.03260321438171042,
1540
+ "learning_rate": 0.00010517443943339438,
1541
+ "loss": 1.5473,
1542
+ "step": 2180
1543
+ },
1544
+ {
1545
+ "epoch": 2.0455288349287883,
1546
+ "grad_norm": 0.034116901745609114,
1547
+ "learning_rate": 0.00010440267828126478,
1548
+ "loss": 1.5464,
1549
+ "step": 2190
1550
+ },
1551
+ {
1552
+ "epoch": 2.0548680831193087,
1553
+ "grad_norm": 0.030992757239375807,
1554
+ "learning_rate": 0.00010363065429619858,
1555
+ "loss": 1.5514,
1556
+ "step": 2200
1557
+ },
1558
+ {
1559
+ "epoch": 2.0642073313098295,
1560
+ "grad_norm": 0.03365516197786113,
1561
+ "learning_rate": 0.0001028584135668077,
1562
+ "loss": 1.5493,
1563
+ "step": 2210
1564
+ },
1565
+ {
1566
+ "epoch": 2.0735465795003503,
1567
+ "grad_norm": 0.033293307482261586,
1568
+ "learning_rate": 0.00010208600219464355,
1569
+ "loss": 1.5426,
1570
+ "step": 2220
1571
+ },
1572
+ {
1573
+ "epoch": 2.082885827690871,
1574
+ "grad_norm": 0.03653097737467338,
1575
+ "learning_rate": 0.00010131346629144451,
1576
+ "loss": 1.5471,
1577
+ "step": 2230
1578
+ },
1579
+ {
1580
+ "epoch": 2.0922250758813914,
1581
+ "grad_norm": 0.03390291511697895,
1582
+ "learning_rate": 0.0001005408519763833,
1583
+ "loss": 1.5568,
1584
+ "step": 2240
1585
+ },
1586
+ {
1587
+ "epoch": 2.101564324071912,
1588
+ "grad_norm": 0.03192694661852283,
1589
+ "learning_rate": 9.976820537331374e-05,
1590
+ "loss": 1.5452,
1591
+ "step": 2250
1592
+ },
1593
+ {
1594
+ "epoch": 2.110903572262433,
1595
+ "grad_norm": 0.03561740193515691,
1596
+ "learning_rate": 9.899557260801707e-05,
1597
+ "loss": 1.546,
1598
+ "step": 2260
1599
+ },
1600
+ {
1601
+ "epoch": 2.1202428204529538,
1602
+ "grad_norm": 0.029803732953068658,
1603
+ "learning_rate": 9.822299980544862e-05,
1604
+ "loss": 1.5533,
1605
+ "step": 2270
1606
+ },
1607
+ {
1608
+ "epoch": 2.129582068643474,
1609
+ "grad_norm": 0.031232417271289125,
1610
+ "learning_rate": 9.745053308698392e-05,
1611
+ "loss": 1.5469,
1612
+ "step": 2280
1613
+ },
1614
+ {
1615
+ "epoch": 2.138921316833995,
1616
+ "grad_norm": 0.032434793780181034,
1617
+ "learning_rate": 9.667821856766548e-05,
1618
+ "loss": 1.5514,
1619
+ "step": 2290
1620
+ },
1621
+ {
1622
+ "epoch": 2.1482605650245157,
1623
+ "grad_norm": 0.03579370906405582,
1624
+ "learning_rate": 9.590610235344972e-05,
1625
+ "loss": 1.5577,
1626
+ "step": 2300
1627
+ },
1628
+ {
1629
+ "epoch": 2.157599813215036,
1630
+ "grad_norm": 0.029662202478648328,
1631
+ "learning_rate": 9.51342305384546e-05,
1632
+ "loss": 1.5543,
1633
+ "step": 2310
1634
+ },
1635
+ {
1636
+ "epoch": 2.166939061405557,
1637
+ "grad_norm": 0.03178715913934592,
1638
+ "learning_rate": 9.436264920220781e-05,
1639
+ "loss": 1.5579,
1640
+ "step": 2320
1641
+ },
1642
+ {
1643
+ "epoch": 2.1762783095960776,
1644
+ "grad_norm": 0.03384008887051677,
1645
+ "learning_rate": 9.359140440689601e-05,
1646
+ "loss": 1.5595,
1647
+ "step": 2330
1648
+ },
1649
+ {
1650
+ "epoch": 2.1856175577865984,
1651
+ "grad_norm": 0.03316450664408166,
1652
+ "learning_rate": 9.282054219461475e-05,
1653
+ "loss": 1.5556,
1654
+ "step": 2340
1655
+ },
1656
+ {
1657
+ "epoch": 2.1949568059771187,
1658
+ "grad_norm": 0.032176305552558876,
1659
+ "learning_rate": 9.205010858462007e-05,
1660
+ "loss": 1.5638,
1661
+ "step": 2350
1662
+ },
1663
+ {
1664
+ "epoch": 2.2042960541676395,
1665
+ "grad_norm": 0.031134335256756362,
1666
+ "learning_rate": 9.128014957058109e-05,
1667
+ "loss": 1.5629,
1668
+ "step": 2360
1669
+ },
1670
+ {
1671
+ "epoch": 2.2136353023581603,
1672
+ "grad_norm": 0.032205851810441756,
1673
+ "learning_rate": 9.051071111783436e-05,
1674
+ "loss": 1.5613,
1675
+ "step": 2370
1676
+ },
1677
+ {
1678
+ "epoch": 2.2229745505486807,
1679
+ "grad_norm": 0.029048245476020442,
1680
+ "learning_rate": 8.974183916063968e-05,
1681
+ "loss": 1.5594,
1682
+ "step": 2380
1683
+ },
1684
+ {
1685
+ "epoch": 2.2323137987392014,
1686
+ "grad_norm": 0.03183166054573621,
1687
+ "learning_rate": 8.897357959943795e-05,
1688
+ "loss": 1.5606,
1689
+ "step": 2390
1690
+ },
1691
+ {
1692
+ "epoch": 2.2416530469297222,
1693
+ "grad_norm": 0.032309922117136916,
1694
+ "learning_rate": 8.820597829811109e-05,
1695
+ "loss": 1.5524,
1696
+ "step": 2400
1697
+ },
1698
+ {
1699
+ "epoch": 2.250992295120243,
1700
+ "grad_norm": 0.03598922231958808,
1701
+ "learning_rate": 8.743908108124388e-05,
1702
+ "loss": 1.5604,
1703
+ "step": 2410
1704
+ },
1705
+ {
1706
+ "epoch": 2.2603315433107634,
1707
+ "grad_norm": 0.03046424735786346,
1708
+ "learning_rate": 8.667293373138835e-05,
1709
+ "loss": 1.5598,
1710
+ "step": 2420
1711
+ },
1712
+ {
1713
+ "epoch": 2.269670791501284,
1714
+ "grad_norm": 0.030995453538377543,
1715
+ "learning_rate": 8.59075819863307e-05,
1716
+ "loss": 1.5652,
1717
+ "step": 2430
1718
+ },
1719
+ {
1720
+ "epoch": 2.279010039691805,
1721
+ "grad_norm": 0.029309020623010097,
1722
+ "learning_rate": 8.514307153636077e-05,
1723
+ "loss": 1.5651,
1724
+ "step": 2440
1725
+ },
1726
+ {
1727
+ "epoch": 2.2883492878823253,
1728
+ "grad_norm": 0.03158721106736763,
1729
+ "learning_rate": 8.437944802154434e-05,
1730
+ "loss": 1.5581,
1731
+ "step": 2450
1732
+ },
1733
+ {
1734
+ "epoch": 2.297688536072846,
1735
+ "grad_norm": 0.03168229084049938,
1736
+ "learning_rate": 8.361675702899871e-05,
1737
+ "loss": 1.5671,
1738
+ "step": 2460
1739
+ },
1740
+ {
1741
+ "epoch": 2.307027784263367,
1742
+ "grad_norm": 0.031335222148495136,
1743
+ "learning_rate": 8.2855044090171e-05,
1744
+ "loss": 1.5675,
1745
+ "step": 2470
1746
+ },
1747
+ {
1748
+ "epoch": 2.3163670324538876,
1749
+ "grad_norm": 0.031073847325941303,
1750
+ "learning_rate": 8.209435467811998e-05,
1751
+ "loss": 1.5624,
1752
+ "step": 2480
1753
+ },
1754
+ {
1755
+ "epoch": 2.325706280644408,
1756
+ "grad_norm": 0.030099100631045844,
1757
+ "learning_rate": 8.133473420480161e-05,
1758
+ "loss": 1.5606,
1759
+ "step": 2490
1760
+ },
1761
+ {
1762
+ "epoch": 2.3350455288349288,
1763
+ "grad_norm": 0.034147632950361176,
1764
+ "learning_rate": 8.057622801835788e-05,
1765
+ "loss": 1.5703,
1766
+ "step": 2500
1767
+ }
1768
+ ],
1769
+ "logging_steps": 10,
1770
+ "max_steps": 4280,
1771
+ "num_input_tokens_seen": 0,
1772
+ "num_train_epochs": 4,
1773
+ "save_steps": 100,
1774
+ "stateful_callbacks": {
1775
+ "TrainerControl": {
1776
+ "args": {
1777
+ "should_epoch_stop": false,
1778
+ "should_evaluate": false,
1779
+ "should_log": false,
1780
+ "should_save": true,
1781
+ "should_training_stop": false
1782
+ },
1783
+ "attributes": {}
1784
+ }
1785
+ },
1786
+ "total_flos": 2.0242534775648158e+20,
1787
+ "train_batch_size": 2,
1788
+ "trial_name": null,
1789
+ "trial_params": null
1790
+ }
l2-13b-ga/checkpoint-2500/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
l2-13b-ga/checkpoint-3700/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-13b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
l2-13b-ga/checkpoint-3700/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
l2-13b-ga/checkpoint-3700/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3700
l2-13b-ga/checkpoint-3700/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
l2-13b-ga/checkpoint-3700/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
l2-13b-ga/checkpoint-3700/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
l2-13b-ga/checkpoint-3700/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
l2-13b-ga/checkpoint-3700/trainer_state.json ADDED
@@ -0,0 +1,2630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.4558720522997897,
5
+ "eval_steps": 500,
6
+ "global_step": 3700,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0009339248190520663,
13
+ "grad_norm": 6.638877692627699,
14
+ "learning_rate": 9.345794392523364e-07,
15
+ "loss": 9.2917,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.009339248190520663,
20
+ "grad_norm": 1.1560921335705272,
21
+ "learning_rate": 9.345794392523365e-06,
22
+ "loss": 9.0876,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.018678496381041326,
27
+ "grad_norm": 0.8415132296956432,
28
+ "learning_rate": 1.869158878504673e-05,
29
+ "loss": 8.2164,
30
+ "step": 20
31
+ },
32
+ {
33
+ "epoch": 0.02801774457156199,
34
+ "grad_norm": 0.45381630992958155,
35
+ "learning_rate": 2.8037383177570094e-05,
36
+ "loss": 7.5184,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.03735699276208265,
41
+ "grad_norm": 0.8400636107958425,
42
+ "learning_rate": 3.738317757009346e-05,
43
+ "loss": 6.6507,
44
+ "step": 40
45
+ },
46
+ {
47
+ "epoch": 0.046696240952603316,
48
+ "grad_norm": 0.557696240829066,
49
+ "learning_rate": 4.672897196261683e-05,
50
+ "loss": 5.8909,
51
+ "step": 50
52
+ },
53
+ {
54
+ "epoch": 0.05603548914312398,
55
+ "grad_norm": 0.3971996057467842,
56
+ "learning_rate": 5.607476635514019e-05,
57
+ "loss": 5.4127,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 0.06537473733364464,
62
+ "grad_norm": 0.2932710540265688,
63
+ "learning_rate": 6.542056074766355e-05,
64
+ "loss": 5.0106,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.0747139855241653,
69
+ "grad_norm": 0.3682690443551033,
70
+ "learning_rate": 7.476635514018692e-05,
71
+ "loss": 4.6042,
72
+ "step": 80
73
+ },
74
+ {
75
+ "epoch": 0.08405323371468597,
76
+ "grad_norm": 0.3132971920011515,
77
+ "learning_rate": 8.411214953271028e-05,
78
+ "loss": 4.2031,
79
+ "step": 90
80
+ },
81
+ {
82
+ "epoch": 0.09339248190520663,
83
+ "grad_norm": 0.6731868159213446,
84
+ "learning_rate": 9.345794392523365e-05,
85
+ "loss": 3.9423,
86
+ "step": 100
87
+ },
88
+ {
89
+ "epoch": 0.1027317300957273,
90
+ "grad_norm": 0.27848867836763197,
91
+ "learning_rate": 0.000102803738317757,
92
+ "loss": 3.7157,
93
+ "step": 110
94
+ },
95
+ {
96
+ "epoch": 0.11207097828624796,
97
+ "grad_norm": 0.24642109032991807,
98
+ "learning_rate": 0.00011214953271028037,
99
+ "loss": 3.4516,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 0.12141022647676862,
104
+ "grad_norm": 0.25717384664029797,
105
+ "learning_rate": 0.00012149532710280373,
106
+ "loss": 3.2167,
107
+ "step": 130
108
+ },
109
+ {
110
+ "epoch": 0.13074947466728928,
111
+ "grad_norm": 0.20912922668565637,
112
+ "learning_rate": 0.0001308411214953271,
113
+ "loss": 3.0237,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.14008872285780993,
118
+ "grad_norm": 0.15805888388706113,
119
+ "learning_rate": 0.00014018691588785047,
120
+ "loss": 2.8529,
121
+ "step": 150
122
+ },
123
+ {
124
+ "epoch": 0.1494279710483306,
125
+ "grad_norm": 0.23370349497479534,
126
+ "learning_rate": 0.00014953271028037384,
127
+ "loss": 2.7078,
128
+ "step": 160
129
+ },
130
+ {
131
+ "epoch": 0.15876721923885126,
132
+ "grad_norm": 0.1802138633012483,
133
+ "learning_rate": 0.0001588785046728972,
134
+ "loss": 2.6115,
135
+ "step": 170
136
+ },
137
+ {
138
+ "epoch": 0.16810646742937194,
139
+ "grad_norm": 0.13354347610039718,
140
+ "learning_rate": 0.00016822429906542056,
141
+ "loss": 2.5309,
142
+ "step": 180
143
+ },
144
+ {
145
+ "epoch": 0.17744571561989259,
146
+ "grad_norm": 0.09414865188086892,
147
+ "learning_rate": 0.00017757009345794393,
148
+ "loss": 2.4452,
149
+ "step": 190
150
+ },
151
+ {
152
+ "epoch": 0.18678496381041326,
153
+ "grad_norm": 0.08333601554768896,
154
+ "learning_rate": 0.0001869158878504673,
155
+ "loss": 2.3832,
156
+ "step": 200
157
+ },
158
+ {
159
+ "epoch": 0.1961242120009339,
160
+ "grad_norm": 0.15926414699806835,
161
+ "learning_rate": 0.00019626168224299065,
162
+ "loss": 2.3492,
163
+ "step": 210
164
+ },
165
+ {
166
+ "epoch": 0.2054634601914546,
167
+ "grad_norm": 0.09492820761057012,
168
+ "learning_rate": 0.0001999989254250208,
169
+ "loss": 2.323,
170
+ "step": 220
171
+ },
172
+ {
173
+ "epoch": 0.21480270838197524,
174
+ "grad_norm": 0.0801349259356147,
175
+ "learning_rate": 0.00019999235866155886,
176
+ "loss": 2.2731,
177
+ "step": 230
178
+ },
179
+ {
180
+ "epoch": 0.22414195657249592,
181
+ "grad_norm": 0.12210960524693895,
182
+ "learning_rate": 0.00019997982251228469,
183
+ "loss": 2.2433,
184
+ "step": 240
185
+ },
186
+ {
187
+ "epoch": 0.23348120476301656,
188
+ "grad_norm": 3.14289498732125,
189
+ "learning_rate": 0.00019996131772558666,
190
+ "loss": 3.2769,
191
+ "step": 250
192
+ },
193
+ {
194
+ "epoch": 0.24282045295353724,
195
+ "grad_norm": 1.632940983166179,
196
+ "learning_rate": 0.00019993684540617132,
197
+ "loss": 4.9343,
198
+ "step": 260
199
+ },
200
+ {
201
+ "epoch": 0.2521597011440579,
202
+ "grad_norm": 3.4831252230225416,
203
+ "learning_rate": 0.00019990640701499736,
204
+ "loss": 4.2768,
205
+ "step": 270
206
+ },
207
+ {
208
+ "epoch": 0.26149894933457857,
209
+ "grad_norm": 1.6069045920523788,
210
+ "learning_rate": 0.00019987000436918874,
211
+ "loss": 5.9581,
212
+ "step": 280
213
+ },
214
+ {
215
+ "epoch": 0.27083819752509924,
216
+ "grad_norm": 0.2220907936615993,
217
+ "learning_rate": 0.00019982763964192585,
218
+ "loss": 3.8228,
219
+ "step": 290
220
+ },
221
+ {
222
+ "epoch": 0.28017744571561987,
223
+ "grad_norm": 0.24737284913291765,
224
+ "learning_rate": 0.00019977931536231596,
225
+ "loss": 3.1413,
226
+ "step": 300
227
+ },
228
+ {
229
+ "epoch": 0.28951669390614054,
230
+ "grad_norm": 4.010404518241152,
231
+ "learning_rate": 0.00019972503441524224,
232
+ "loss": 2.8432,
233
+ "step": 310
234
+ },
235
+ {
236
+ "epoch": 0.2988559420966612,
237
+ "grad_norm": 0.1515583580811596,
238
+ "learning_rate": 0.00019966480004119142,
239
+ "loss": 2.7859,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 0.3081951902871819,
244
+ "grad_norm": 0.11259395750650594,
245
+ "learning_rate": 0.00019959861583606045,
246
+ "loss": 2.5821,
247
+ "step": 330
248
+ },
249
+ {
250
+ "epoch": 0.3175344384777025,
251
+ "grad_norm": 0.22514797814956813,
252
+ "learning_rate": 0.00019952648575094183,
253
+ "loss": 2.4517,
254
+ "step": 340
255
+ },
256
+ {
257
+ "epoch": 0.3268736866682232,
258
+ "grad_norm": 0.08040136172033542,
259
+ "learning_rate": 0.00019944841409188767,
260
+ "loss": 2.3794,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 0.3362129348587439,
265
+ "grad_norm": 0.054758073593565354,
266
+ "learning_rate": 0.00019936440551965263,
267
+ "loss": 2.3232,
268
+ "step": 360
269
+ },
270
+ {
271
+ "epoch": 0.34555218304926455,
272
+ "grad_norm": 0.06742998909645591,
273
+ "learning_rate": 0.00019927446504941577,
274
+ "loss": 2.2776,
275
+ "step": 370
276
+ },
277
+ {
278
+ "epoch": 0.35489143123978517,
279
+ "grad_norm": 0.048780907584876736,
280
+ "learning_rate": 0.00019917859805048096,
281
+ "loss": 2.2376,
282
+ "step": 380
283
+ },
284
+ {
285
+ "epoch": 0.36423067943030585,
286
+ "grad_norm": 0.0475325963052214,
287
+ "learning_rate": 0.00019907681024595663,
288
+ "loss": 2.2191,
289
+ "step": 390
290
+ },
291
+ {
292
+ "epoch": 0.3735699276208265,
293
+ "grad_norm": 0.054089563211590065,
294
+ "learning_rate": 0.00019896910771241387,
295
+ "loss": 2.1961,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 0.3829091758113472,
300
+ "grad_norm": 0.21798406131864823,
301
+ "learning_rate": 0.00019885549687952372,
302
+ "loss": 2.2078,
303
+ "step": 410
304
+ },
305
+ {
306
+ "epoch": 0.3922484240018678,
307
+ "grad_norm": 0.8673185709111124,
308
+ "learning_rate": 0.00019873598452967338,
309
+ "loss": 2.3731,
310
+ "step": 420
311
+ },
312
+ {
313
+ "epoch": 0.4015876721923885,
314
+ "grad_norm": 0.22424350669971718,
315
+ "learning_rate": 0.0001986105777975613,
316
+ "loss": 2.6195,
317
+ "step": 430
318
+ },
319
+ {
320
+ "epoch": 0.4109269203829092,
321
+ "grad_norm": 0.307418135168262,
322
+ "learning_rate": 0.00019847928416977126,
323
+ "loss": 2.3624,
324
+ "step": 440
325
+ },
326
+ {
327
+ "epoch": 0.42026616857342985,
328
+ "grad_norm": 0.07944722668080402,
329
+ "learning_rate": 0.00019834211148432536,
330
+ "loss": 2.2799,
331
+ "step": 450
332
+ },
333
+ {
334
+ "epoch": 0.4296054167639505,
335
+ "grad_norm": 0.18146933758664588,
336
+ "learning_rate": 0.00019819906793021614,
337
+ "loss": 2.2177,
338
+ "step": 460
339
+ },
340
+ {
341
+ "epoch": 0.43894466495447115,
342
+ "grad_norm": 0.07035825837333018,
343
+ "learning_rate": 0.0001980501620469178,
344
+ "loss": 2.1767,
345
+ "step": 470
346
+ },
347
+ {
348
+ "epoch": 0.44828391314499183,
349
+ "grad_norm": 0.04596186944454228,
350
+ "learning_rate": 0.0001978954027238763,
351
+ "loss": 2.1598,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 0.4576231613355125,
356
+ "grad_norm": 0.041342347745088055,
357
+ "learning_rate": 0.0001977347991999786,
358
+ "loss": 2.131,
359
+ "step": 490
360
+ },
361
+ {
362
+ "epoch": 0.46696240952603313,
363
+ "grad_norm": 0.04172063219841485,
364
+ "learning_rate": 0.00019756836106300137,
365
+ "loss": 2.1231,
366
+ "step": 500
367
+ },
368
+ {
369
+ "epoch": 0.4763016577165538,
370
+ "grad_norm": 0.03373646457711144,
371
+ "learning_rate": 0.00019739609824903843,
372
+ "loss": 2.1146,
373
+ "step": 510
374
+ },
375
+ {
376
+ "epoch": 0.4856409059070745,
377
+ "grad_norm": 0.03736871030676605,
378
+ "learning_rate": 0.00019721802104190748,
379
+ "loss": 2.1003,
380
+ "step": 520
381
+ },
382
+ {
383
+ "epoch": 0.49498015409759516,
384
+ "grad_norm": 0.033931028038211034,
385
+ "learning_rate": 0.00019703414007253645,
386
+ "loss": 2.0983,
387
+ "step": 530
388
+ },
389
+ {
390
+ "epoch": 0.5043194022881158,
391
+ "grad_norm": 0.03790055446070549,
392
+ "learning_rate": 0.00019684446631832868,
393
+ "loss": 2.092,
394
+ "step": 540
395
+ },
396
+ {
397
+ "epoch": 0.5136586504786365,
398
+ "grad_norm": 0.030956192803893078,
399
+ "learning_rate": 0.00019664901110250758,
400
+ "loss": 2.0807,
401
+ "step": 550
402
+ },
403
+ {
404
+ "epoch": 0.5229978986691571,
405
+ "grad_norm": 0.03542530209935129,
406
+ "learning_rate": 0.00019644778609344068,
407
+ "loss": 2.0773,
408
+ "step": 560
409
+ },
410
+ {
411
+ "epoch": 0.5323371468596778,
412
+ "grad_norm": 0.040947757568902336,
413
+ "learning_rate": 0.00019624080330394306,
414
+ "loss": 2.0649,
415
+ "step": 570
416
+ },
417
+ {
418
+ "epoch": 0.5416763950501985,
419
+ "grad_norm": 0.034273415973688146,
420
+ "learning_rate": 0.00019602807509056018,
421
+ "loss": 2.0479,
422
+ "step": 580
423
+ },
424
+ {
425
+ "epoch": 0.5510156432407192,
426
+ "grad_norm": 0.031427481498873144,
427
+ "learning_rate": 0.00019580961415283028,
428
+ "loss": 2.0563,
429
+ "step": 590
430
+ },
431
+ {
432
+ "epoch": 0.5603548914312397,
433
+ "grad_norm": 0.03141549752041532,
434
+ "learning_rate": 0.00019558543353252611,
435
+ "loss": 2.0503,
436
+ "step": 600
437
+ },
438
+ {
439
+ "epoch": 0.5696941396217604,
440
+ "grad_norm": 0.033012392726428204,
441
+ "learning_rate": 0.00019535554661287652,
442
+ "loss": 2.0389,
443
+ "step": 610
444
+ },
445
+ {
446
+ "epoch": 0.5790333878122811,
447
+ "grad_norm": 0.02913261992661444,
448
+ "learning_rate": 0.0001951199671177673,
449
+ "loss": 2.036,
450
+ "step": 620
451
+ },
452
+ {
453
+ "epoch": 0.5883726360028018,
454
+ "grad_norm": 0.030543903708435332,
455
+ "learning_rate": 0.00019487870911092214,
456
+ "loss": 2.0326,
457
+ "step": 630
458
+ },
459
+ {
460
+ "epoch": 0.5977118841933224,
461
+ "grad_norm": 0.03215005545393897,
462
+ "learning_rate": 0.00019463178699506277,
463
+ "loss": 2.0231,
464
+ "step": 640
465
+ },
466
+ {
467
+ "epoch": 0.6070511323838431,
468
+ "grad_norm": 0.03823630791937631,
469
+ "learning_rate": 0.00019437921551104933,
470
+ "loss": 2.0293,
471
+ "step": 650
472
+ },
473
+ {
474
+ "epoch": 0.6163903805743638,
475
+ "grad_norm": 0.03200103149471209,
476
+ "learning_rate": 0.00019412100973700038,
477
+ "loss": 2.017,
478
+ "step": 660
479
+ },
480
+ {
481
+ "epoch": 0.6257296287648845,
482
+ "grad_norm": 0.03841804153577787,
483
+ "learning_rate": 0.00019385718508739262,
484
+ "loss": 2.0135,
485
+ "step": 670
486
+ },
487
+ {
488
+ "epoch": 0.635068876955405,
489
+ "grad_norm": 0.03052396655271533,
490
+ "learning_rate": 0.0001935877573121407,
491
+ "loss": 2.0237,
492
+ "step": 680
493
+ },
494
+ {
495
+ "epoch": 0.6444081251459257,
496
+ "grad_norm": 0.033817837533771815,
497
+ "learning_rate": 0.00019331274249565717,
498
+ "loss": 2.0069,
499
+ "step": 690
500
+ },
501
+ {
502
+ "epoch": 0.6537473733364464,
503
+ "grad_norm": 0.028286999650643876,
504
+ "learning_rate": 0.00019303215705589194,
505
+ "loss": 2.0112,
506
+ "step": 700
507
+ },
508
+ {
509
+ "epoch": 0.6630866215269671,
510
+ "grad_norm": 0.030693948626257357,
511
+ "learning_rate": 0.00019274601774335243,
512
+ "loss": 2.0,
513
+ "step": 710
514
+ },
515
+ {
516
+ "epoch": 0.6724258697174877,
517
+ "grad_norm": 0.029984615635953022,
518
+ "learning_rate": 0.0001924543416401035,
519
+ "loss": 2.0028,
520
+ "step": 720
521
+ },
522
+ {
523
+ "epoch": 0.6817651179080084,
524
+ "grad_norm": 0.02915985673921391,
525
+ "learning_rate": 0.00019215714615874755,
526
+ "loss": 2.0031,
527
+ "step": 730
528
+ },
529
+ {
530
+ "epoch": 0.6911043660985291,
531
+ "grad_norm": 0.028305399777245336,
532
+ "learning_rate": 0.00019185444904138528,
533
+ "loss": 1.9924,
534
+ "step": 740
535
+ },
536
+ {
537
+ "epoch": 0.7004436142890498,
538
+ "grad_norm": 0.036720505429756495,
539
+ "learning_rate": 0.00019154626835855628,
540
+ "loss": 1.9981,
541
+ "step": 750
542
+ },
543
+ {
544
+ "epoch": 0.7097828624795703,
545
+ "grad_norm": 0.0287124048917296,
546
+ "learning_rate": 0.00019123262250816034,
547
+ "loss": 1.9868,
548
+ "step": 760
549
+ },
550
+ {
551
+ "epoch": 0.719122110670091,
552
+ "grad_norm": 0.03318092492837997,
553
+ "learning_rate": 0.00019091353021435915,
554
+ "loss": 1.9943,
555
+ "step": 770
556
+ },
557
+ {
558
+ "epoch": 0.7284613588606117,
559
+ "grad_norm": 0.054035272137015325,
560
+ "learning_rate": 0.00019058901052645844,
561
+ "loss": 1.9838,
562
+ "step": 780
563
+ },
564
+ {
565
+ "epoch": 0.7378006070511324,
566
+ "grad_norm": 0.03184392761983255,
567
+ "learning_rate": 0.00019025908281777078,
568
+ "loss": 1.982,
569
+ "step": 790
570
+ },
571
+ {
572
+ "epoch": 0.747139855241653,
573
+ "grad_norm": 0.029409948164434735,
574
+ "learning_rate": 0.00018992376678445908,
575
+ "loss": 1.9693,
576
+ "step": 800
577
+ },
578
+ {
579
+ "epoch": 0.7564791034321737,
580
+ "grad_norm": 0.029656963043919016,
581
+ "learning_rate": 0.00018958308244436064,
582
+ "loss": 1.9914,
583
+ "step": 810
584
+ },
585
+ {
586
+ "epoch": 0.7658183516226944,
587
+ "grad_norm": 0.030843610865326686,
588
+ "learning_rate": 0.00018923705013579233,
589
+ "loss": 1.9749,
590
+ "step": 820
591
+ },
592
+ {
593
+ "epoch": 0.7751575998132151,
594
+ "grad_norm": 0.0377584286045999,
595
+ "learning_rate": 0.00018888569051633613,
596
+ "loss": 1.9606,
597
+ "step": 830
598
+ },
599
+ {
600
+ "epoch": 0.7844968480037356,
601
+ "grad_norm": 0.03147699916274391,
602
+ "learning_rate": 0.00018852902456160616,
603
+ "loss": 1.9696,
604
+ "step": 840
605
+ },
606
+ {
607
+ "epoch": 0.7938360961942563,
608
+ "grad_norm": 0.029193153251471263,
609
+ "learning_rate": 0.0001881670735639963,
610
+ "loss": 1.9687,
611
+ "step": 850
612
+ },
613
+ {
614
+ "epoch": 0.803175344384777,
615
+ "grad_norm": 0.030201895228156087,
616
+ "learning_rate": 0.00018779985913140924,
617
+ "loss": 1.9678,
618
+ "step": 860
619
+ },
620
+ {
621
+ "epoch": 0.8125145925752977,
622
+ "grad_norm": 0.029272319485493213,
623
+ "learning_rate": 0.00018742740318596632,
624
+ "loss": 1.9697,
625
+ "step": 870
626
+ },
627
+ {
628
+ "epoch": 0.8218538407658184,
629
+ "grad_norm": 0.033740176465285654,
630
+ "learning_rate": 0.000187049727962699,
631
+ "loss": 1.9647,
632
+ "step": 880
633
+ },
634
+ {
635
+ "epoch": 0.831193088956339,
636
+ "grad_norm": 0.029539399251208593,
637
+ "learning_rate": 0.0001866668560082213,
638
+ "loss": 1.9627,
639
+ "step": 890
640
+ },
641
+ {
642
+ "epoch": 0.8405323371468597,
643
+ "grad_norm": 0.028666077337951026,
644
+ "learning_rate": 0.0001862788101793839,
645
+ "loss": 1.9529,
646
+ "step": 900
647
+ },
648
+ {
649
+ "epoch": 0.8498715853373804,
650
+ "grad_norm": 0.030280792492665805,
651
+ "learning_rate": 0.0001858856136419097,
652
+ "loss": 1.9536,
653
+ "step": 910
654
+ },
655
+ {
656
+ "epoch": 0.859210833527901,
657
+ "grad_norm": 0.03921536105057096,
658
+ "learning_rate": 0.0001854872898690106,
659
+ "loss": 1.9474,
660
+ "step": 920
661
+ },
662
+ {
663
+ "epoch": 0.8685500817184216,
664
+ "grad_norm": 0.030632523637038354,
665
+ "learning_rate": 0.0001850838626399865,
666
+ "loss": 1.9423,
667
+ "step": 930
668
+ },
669
+ {
670
+ "epoch": 0.8778893299089423,
671
+ "grad_norm": 0.04615147601979514,
672
+ "learning_rate": 0.00018467535603880548,
673
+ "loss": 1.946,
674
+ "step": 940
675
+ },
676
+ {
677
+ "epoch": 0.887228578099463,
678
+ "grad_norm": 0.028216236017006333,
679
+ "learning_rate": 0.00018426179445266616,
680
+ "loss": 1.9408,
681
+ "step": 950
682
+ },
683
+ {
684
+ "epoch": 0.8965678262899837,
685
+ "grad_norm": 0.0282407563402959,
686
+ "learning_rate": 0.00018384320257054177,
687
+ "loss": 1.9447,
688
+ "step": 960
689
+ },
690
+ {
691
+ "epoch": 0.9059070744805043,
692
+ "grad_norm": 0.029365880854687894,
693
+ "learning_rate": 0.0001834196053817062,
694
+ "loss": 1.9389,
695
+ "step": 970
696
+ },
697
+ {
698
+ "epoch": 0.915246322671025,
699
+ "grad_norm": 0.02855404439130719,
700
+ "learning_rate": 0.00018299102817424234,
701
+ "loss": 1.9425,
702
+ "step": 980
703
+ },
704
+ {
705
+ "epoch": 0.9245855708615457,
706
+ "grad_norm": 0.03238310984070135,
707
+ "learning_rate": 0.00018255749653353225,
708
+ "loss": 1.9392,
709
+ "step": 990
710
+ },
711
+ {
712
+ "epoch": 0.9339248190520663,
713
+ "grad_norm": 0.030115350805430388,
714
+ "learning_rate": 0.00018211903634072983,
715
+ "loss": 1.956,
716
+ "step": 1000
717
+ },
718
+ {
719
+ "epoch": 0.9432640672425869,
720
+ "grad_norm": 0.039090564032501135,
721
+ "learning_rate": 0.0001816756737712158,
722
+ "loss": 1.9358,
723
+ "step": 1010
724
+ },
725
+ {
726
+ "epoch": 0.9526033154331076,
727
+ "grad_norm": 0.028567954476327023,
728
+ "learning_rate": 0.000181227435293035,
729
+ "loss": 1.9342,
730
+ "step": 1020
731
+ },
732
+ {
733
+ "epoch": 0.9619425636236283,
734
+ "grad_norm": 0.028158653241284505,
735
+ "learning_rate": 0.00018077434766531624,
736
+ "loss": 1.9287,
737
+ "step": 1030
738
+ },
739
+ {
740
+ "epoch": 0.971281811814149,
741
+ "grad_norm": 0.02927795717651538,
742
+ "learning_rate": 0.00018031643793667504,
743
+ "loss": 1.9298,
744
+ "step": 1040
745
+ },
746
+ {
747
+ "epoch": 0.9806210600046696,
748
+ "grad_norm": 0.06298340584032344,
749
+ "learning_rate": 0.0001798537334435986,
750
+ "loss": 1.9303,
751
+ "step": 1050
752
+ },
753
+ {
754
+ "epoch": 0.9899603081951903,
755
+ "grad_norm": 0.03627278406983255,
756
+ "learning_rate": 0.00017938626180881407,
757
+ "loss": 1.9285,
758
+ "step": 1060
759
+ },
760
+ {
761
+ "epoch": 0.999299556385711,
762
+ "grad_norm": 0.03916823421329747,
763
+ "learning_rate": 0.00017891405093963938,
764
+ "loss": 1.9239,
765
+ "step": 1070
766
+ },
767
+ {
768
+ "epoch": 1.0087555451786132,
769
+ "grad_norm": 0.03383539251115568,
770
+ "learning_rate": 0.00017843712902631723,
771
+ "loss": 1.8855,
772
+ "step": 1080
773
+ },
774
+ {
775
+ "epoch": 1.0180947933691338,
776
+ "grad_norm": 0.02931021936560147,
777
+ "learning_rate": 0.00017795552454033224,
778
+ "loss": 1.8004,
779
+ "step": 1090
780
+ },
781
+ {
782
+ "epoch": 1.0274340415596543,
783
+ "grad_norm": 0.029173295095350292,
784
+ "learning_rate": 0.0001774692662327113,
785
+ "loss": 1.7912,
786
+ "step": 1100
787
+ },
788
+ {
789
+ "epoch": 1.0367732897501751,
790
+ "grad_norm": 0.035210065642974735,
791
+ "learning_rate": 0.000176978383132307,
792
+ "loss": 1.7902,
793
+ "step": 1110
794
+ },
795
+ {
796
+ "epoch": 1.0461125379406957,
797
+ "grad_norm": 0.029794447659573477,
798
+ "learning_rate": 0.00017648290454406475,
799
+ "loss": 1.8072,
800
+ "step": 1120
801
+ },
802
+ {
803
+ "epoch": 1.0554517861312165,
804
+ "grad_norm": 0.03194584938279939,
805
+ "learning_rate": 0.0001759828600472734,
806
+ "loss": 1.803,
807
+ "step": 1130
808
+ },
809
+ {
810
+ "epoch": 1.064791034321737,
811
+ "grad_norm": 0.031028415312581603,
812
+ "learning_rate": 0.00017547827949379924,
813
+ "loss": 1.7945,
814
+ "step": 1140
815
+ },
816
+ {
817
+ "epoch": 1.0741302825122578,
818
+ "grad_norm": 0.03313245828751237,
819
+ "learning_rate": 0.00017496919300630403,
820
+ "loss": 1.8139,
821
+ "step": 1150
822
+ },
823
+ {
824
+ "epoch": 1.0834695307027784,
825
+ "grad_norm": 0.03049431724979126,
826
+ "learning_rate": 0.00017445563097644664,
827
+ "loss": 1.8031,
828
+ "step": 1160
829
+ },
830
+ {
831
+ "epoch": 1.0928087788932992,
832
+ "grad_norm": 0.02880548705343715,
833
+ "learning_rate": 0.00017393762406306878,
834
+ "loss": 1.7974,
835
+ "step": 1170
836
+ },
837
+ {
838
+ "epoch": 1.1021480270838198,
839
+ "grad_norm": 0.03200427895977668,
840
+ "learning_rate": 0.00017341520319036469,
841
+ "loss": 1.7994,
842
+ "step": 1180
843
+ },
844
+ {
845
+ "epoch": 1.1114872752743403,
846
+ "grad_norm": 0.031293532815600045,
847
+ "learning_rate": 0.00017288839954603496,
848
+ "loss": 1.8073,
849
+ "step": 1190
850
+ },
851
+ {
852
+ "epoch": 1.1208265234648611,
853
+ "grad_norm": 0.032367211109345505,
854
+ "learning_rate": 0.00017235724457942468,
855
+ "loss": 1.7944,
856
+ "step": 1200
857
+ },
858
+ {
859
+ "epoch": 1.1301657716553817,
860
+ "grad_norm": 0.037783793923191374,
861
+ "learning_rate": 0.0001718217699996462,
862
+ "loss": 1.7948,
863
+ "step": 1210
864
+ },
865
+ {
866
+ "epoch": 1.1395050198459025,
867
+ "grad_norm": 0.02881083117349317,
868
+ "learning_rate": 0.00017128200777368567,
869
+ "loss": 1.8029,
870
+ "step": 1220
871
+ },
872
+ {
873
+ "epoch": 1.148844268036423,
874
+ "grad_norm": 0.032997408408175985,
875
+ "learning_rate": 0.00017073799012449524,
876
+ "loss": 1.7914,
877
+ "step": 1230
878
+ },
879
+ {
880
+ "epoch": 1.1581835162269438,
881
+ "grad_norm": 0.030263615801190885,
882
+ "learning_rate": 0.00017018974952906884,
883
+ "loss": 1.792,
884
+ "step": 1240
885
+ },
886
+ {
887
+ "epoch": 1.1675227644174644,
888
+ "grad_norm": 0.03286310429098484,
889
+ "learning_rate": 0.00016963731871650378,
890
+ "loss": 1.8149,
891
+ "step": 1250
892
+ },
893
+ {
894
+ "epoch": 1.1768620126079852,
895
+ "grad_norm": 0.031111621587597126,
896
+ "learning_rate": 0.00016908073066604663,
897
+ "loss": 1.8092,
898
+ "step": 1260
899
+ },
900
+ {
901
+ "epoch": 1.1862012607985057,
902
+ "grad_norm": 0.03372950172075241,
903
+ "learning_rate": 0.0001685200186051246,
904
+ "loss": 1.818,
905
+ "step": 1270
906
+ },
907
+ {
908
+ "epoch": 1.1955405089890263,
909
+ "grad_norm": 0.040782040436567434,
910
+ "learning_rate": 0.00016795521600736164,
911
+ "loss": 1.7999,
912
+ "step": 1280
913
+ },
914
+ {
915
+ "epoch": 1.204879757179547,
916
+ "grad_norm": 0.03451605168178924,
917
+ "learning_rate": 0.00016738635659058044,
918
+ "loss": 1.7945,
919
+ "step": 1290
920
+ },
921
+ {
922
+ "epoch": 1.2142190053700677,
923
+ "grad_norm": 0.03235681588882673,
924
+ "learning_rate": 0.00016681347431478933,
925
+ "loss": 1.8087,
926
+ "step": 1300
927
+ },
928
+ {
929
+ "epoch": 1.2235582535605884,
930
+ "grad_norm": 0.030750745605971932,
931
+ "learning_rate": 0.00016623660338015487,
932
+ "loss": 1.7995,
933
+ "step": 1310
934
+ },
935
+ {
936
+ "epoch": 1.232897501751109,
937
+ "grad_norm": 0.029444668665577274,
938
+ "learning_rate": 0.00016565577822496042,
939
+ "loss": 1.8025,
940
+ "step": 1320
941
+ },
942
+ {
943
+ "epoch": 1.2422367499416298,
944
+ "grad_norm": 0.038528856709584745,
945
+ "learning_rate": 0.00016507103352354996,
946
+ "loss": 1.7954,
947
+ "step": 1330
948
+ },
949
+ {
950
+ "epoch": 1.2515759981321504,
951
+ "grad_norm": 0.034217088004383035,
952
+ "learning_rate": 0.00016448240418425814,
953
+ "loss": 1.7962,
954
+ "step": 1340
955
+ },
956
+ {
957
+ "epoch": 1.260915246322671,
958
+ "grad_norm": 0.030205405393195585,
959
+ "learning_rate": 0.00016388992534732645,
960
+ "loss": 1.7973,
961
+ "step": 1350
962
+ },
963
+ {
964
+ "epoch": 1.2702544945131917,
965
+ "grad_norm": 0.029082218516562994,
966
+ "learning_rate": 0.00016329363238280528,
967
+ "loss": 1.796,
968
+ "step": 1360
969
+ },
970
+ {
971
+ "epoch": 1.2795937427037123,
972
+ "grad_norm": 0.029003887688766505,
973
+ "learning_rate": 0.00016269356088844238,
974
+ "loss": 1.7946,
975
+ "step": 1370
976
+ },
977
+ {
978
+ "epoch": 1.288932990894233,
979
+ "grad_norm": 0.03341157363649238,
980
+ "learning_rate": 0.00016208974668755779,
981
+ "loss": 1.7972,
982
+ "step": 1380
983
+ },
984
+ {
985
+ "epoch": 1.2982722390847536,
986
+ "grad_norm": 0.030614480844663026,
987
+ "learning_rate": 0.00016148222582690517,
988
+ "loss": 1.7973,
989
+ "step": 1390
990
+ },
991
+ {
992
+ "epoch": 1.3076114872752744,
993
+ "grad_norm": 0.029741346740467405,
994
+ "learning_rate": 0.00016087103457452,
995
+ "loss": 1.8076,
996
+ "step": 1400
997
+ },
998
+ {
999
+ "epoch": 1.316950735465795,
1000
+ "grad_norm": 0.029569313554185597,
1001
+ "learning_rate": 0.00016025620941755424,
1002
+ "loss": 1.8043,
1003
+ "step": 1410
1004
+ },
1005
+ {
1006
+ "epoch": 1.3262899836563156,
1007
+ "grad_norm": 0.02947637404374054,
1008
+ "learning_rate": 0.0001596377870600983,
1009
+ "loss": 1.797,
1010
+ "step": 1420
1011
+ },
1012
+ {
1013
+ "epoch": 1.3356292318468364,
1014
+ "grad_norm": 0.031005062093959545,
1015
+ "learning_rate": 0.00015901580442098968,
1016
+ "loss": 1.8086,
1017
+ "step": 1430
1018
+ },
1019
+ {
1020
+ "epoch": 1.344968480037357,
1021
+ "grad_norm": 0.029493792984873927,
1022
+ "learning_rate": 0.00015839029863160922,
1023
+ "loss": 1.8026,
1024
+ "step": 1440
1025
+ },
1026
+ {
1027
+ "epoch": 1.3543077282278777,
1028
+ "grad_norm": 0.0288068155951218,
1029
+ "learning_rate": 0.0001577613070336641,
1030
+ "loss": 1.7951,
1031
+ "step": 1450
1032
+ },
1033
+ {
1034
+ "epoch": 1.3636469764183983,
1035
+ "grad_norm": 0.03380404824627639,
1036
+ "learning_rate": 0.00015712886717695885,
1037
+ "loss": 1.7938,
1038
+ "step": 1460
1039
+ },
1040
+ {
1041
+ "epoch": 1.372986224608919,
1042
+ "grad_norm": 0.039744706189693335,
1043
+ "learning_rate": 0.0001564930168171536,
1044
+ "loss": 1.8016,
1045
+ "step": 1470
1046
+ },
1047
+ {
1048
+ "epoch": 1.3823254727994396,
1049
+ "grad_norm": 0.030565530594285437,
1050
+ "learning_rate": 0.00015585379391351012,
1051
+ "loss": 1.7984,
1052
+ "step": 1480
1053
+ },
1054
+ {
1055
+ "epoch": 1.3916647209899602,
1056
+ "grad_norm": 0.04009392805554255,
1057
+ "learning_rate": 0.00015521123662662567,
1058
+ "loss": 1.7999,
1059
+ "step": 1490
1060
+ },
1061
+ {
1062
+ "epoch": 1.401003969180481,
1063
+ "grad_norm": 0.03516196009586836,
1064
+ "learning_rate": 0.000154565383316155,
1065
+ "loss": 1.7979,
1066
+ "step": 1500
1067
+ },
1068
+ {
1069
+ "epoch": 1.4103432173710018,
1070
+ "grad_norm": 0.03534161399054556,
1071
+ "learning_rate": 0.0001539162725385202,
1072
+ "loss": 1.8057,
1073
+ "step": 1510
1074
+ },
1075
+ {
1076
+ "epoch": 1.4196824655615223,
1077
+ "grad_norm": 0.028488879438601067,
1078
+ "learning_rate": 0.000153263943044609,
1079
+ "loss": 1.792,
1080
+ "step": 1520
1081
+ },
1082
+ {
1083
+ "epoch": 1.429021713752043,
1084
+ "grad_norm": 0.03125154490954804,
1085
+ "learning_rate": 0.00015260843377746147,
1086
+ "loss": 1.8008,
1087
+ "step": 1530
1088
+ },
1089
+ {
1090
+ "epoch": 1.4383609619425637,
1091
+ "grad_norm": 0.030194357488801882,
1092
+ "learning_rate": 0.00015194978386994507,
1093
+ "loss": 1.7948,
1094
+ "step": 1540
1095
+ },
1096
+ {
1097
+ "epoch": 1.4477002101330843,
1098
+ "grad_norm": 0.03049246845786265,
1099
+ "learning_rate": 0.00015128803264241852,
1100
+ "loss": 1.7967,
1101
+ "step": 1550
1102
+ },
1103
+ {
1104
+ "epoch": 1.4570394583236048,
1105
+ "grad_norm": 0.030497211097258083,
1106
+ "learning_rate": 0.0001506232196003844,
1107
+ "loss": 1.7894,
1108
+ "step": 1560
1109
+ },
1110
+ {
1111
+ "epoch": 1.4663787065141256,
1112
+ "grad_norm": 0.028748806119737205,
1113
+ "learning_rate": 0.00014995538443213094,
1114
+ "loss": 1.806,
1115
+ "step": 1570
1116
+ },
1117
+ {
1118
+ "epoch": 1.4757179547046464,
1119
+ "grad_norm": 0.036423750322912396,
1120
+ "learning_rate": 0.00014928456700636237,
1121
+ "loss": 1.7995,
1122
+ "step": 1580
1123
+ },
1124
+ {
1125
+ "epoch": 1.485057202895167,
1126
+ "grad_norm": 0.039101516109204065,
1127
+ "learning_rate": 0.00014861080736981906,
1128
+ "loss": 1.8028,
1129
+ "step": 1590
1130
+ },
1131
+ {
1132
+ "epoch": 1.4943964510856875,
1133
+ "grad_norm": 0.031368399541673815,
1134
+ "learning_rate": 0.00014793414574488663,
1135
+ "loss": 1.8005,
1136
+ "step": 1600
1137
+ },
1138
+ {
1139
+ "epoch": 1.5037356992762083,
1140
+ "grad_norm": 0.029788484702512056,
1141
+ "learning_rate": 0.00014725462252719495,
1142
+ "loss": 1.7963,
1143
+ "step": 1610
1144
+ },
1145
+ {
1146
+ "epoch": 1.5130749474667289,
1147
+ "grad_norm": 0.029719041811636312,
1148
+ "learning_rate": 0.00014657227828320635,
1149
+ "loss": 1.7957,
1150
+ "step": 1620
1151
+ },
1152
+ {
1153
+ "epoch": 1.5224141956572494,
1154
+ "grad_norm": 0.02820041575417432,
1155
+ "learning_rate": 0.00014588715374779407,
1156
+ "loss": 1.7986,
1157
+ "step": 1630
1158
+ },
1159
+ {
1160
+ "epoch": 1.5317534438477702,
1161
+ "grad_norm": 1.8322544897261024,
1162
+ "learning_rate": 0.0001451992898218102,
1163
+ "loss": 2.016,
1164
+ "step": 1640
1165
+ },
1166
+ {
1167
+ "epoch": 1.541092692038291,
1168
+ "grad_norm": 0.8676995793107466,
1169
+ "learning_rate": 0.0001445087275696443,
1170
+ "loss": 2.1095,
1171
+ "step": 1650
1172
+ },
1173
+ {
1174
+ "epoch": 1.5504319402288116,
1175
+ "grad_norm": 0.08688193434631736,
1176
+ "learning_rate": 0.00014381550821677155,
1177
+ "loss": 2.0497,
1178
+ "step": 1660
1179
+ },
1180
+ {
1181
+ "epoch": 1.5597711884193322,
1182
+ "grad_norm": 0.18321381224589608,
1183
+ "learning_rate": 0.0001431196731472921,
1184
+ "loss": 1.9023,
1185
+ "step": 1670
1186
+ },
1187
+ {
1188
+ "epoch": 1.569110436609853,
1189
+ "grad_norm": 0.058214343698110564,
1190
+ "learning_rate": 0.00014242126390145998,
1191
+ "loss": 1.8566,
1192
+ "step": 1680
1193
+ },
1194
+ {
1195
+ "epoch": 1.5784496848003737,
1196
+ "grad_norm": 0.03965578147557666,
1197
+ "learning_rate": 0.0001417203221732036,
1198
+ "loss": 1.8206,
1199
+ "step": 1690
1200
+ },
1201
+ {
1202
+ "epoch": 1.587788932990894,
1203
+ "grad_norm": 0.03131802880017099,
1204
+ "learning_rate": 0.00014101688980763658,
1205
+ "loss": 1.8272,
1206
+ "step": 1700
1207
+ },
1208
+ {
1209
+ "epoch": 1.5971281811814149,
1210
+ "grad_norm": 0.02788722706683908,
1211
+ "learning_rate": 0.00014031100879855968,
1212
+ "loss": 1.8145,
1213
+ "step": 1710
1214
+ },
1215
+ {
1216
+ "epoch": 1.6064674293719357,
1217
+ "grad_norm": 0.02781057130092059,
1218
+ "learning_rate": 0.00013960272128595372,
1219
+ "loss": 1.8122,
1220
+ "step": 1720
1221
+ },
1222
+ {
1223
+ "epoch": 1.6158066775624562,
1224
+ "grad_norm": 0.032067383734154756,
1225
+ "learning_rate": 0.00013889206955346403,
1226
+ "loss": 1.8064,
1227
+ "step": 1730
1228
+ },
1229
+ {
1230
+ "epoch": 1.6251459257529768,
1231
+ "grad_norm": 0.03448807133884858,
1232
+ "learning_rate": 0.00013817909602587613,
1233
+ "loss": 1.8128,
1234
+ "step": 1740
1235
+ },
1236
+ {
1237
+ "epoch": 1.6344851739434976,
1238
+ "grad_norm": 0.04127395288271696,
1239
+ "learning_rate": 0.00013746384326658305,
1240
+ "loss": 1.8041,
1241
+ "step": 1750
1242
+ },
1243
+ {
1244
+ "epoch": 1.6438244221340184,
1245
+ "grad_norm": 0.030243192787820814,
1246
+ "learning_rate": 0.00013674635397504427,
1247
+ "loss": 1.803,
1248
+ "step": 1760
1249
+ },
1250
+ {
1251
+ "epoch": 1.653163670324539,
1252
+ "grad_norm": 0.032183525625428915,
1253
+ "learning_rate": 0.00013602667098423687,
1254
+ "loss": 1.8092,
1255
+ "step": 1770
1256
+ },
1257
+ {
1258
+ "epoch": 1.6625029185150595,
1259
+ "grad_norm": 0.030391044676815377,
1260
+ "learning_rate": 0.00013530483725809818,
1261
+ "loss": 1.8039,
1262
+ "step": 1780
1263
+ },
1264
+ {
1265
+ "epoch": 1.6718421667055803,
1266
+ "grad_norm": 0.03204756818238517,
1267
+ "learning_rate": 0.000134580895888961,
1268
+ "loss": 1.8017,
1269
+ "step": 1790
1270
+ },
1271
+ {
1272
+ "epoch": 1.6811814148961008,
1273
+ "grad_norm": 0.031117112662107062,
1274
+ "learning_rate": 0.00013385489009498124,
1275
+ "loss": 1.8017,
1276
+ "step": 1800
1277
+ },
1278
+ {
1279
+ "epoch": 1.6905206630866214,
1280
+ "grad_norm": 0.028389293445401805,
1281
+ "learning_rate": 0.00013312686321755761,
1282
+ "loss": 1.811,
1283
+ "step": 1810
1284
+ },
1285
+ {
1286
+ "epoch": 1.6998599112771422,
1287
+ "grad_norm": 4.908185097372493,
1288
+ "learning_rate": 0.0001323968587187443,
1289
+ "loss": 2.194,
1290
+ "step": 1820
1291
+ },
1292
+ {
1293
+ "epoch": 1.709199159467663,
1294
+ "grad_norm": 0.2849452041194025,
1295
+ "learning_rate": 0.00013166492017865637,
1296
+ "loss": 2.0785,
1297
+ "step": 1830
1298
+ },
1299
+ {
1300
+ "epoch": 1.7185384076581836,
1301
+ "grad_norm": 0.10989252058989733,
1302
+ "learning_rate": 0.0001309310912928682,
1303
+ "loss": 1.986,
1304
+ "step": 1840
1305
+ },
1306
+ {
1307
+ "epoch": 1.7278776558487041,
1308
+ "grad_norm": 0.057475612656740484,
1309
+ "learning_rate": 0.00013019541586980463,
1310
+ "loss": 1.8614,
1311
+ "step": 1850
1312
+ },
1313
+ {
1314
+ "epoch": 1.737216904039225,
1315
+ "grad_norm": 0.034908181734207726,
1316
+ "learning_rate": 0.000129457937828126,
1317
+ "loss": 1.8326,
1318
+ "step": 1860
1319
+ },
1320
+ {
1321
+ "epoch": 1.7465561522297455,
1322
+ "grad_norm": 0.02892836681897248,
1323
+ "learning_rate": 0.00012871870119410614,
1324
+ "loss": 1.8243,
1325
+ "step": 1870
1326
+ },
1327
+ {
1328
+ "epoch": 1.755895400420266,
1329
+ "grad_norm": 0.03311636981729384,
1330
+ "learning_rate": 0.00012797775009900397,
1331
+ "loss": 1.8183,
1332
+ "step": 1880
1333
+ },
1334
+ {
1335
+ "epoch": 1.7652346486107868,
1336
+ "grad_norm": 0.03151917952358458,
1337
+ "learning_rate": 0.00012723512877642904,
1338
+ "loss": 1.8034,
1339
+ "step": 1890
1340
+ },
1341
+ {
1342
+ "epoch": 1.7745738968013076,
1343
+ "grad_norm": 0.028109921832296925,
1344
+ "learning_rate": 0.000126490881559701,
1345
+ "loss": 1.8129,
1346
+ "step": 1900
1347
+ },
1348
+ {
1349
+ "epoch": 1.7839131449918282,
1350
+ "grad_norm": 0.030350462454962698,
1351
+ "learning_rate": 0.00012574505287920259,
1352
+ "loss": 1.8003,
1353
+ "step": 1910
1354
+ },
1355
+ {
1356
+ "epoch": 1.7932523931823487,
1357
+ "grad_norm": 0.03131380630103849,
1358
+ "learning_rate": 0.00012499768725972754,
1359
+ "loss": 1.814,
1360
+ "step": 1920
1361
+ },
1362
+ {
1363
+ "epoch": 1.8025916413728695,
1364
+ "grad_norm": 0.029450198273050322,
1365
+ "learning_rate": 0.00012424882931782243,
1366
+ "loss": 1.7998,
1367
+ "step": 1930
1368
+ },
1369
+ {
1370
+ "epoch": 1.81193088956339,
1371
+ "grad_norm": 0.0310524261453681,
1372
+ "learning_rate": 0.0001234985237591231,
1373
+ "loss": 1.8078,
1374
+ "step": 1940
1375
+ },
1376
+ {
1377
+ "epoch": 1.8212701377539107,
1378
+ "grad_norm": 0.029362038478982822,
1379
+ "learning_rate": 0.00012274681537568585,
1380
+ "loss": 1.8014,
1381
+ "step": 1950
1382
+ },
1383
+ {
1384
+ "epoch": 1.8306093859444315,
1385
+ "grad_norm": 0.027166816460226118,
1386
+ "learning_rate": 0.00012199374904331337,
1387
+ "loss": 1.8021,
1388
+ "step": 1960
1389
+ },
1390
+ {
1391
+ "epoch": 1.8399486341349522,
1392
+ "grad_norm": 0.03680509283276228,
1393
+ "learning_rate": 0.00012123936971887578,
1394
+ "loss": 1.7973,
1395
+ "step": 1970
1396
+ },
1397
+ {
1398
+ "epoch": 1.8492878823254728,
1399
+ "grad_norm": 0.03135174840346185,
1400
+ "learning_rate": 0.0001204837224376267,
1401
+ "loss": 1.7874,
1402
+ "step": 1980
1403
+ },
1404
+ {
1405
+ "epoch": 1.8586271305159934,
1406
+ "grad_norm": 0.02644533256389969,
1407
+ "learning_rate": 0.0001197268523105148,
1408
+ "loss": 1.798,
1409
+ "step": 1990
1410
+ },
1411
+ {
1412
+ "epoch": 1.8679663787065142,
1413
+ "grad_norm": 0.02999453651649614,
1414
+ "learning_rate": 0.00011896880452149077,
1415
+ "loss": 1.7957,
1416
+ "step": 2000
1417
+ },
1418
+ {
1419
+ "epoch": 1.877305626897035,
1420
+ "grad_norm": 0.026905209700322272,
1421
+ "learning_rate": 0.00011820962432480985,
1422
+ "loss": 1.793,
1423
+ "step": 2010
1424
+ },
1425
+ {
1426
+ "epoch": 1.8866448750875553,
1427
+ "grad_norm": 0.027263640323285022,
1428
+ "learning_rate": 0.00011744935704233005,
1429
+ "loss": 1.7974,
1430
+ "step": 2020
1431
+ },
1432
+ {
1433
+ "epoch": 1.895984123278076,
1434
+ "grad_norm": 0.030479226063932337,
1435
+ "learning_rate": 0.00011668804806080693,
1436
+ "loss": 1.7898,
1437
+ "step": 2030
1438
+ },
1439
+ {
1440
+ "epoch": 1.9053233714685969,
1441
+ "grad_norm": 0.030129902025534238,
1442
+ "learning_rate": 0.00011592574282918369,
1443
+ "loss": 1.7856,
1444
+ "step": 2040
1445
+ },
1446
+ {
1447
+ "epoch": 1.9146626196591174,
1448
+ "grad_norm": 0.027884976674153635,
1449
+ "learning_rate": 0.00011516248685587814,
1450
+ "loss": 1.7858,
1451
+ "step": 2050
1452
+ },
1453
+ {
1454
+ "epoch": 1.924001867849638,
1455
+ "grad_norm": 0.02925266011156687,
1456
+ "learning_rate": 0.00011439832570606586,
1457
+ "loss": 1.7876,
1458
+ "step": 2060
1459
+ },
1460
+ {
1461
+ "epoch": 1.9333411160401588,
1462
+ "grad_norm": 0.028472914828616754,
1463
+ "learning_rate": 0.00011363330499895997,
1464
+ "loss": 1.7834,
1465
+ "step": 2070
1466
+ },
1467
+ {
1468
+ "epoch": 1.9426803642306796,
1469
+ "grad_norm": 0.025877740032137875,
1470
+ "learning_rate": 0.00011286747040508789,
1471
+ "loss": 1.7955,
1472
+ "step": 2080
1473
+ },
1474
+ {
1475
+ "epoch": 1.9520196124212001,
1476
+ "grad_norm": 0.02605295620697312,
1477
+ "learning_rate": 0.0001121008676435648,
1478
+ "loss": 1.7877,
1479
+ "step": 2090
1480
+ },
1481
+ {
1482
+ "epoch": 1.9613588606117207,
1483
+ "grad_norm": 0.026887649929567867,
1484
+ "learning_rate": 0.00011133354247936423,
1485
+ "loss": 1.773,
1486
+ "step": 2100
1487
+ },
1488
+ {
1489
+ "epoch": 1.9706981088022415,
1490
+ "grad_norm": 0.027982045915154026,
1491
+ "learning_rate": 0.00011056554072058596,
1492
+ "loss": 1.7762,
1493
+ "step": 2110
1494
+ },
1495
+ {
1496
+ "epoch": 1.980037356992762,
1497
+ "grad_norm": 0.028077027059053006,
1498
+ "learning_rate": 0.0001097969082157215,
1499
+ "loss": 1.7963,
1500
+ "step": 2120
1501
+ },
1502
+ {
1503
+ "epoch": 1.9893766051832826,
1504
+ "grad_norm": 0.027877078975954036,
1505
+ "learning_rate": 0.00010902769085091686,
1506
+ "loss": 1.7787,
1507
+ "step": 2130
1508
+ },
1509
+ {
1510
+ "epoch": 1.9987158533738034,
1511
+ "grad_norm": 0.026120077388738373,
1512
+ "learning_rate": 0.00010825793454723325,
1513
+ "loss": 1.7842,
1514
+ "step": 2140
1515
+ },
1516
+ {
1517
+ "epoch": 2.0081718421667056,
1518
+ "grad_norm": 0.044810283079268924,
1519
+ "learning_rate": 0.00010748768525790569,
1520
+ "loss": 1.6591,
1521
+ "step": 2150
1522
+ },
1523
+ {
1524
+ "epoch": 2.0175110903572264,
1525
+ "grad_norm": 0.03431848280739808,
1526
+ "learning_rate": 0.00010671698896559968,
1527
+ "loss": 1.5599,
1528
+ "step": 2160
1529
+ },
1530
+ {
1531
+ "epoch": 2.0268503385477468,
1532
+ "grad_norm": 0.04234332973849956,
1533
+ "learning_rate": 0.00010594589167966606,
1534
+ "loss": 1.5494,
1535
+ "step": 2170
1536
+ },
1537
+ {
1538
+ "epoch": 2.0361895867382676,
1539
+ "grad_norm": 0.03260321438171042,
1540
+ "learning_rate": 0.00010517443943339438,
1541
+ "loss": 1.5473,
1542
+ "step": 2180
1543
+ },
1544
+ {
1545
+ "epoch": 2.0455288349287883,
1546
+ "grad_norm": 0.034116901745609114,
1547
+ "learning_rate": 0.00010440267828126478,
1548
+ "loss": 1.5464,
1549
+ "step": 2190
1550
+ },
1551
+ {
1552
+ "epoch": 2.0548680831193087,
1553
+ "grad_norm": 0.030992757239375807,
1554
+ "learning_rate": 0.00010363065429619858,
1555
+ "loss": 1.5514,
1556
+ "step": 2200
1557
+ },
1558
+ {
1559
+ "epoch": 2.0642073313098295,
1560
+ "grad_norm": 0.03365516197786113,
1561
+ "learning_rate": 0.0001028584135668077,
1562
+ "loss": 1.5493,
1563
+ "step": 2210
1564
+ },
1565
+ {
1566
+ "epoch": 2.0735465795003503,
1567
+ "grad_norm": 0.033293307482261586,
1568
+ "learning_rate": 0.00010208600219464355,
1569
+ "loss": 1.5426,
1570
+ "step": 2220
1571
+ },
1572
+ {
1573
+ "epoch": 2.082885827690871,
1574
+ "grad_norm": 0.03653097737467338,
1575
+ "learning_rate": 0.00010131346629144451,
1576
+ "loss": 1.5471,
1577
+ "step": 2230
1578
+ },
1579
+ {
1580
+ "epoch": 2.0922250758813914,
1581
+ "grad_norm": 0.03390291511697895,
1582
+ "learning_rate": 0.0001005408519763833,
1583
+ "loss": 1.5568,
1584
+ "step": 2240
1585
+ },
1586
+ {
1587
+ "epoch": 2.101564324071912,
1588
+ "grad_norm": 0.03192694661852283,
1589
+ "learning_rate": 9.976820537331374e-05,
1590
+ "loss": 1.5452,
1591
+ "step": 2250
1592
+ },
1593
+ {
1594
+ "epoch": 2.110903572262433,
1595
+ "grad_norm": 0.03561740193515691,
1596
+ "learning_rate": 9.899557260801707e-05,
1597
+ "loss": 1.546,
1598
+ "step": 2260
1599
+ },
1600
+ {
1601
+ "epoch": 2.1202428204529538,
1602
+ "grad_norm": 0.029803732953068658,
1603
+ "learning_rate": 9.822299980544862e-05,
1604
+ "loss": 1.5533,
1605
+ "step": 2270
1606
+ },
1607
+ {
1608
+ "epoch": 2.129582068643474,
1609
+ "grad_norm": 0.031232417271289125,
1610
+ "learning_rate": 9.745053308698392e-05,
1611
+ "loss": 1.5469,
1612
+ "step": 2280
1613
+ },
1614
+ {
1615
+ "epoch": 2.138921316833995,
1616
+ "grad_norm": 0.032434793780181034,
1617
+ "learning_rate": 9.667821856766548e-05,
1618
+ "loss": 1.5514,
1619
+ "step": 2290
1620
+ },
1621
+ {
1622
+ "epoch": 2.1482605650245157,
1623
+ "grad_norm": 0.03579370906405582,
1624
+ "learning_rate": 9.590610235344972e-05,
1625
+ "loss": 1.5577,
1626
+ "step": 2300
1627
+ },
1628
+ {
1629
+ "epoch": 2.157599813215036,
1630
+ "grad_norm": 0.029662202478648328,
1631
+ "learning_rate": 9.51342305384546e-05,
1632
+ "loss": 1.5543,
1633
+ "step": 2310
1634
+ },
1635
+ {
1636
+ "epoch": 2.166939061405557,
1637
+ "grad_norm": 0.03178715913934592,
1638
+ "learning_rate": 9.436264920220781e-05,
1639
+ "loss": 1.5579,
1640
+ "step": 2320
1641
+ },
1642
+ {
1643
+ "epoch": 2.1762783095960776,
1644
+ "grad_norm": 0.03384008887051677,
1645
+ "learning_rate": 9.359140440689601e-05,
1646
+ "loss": 1.5595,
1647
+ "step": 2330
1648
+ },
1649
+ {
1650
+ "epoch": 2.1856175577865984,
1651
+ "grad_norm": 0.03316450664408166,
1652
+ "learning_rate": 9.282054219461475e-05,
1653
+ "loss": 1.5556,
1654
+ "step": 2340
1655
+ },
1656
+ {
1657
+ "epoch": 2.1949568059771187,
1658
+ "grad_norm": 0.032176305552558876,
1659
+ "learning_rate": 9.205010858462007e-05,
1660
+ "loss": 1.5638,
1661
+ "step": 2350
1662
+ },
1663
+ {
1664
+ "epoch": 2.2042960541676395,
1665
+ "grad_norm": 0.031134335256756362,
1666
+ "learning_rate": 9.128014957058109e-05,
1667
+ "loss": 1.5629,
1668
+ "step": 2360
1669
+ },
1670
+ {
1671
+ "epoch": 2.2136353023581603,
1672
+ "grad_norm": 0.032205851810441756,
1673
+ "learning_rate": 9.051071111783436e-05,
1674
+ "loss": 1.5613,
1675
+ "step": 2370
1676
+ },
1677
+ {
1678
+ "epoch": 2.2229745505486807,
1679
+ "grad_norm": 0.029048245476020442,
1680
+ "learning_rate": 8.974183916063968e-05,
1681
+ "loss": 1.5594,
1682
+ "step": 2380
1683
+ },
1684
+ {
1685
+ "epoch": 2.2323137987392014,
1686
+ "grad_norm": 0.03183166054573621,
1687
+ "learning_rate": 8.897357959943795e-05,
1688
+ "loss": 1.5606,
1689
+ "step": 2390
1690
+ },
1691
+ {
1692
+ "epoch": 2.2416530469297222,
1693
+ "grad_norm": 0.032309922117136916,
1694
+ "learning_rate": 8.820597829811109e-05,
1695
+ "loss": 1.5524,
1696
+ "step": 2400
1697
+ },
1698
+ {
1699
+ "epoch": 2.250992295120243,
1700
+ "grad_norm": 0.03598922231958808,
1701
+ "learning_rate": 8.743908108124388e-05,
1702
+ "loss": 1.5604,
1703
+ "step": 2410
1704
+ },
1705
+ {
1706
+ "epoch": 2.2603315433107634,
1707
+ "grad_norm": 0.03046424735786346,
1708
+ "learning_rate": 8.667293373138835e-05,
1709
+ "loss": 1.5598,
1710
+ "step": 2420
1711
+ },
1712
+ {
1713
+ "epoch": 2.269670791501284,
1714
+ "grad_norm": 0.030995453538377543,
1715
+ "learning_rate": 8.59075819863307e-05,
1716
+ "loss": 1.5652,
1717
+ "step": 2430
1718
+ },
1719
+ {
1720
+ "epoch": 2.279010039691805,
1721
+ "grad_norm": 0.029309020623010097,
1722
+ "learning_rate": 8.514307153636077e-05,
1723
+ "loss": 1.5651,
1724
+ "step": 2440
1725
+ },
1726
+ {
1727
+ "epoch": 2.2883492878823253,
1728
+ "grad_norm": 0.03158721106736763,
1729
+ "learning_rate": 8.437944802154434e-05,
1730
+ "loss": 1.5581,
1731
+ "step": 2450
1732
+ },
1733
+ {
1734
+ "epoch": 2.297688536072846,
1735
+ "grad_norm": 0.03168229084049938,
1736
+ "learning_rate": 8.361675702899871e-05,
1737
+ "loss": 1.5671,
1738
+ "step": 2460
1739
+ },
1740
+ {
1741
+ "epoch": 2.307027784263367,
1742
+ "grad_norm": 0.031335222148495136,
1743
+ "learning_rate": 8.2855044090171e-05,
1744
+ "loss": 1.5675,
1745
+ "step": 2470
1746
+ },
1747
+ {
1748
+ "epoch": 2.3163670324538876,
1749
+ "grad_norm": 0.031073847325941303,
1750
+ "learning_rate": 8.209435467811998e-05,
1751
+ "loss": 1.5624,
1752
+ "step": 2480
1753
+ },
1754
+ {
1755
+ "epoch": 2.325706280644408,
1756
+ "grad_norm": 0.030099100631045844,
1757
+ "learning_rate": 8.133473420480161e-05,
1758
+ "loss": 1.5606,
1759
+ "step": 2490
1760
+ },
1761
+ {
1762
+ "epoch": 2.3350455288349288,
1763
+ "grad_norm": 0.034147632950361176,
1764
+ "learning_rate": 8.057622801835788e-05,
1765
+ "loss": 1.5703,
1766
+ "step": 2500
1767
+ },
1768
+ {
1769
+ "epoch": 2.3443847770254496,
1770
+ "grad_norm": 0.03051580784550685,
1771
+ "learning_rate": 7.981888140040955e-05,
1772
+ "loss": 1.5731,
1773
+ "step": 2510
1774
+ },
1775
+ {
1776
+ "epoch": 2.3537240252159704,
1777
+ "grad_norm": 0.03068917065832597,
1778
+ "learning_rate": 7.9062739563353e-05,
1779
+ "loss": 1.5723,
1780
+ "step": 2520
1781
+ },
1782
+ {
1783
+ "epoch": 2.3630632734064907,
1784
+ "grad_norm": 0.02899547641705554,
1785
+ "learning_rate": 7.830784764766118e-05,
1786
+ "loss": 1.5691,
1787
+ "step": 2530
1788
+ },
1789
+ {
1790
+ "epoch": 2.3724025215970115,
1791
+ "grad_norm": 0.030965383166701443,
1792
+ "learning_rate": 7.755425071918858e-05,
1793
+ "loss": 1.5627,
1794
+ "step": 2540
1795
+ },
1796
+ {
1797
+ "epoch": 2.3817417697875323,
1798
+ "grad_norm": 0.03252440018336625,
1799
+ "learning_rate": 7.680199376648108e-05,
1800
+ "loss": 1.5536,
1801
+ "step": 2550
1802
+ },
1803
+ {
1804
+ "epoch": 2.3910810179780526,
1805
+ "grad_norm": 0.031720485449340044,
1806
+ "learning_rate": 7.605112169809008e-05,
1807
+ "loss": 1.5617,
1808
+ "step": 2560
1809
+ },
1810
+ {
1811
+ "epoch": 2.4004202661685734,
1812
+ "grad_norm": 0.031796658969132544,
1813
+ "learning_rate": 7.530167933989161e-05,
1814
+ "loss": 1.5595,
1815
+ "step": 2570
1816
+ },
1817
+ {
1818
+ "epoch": 2.409759514359094,
1819
+ "grad_norm": 0.03218288097429844,
1820
+ "learning_rate": 7.45537114324102e-05,
1821
+ "loss": 1.5628,
1822
+ "step": 2580
1823
+ },
1824
+ {
1825
+ "epoch": 2.4190987625496145,
1826
+ "grad_norm": 0.0305713183075559,
1827
+ "learning_rate": 7.380726262814814e-05,
1828
+ "loss": 1.5717,
1829
+ "step": 2590
1830
+ },
1831
+ {
1832
+ "epoch": 2.4284380107401353,
1833
+ "grad_norm": 0.06879342166341705,
1834
+ "learning_rate": 7.30623774889195e-05,
1835
+ "loss": 1.5726,
1836
+ "step": 2600
1837
+ },
1838
+ {
1839
+ "epoch": 2.437777258930656,
1840
+ "grad_norm": 0.04101428600237338,
1841
+ "learning_rate": 7.231910048319011e-05,
1842
+ "loss": 1.5679,
1843
+ "step": 2610
1844
+ },
1845
+ {
1846
+ "epoch": 2.447116507121177,
1847
+ "grad_norm": 0.031060002638443395,
1848
+ "learning_rate": 7.157747598342274e-05,
1849
+ "loss": 1.562,
1850
+ "step": 2620
1851
+ },
1852
+ {
1853
+ "epoch": 2.4564557553116972,
1854
+ "grad_norm": 0.032302829437386466,
1855
+ "learning_rate": 7.083754826342816e-05,
1856
+ "loss": 1.5767,
1857
+ "step": 2630
1858
+ },
1859
+ {
1860
+ "epoch": 2.465795003502218,
1861
+ "grad_norm": 0.03111462744196413,
1862
+ "learning_rate": 7.009936149572205e-05,
1863
+ "loss": 1.5672,
1864
+ "step": 2640
1865
+ },
1866
+ {
1867
+ "epoch": 2.475134251692739,
1868
+ "grad_norm": 0.031134083521743777,
1869
+ "learning_rate": 6.936295974888807e-05,
1870
+ "loss": 1.5665,
1871
+ "step": 2650
1872
+ },
1873
+ {
1874
+ "epoch": 2.4844734998832596,
1875
+ "grad_norm": 0.030961556373721985,
1876
+ "learning_rate": 6.862838698494693e-05,
1877
+ "loss": 1.5608,
1878
+ "step": 2660
1879
+ },
1880
+ {
1881
+ "epoch": 2.49381274807378,
1882
+ "grad_norm": 0.03168121700432082,
1883
+ "learning_rate": 6.789568705673183e-05,
1884
+ "loss": 1.566,
1885
+ "step": 2670
1886
+ },
1887
+ {
1888
+ "epoch": 2.5031519962643007,
1889
+ "grad_norm": 0.030850372541726772,
1890
+ "learning_rate": 6.716490370527081e-05,
1891
+ "loss": 1.5651,
1892
+ "step": 2680
1893
+ },
1894
+ {
1895
+ "epoch": 2.5124912444548215,
1896
+ "grad_norm": 0.03076635908430861,
1897
+ "learning_rate": 6.643608055717519e-05,
1898
+ "loss": 1.5596,
1899
+ "step": 2690
1900
+ },
1901
+ {
1902
+ "epoch": 2.521830492645342,
1903
+ "grad_norm": 0.031897253741779714,
1904
+ "learning_rate": 6.570926112203528e-05,
1905
+ "loss": 1.5716,
1906
+ "step": 2700
1907
+ },
1908
+ {
1909
+ "epoch": 2.5311697408358627,
1910
+ "grad_norm": 0.03085546721246857,
1911
+ "learning_rate": 6.498448878982291e-05,
1912
+ "loss": 1.5647,
1913
+ "step": 2710
1914
+ },
1915
+ {
1916
+ "epoch": 2.5405089890263834,
1917
+ "grad_norm": 0.03127518794548787,
1918
+ "learning_rate": 6.426180682830107e-05,
1919
+ "loss": 1.5573,
1920
+ "step": 2720
1921
+ },
1922
+ {
1923
+ "epoch": 2.549848237216904,
1924
+ "grad_norm": 0.03196649247686066,
1925
+ "learning_rate": 6.354125838044098e-05,
1926
+ "loss": 1.5597,
1927
+ "step": 2730
1928
+ },
1929
+ {
1930
+ "epoch": 2.5591874854074246,
1931
+ "grad_norm": 0.030359755432035333,
1932
+ "learning_rate": 6.282288646184638e-05,
1933
+ "loss": 1.5625,
1934
+ "step": 2740
1935
+ },
1936
+ {
1937
+ "epoch": 2.5685267335979454,
1938
+ "grad_norm": 0.03030640438940187,
1939
+ "learning_rate": 6.210673395818571e-05,
1940
+ "loss": 1.5717,
1941
+ "step": 2750
1942
+ },
1943
+ {
1944
+ "epoch": 2.577865981788466,
1945
+ "grad_norm": 0.032197470232298186,
1946
+ "learning_rate": 6.139284362263185e-05,
1947
+ "loss": 1.5663,
1948
+ "step": 2760
1949
+ },
1950
+ {
1951
+ "epoch": 2.587205229978987,
1952
+ "grad_norm": 0.030983733397891462,
1953
+ "learning_rate": 6.0681258073309756e-05,
1954
+ "loss": 1.5657,
1955
+ "step": 2770
1956
+ },
1957
+ {
1958
+ "epoch": 2.5965444781695073,
1959
+ "grad_norm": 0.030427577702286164,
1960
+ "learning_rate": 5.9972019790752385e-05,
1961
+ "loss": 1.5708,
1962
+ "step": 2780
1963
+ },
1964
+ {
1965
+ "epoch": 2.605883726360028,
1966
+ "grad_norm": 0.032761226318855745,
1967
+ "learning_rate": 5.9265171115364495e-05,
1968
+ "loss": 1.5641,
1969
+ "step": 2790
1970
+ },
1971
+ {
1972
+ "epoch": 2.615222974550549,
1973
+ "grad_norm": 0.0317533648622182,
1974
+ "learning_rate": 5.856075424489511e-05,
1975
+ "loss": 1.5613,
1976
+ "step": 2800
1977
+ },
1978
+ {
1979
+ "epoch": 2.624562222741069,
1980
+ "grad_norm": 0.03251887796623927,
1981
+ "learning_rate": 5.785881123191834e-05,
1982
+ "loss": 1.5644,
1983
+ "step": 2810
1984
+ },
1985
+ {
1986
+ "epoch": 2.63390147093159,
1987
+ "grad_norm": 0.033109556138937665,
1988
+ "learning_rate": 5.7159383981322866e-05,
1989
+ "loss": 1.5613,
1990
+ "step": 2820
1991
+ },
1992
+ {
1993
+ "epoch": 2.643240719122111,
1994
+ "grad_norm": 0.03190494841434546,
1995
+ "learning_rate": 5.646251424781044e-05,
1996
+ "loss": 1.5597,
1997
+ "step": 2830
1998
+ },
1999
+ {
2000
+ "epoch": 2.652579967312631,
2001
+ "grad_norm": 0.03131425467271855,
2002
+ "learning_rate": 5.576824363340293e-05,
2003
+ "loss": 1.5644,
2004
+ "step": 2840
2005
+ },
2006
+ {
2007
+ "epoch": 2.661919215503152,
2008
+ "grad_norm": 0.032580122114687284,
2009
+ "learning_rate": 5.507661358495904e-05,
2010
+ "loss": 1.5651,
2011
+ "step": 2850
2012
+ },
2013
+ {
2014
+ "epoch": 2.6712584636936727,
2015
+ "grad_norm": 0.031118294785578867,
2016
+ "learning_rate": 5.4387665391699814e-05,
2017
+ "loss": 1.5595,
2018
+ "step": 2860
2019
+ },
2020
+ {
2021
+ "epoch": 2.680597711884193,
2022
+ "grad_norm": 0.030454480461742643,
2023
+ "learning_rate": 5.370144018274371e-05,
2024
+ "loss": 1.5607,
2025
+ "step": 2870
2026
+ },
2027
+ {
2028
+ "epoch": 2.689936960074714,
2029
+ "grad_norm": 0.030828671799046907,
2030
+ "learning_rate": 5.301797892465148e-05,
2031
+ "loss": 1.5587,
2032
+ "step": 2880
2033
+ },
2034
+ {
2035
+ "epoch": 2.6992762082652346,
2036
+ "grad_norm": 0.030541588338347705,
2037
+ "learning_rate": 5.2337322418980204e-05,
2038
+ "loss": 1.5698,
2039
+ "step": 2890
2040
+ },
2041
+ {
2042
+ "epoch": 2.7086154564557554,
2043
+ "grad_norm": 0.030634684731728472,
2044
+ "learning_rate": 5.16595112998477e-05,
2045
+ "loss": 1.5628,
2046
+ "step": 2900
2047
+ },
2048
+ {
2049
+ "epoch": 2.717954704646276,
2050
+ "grad_norm": 0.03045168911848818,
2051
+ "learning_rate": 5.098458603150691e-05,
2052
+ "loss": 1.5544,
2053
+ "step": 2910
2054
+ },
2055
+ {
2056
+ "epoch": 2.7272939528367965,
2057
+ "grad_norm": 0.029966073421542574,
2058
+ "learning_rate": 5.0312586905929816e-05,
2059
+ "loss": 1.557,
2060
+ "step": 2920
2061
+ },
2062
+ {
2063
+ "epoch": 2.7366332010273173,
2064
+ "grad_norm": 0.031203173596988765,
2065
+ "learning_rate": 4.964355404040232e-05,
2066
+ "loss": 1.5571,
2067
+ "step": 2930
2068
+ },
2069
+ {
2070
+ "epoch": 2.745972449217838,
2071
+ "grad_norm": 0.02933060802902336,
2072
+ "learning_rate": 4.897752737512944e-05,
2073
+ "loss": 1.5518,
2074
+ "step": 2940
2075
+ },
2076
+ {
2077
+ "epoch": 2.7553116974083585,
2078
+ "grad_norm": 0.03039237943996916,
2079
+ "learning_rate": 4.8314546670850594e-05,
2080
+ "loss": 1.5682,
2081
+ "step": 2950
2082
+ },
2083
+ {
2084
+ "epoch": 2.7646509455988793,
2085
+ "grad_norm": 0.03077504425768828,
2086
+ "learning_rate": 4.765465150646633e-05,
2087
+ "loss": 1.5618,
2088
+ "step": 2960
2089
+ },
2090
+ {
2091
+ "epoch": 2.7739901937894,
2092
+ "grad_norm": 0.02987361489256037,
2093
+ "learning_rate": 4.699788127667517e-05,
2094
+ "loss": 1.5657,
2095
+ "step": 2970
2096
+ },
2097
+ {
2098
+ "epoch": 2.7833294419799204,
2099
+ "grad_norm": 0.030823634404763923,
2100
+ "learning_rate": 4.634427518962209e-05,
2101
+ "loss": 1.5611,
2102
+ "step": 2980
2103
+ },
2104
+ {
2105
+ "epoch": 2.792668690170441,
2106
+ "grad_norm": 0.031136974955910973,
2107
+ "learning_rate": 4.569387226455776e-05,
2108
+ "loss": 1.558,
2109
+ "step": 2990
2110
+ },
2111
+ {
2112
+ "epoch": 2.802007938360962,
2113
+ "grad_norm": 0.032345263568839946,
2114
+ "learning_rate": 4.5046711329508997e-05,
2115
+ "loss": 1.5567,
2116
+ "step": 3000
2117
+ },
2118
+ {
2119
+ "epoch": 2.8113471865514827,
2120
+ "grad_norm": 0.03075590840408306,
2121
+ "learning_rate": 4.440283101896112e-05,
2122
+ "loss": 1.5509,
2123
+ "step": 3010
2124
+ },
2125
+ {
2126
+ "epoch": 2.8206864347420035,
2127
+ "grad_norm": 0.03212380955577142,
2128
+ "learning_rate": 4.376226977155118e-05,
2129
+ "loss": 1.5549,
2130
+ "step": 3020
2131
+ },
2132
+ {
2133
+ "epoch": 2.830025682932524,
2134
+ "grad_norm": 0.030448994102361984,
2135
+ "learning_rate": 4.3125065827773535e-05,
2136
+ "loss": 1.5582,
2137
+ "step": 3030
2138
+ },
2139
+ {
2140
+ "epoch": 2.8393649311230447,
2141
+ "grad_norm": 0.02952309346631166,
2142
+ "learning_rate": 4.249125722769679e-05,
2143
+ "loss": 1.5621,
2144
+ "step": 3040
2145
+ },
2146
+ {
2147
+ "epoch": 2.8487041793135655,
2148
+ "grad_norm": 0.029801760584304334,
2149
+ "learning_rate": 4.18608818086928e-05,
2150
+ "loss": 1.5566,
2151
+ "step": 3050
2152
+ },
2153
+ {
2154
+ "epoch": 2.858043427504086,
2155
+ "grad_norm": 0.029682850572275397,
2156
+ "learning_rate": 4.12339772031781e-05,
2157
+ "loss": 1.563,
2158
+ "step": 3060
2159
+ },
2160
+ {
2161
+ "epoch": 2.8673826756946066,
2162
+ "grad_norm": 0.0295800536252474,
2163
+ "learning_rate": 4.061058083636702e-05,
2164
+ "loss": 1.5478,
2165
+ "step": 3070
2166
+ },
2167
+ {
2168
+ "epoch": 2.8767219238851274,
2169
+ "grad_norm": 0.029683305961870896,
2170
+ "learning_rate": 3.999072992403756e-05,
2171
+ "loss": 1.5628,
2172
+ "step": 3080
2173
+ },
2174
+ {
2175
+ "epoch": 2.8860611720756477,
2176
+ "grad_norm": 0.029644699672258072,
2177
+ "learning_rate": 3.93744614703098e-05,
2178
+ "loss": 1.5541,
2179
+ "step": 3090
2180
+ },
2181
+ {
2182
+ "epoch": 2.8954004202661685,
2183
+ "grad_norm": 0.030518095362273494,
2184
+ "learning_rate": 3.876181226543668e-05,
2185
+ "loss": 1.5702,
2186
+ "step": 3100
2187
+ },
2188
+ {
2189
+ "epoch": 2.9047396684566893,
2190
+ "grad_norm": 0.030536745251161155,
2191
+ "learning_rate": 3.81528188836076e-05,
2192
+ "loss": 1.5551,
2193
+ "step": 3110
2194
+ },
2195
+ {
2196
+ "epoch": 2.9140789166472096,
2197
+ "grad_norm": 0.030847847626104093,
2198
+ "learning_rate": 3.7547517680765244e-05,
2199
+ "loss": 1.5595,
2200
+ "step": 3120
2201
+ },
2202
+ {
2203
+ "epoch": 2.9234181648377304,
2204
+ "grad_norm": 0.029492648716320746,
2205
+ "learning_rate": 3.6945944792434906e-05,
2206
+ "loss": 1.5536,
2207
+ "step": 3130
2208
+ },
2209
+ {
2210
+ "epoch": 2.932757413028251,
2211
+ "grad_norm": 0.03032565633382453,
2212
+ "learning_rate": 3.634813613156753e-05,
2213
+ "loss": 1.5545,
2214
+ "step": 3140
2215
+ },
2216
+ {
2217
+ "epoch": 2.942096661218772,
2218
+ "grad_norm": 0.031152780923178743,
2219
+ "learning_rate": 3.5754127386395496e-05,
2220
+ "loss": 1.5553,
2221
+ "step": 3150
2222
+ },
2223
+ {
2224
+ "epoch": 2.951435909409293,
2225
+ "grad_norm": 0.03107457614016718,
2226
+ "learning_rate": 3.5163954018302313e-05,
2227
+ "loss": 1.5612,
2228
+ "step": 3160
2229
+ },
2230
+ {
2231
+ "epoch": 2.960775157599813,
2232
+ "grad_norm": 0.03104057970445527,
2233
+ "learning_rate": 3.4577651259705545e-05,
2234
+ "loss": 1.5461,
2235
+ "step": 3170
2236
+ },
2237
+ {
2238
+ "epoch": 2.970114405790334,
2239
+ "grad_norm": 0.03135460216536421,
2240
+ "learning_rate": 3.399525411195339e-05,
2241
+ "loss": 1.556,
2242
+ "step": 3180
2243
+ },
2244
+ {
2245
+ "epoch": 2.9794536539808547,
2246
+ "grad_norm": 0.03023549504443143,
2247
+ "learning_rate": 3.3416797343235375e-05,
2248
+ "loss": 1.5513,
2249
+ "step": 3190
2250
+ },
2251
+ {
2252
+ "epoch": 2.988792902171375,
2253
+ "grad_norm": 0.030100263338637512,
2254
+ "learning_rate": 3.284231548650649e-05,
2255
+ "loss": 1.5646,
2256
+ "step": 3200
2257
+ },
2258
+ {
2259
+ "epoch": 2.998132150361896,
2260
+ "grad_norm": 0.03034217414728692,
2261
+ "learning_rate": 3.227184283742591e-05,
2262
+ "loss": 1.5521,
2263
+ "step": 3210
2264
+ },
2265
+ {
2266
+ "epoch": 3.007588139154798,
2267
+ "grad_norm": 0.06632657839957506,
2268
+ "learning_rate": 3.17054134523093e-05,
2269
+ "loss": 1.3861,
2270
+ "step": 3220
2271
+ },
2272
+ {
2273
+ "epoch": 3.016927387345319,
2274
+ "grad_norm": 0.04494797332190053,
2275
+ "learning_rate": 3.114306114609594e-05,
2276
+ "loss": 1.2688,
2277
+ "step": 3230
2278
+ },
2279
+ {
2280
+ "epoch": 3.026266635535839,
2281
+ "grad_norm": 0.04243454415323923,
2282
+ "learning_rate": 3.058481949032998e-05,
2283
+ "loss": 1.2568,
2284
+ "step": 3240
2285
+ },
2286
+ {
2287
+ "epoch": 3.03560588372636,
2288
+ "grad_norm": 0.037189416438265135,
2289
+ "learning_rate": 3.003072181115615e-05,
2290
+ "loss": 1.2674,
2291
+ "step": 3250
2292
+ },
2293
+ {
2294
+ "epoch": 3.0449451319168808,
2295
+ "grad_norm": 0.036342648540388975,
2296
+ "learning_rate": 2.9480801187330308e-05,
2297
+ "loss": 1.2553,
2298
+ "step": 3260
2299
+ },
2300
+ {
2301
+ "epoch": 3.0542843801074016,
2302
+ "grad_norm": 0.03758108482902846,
2303
+ "learning_rate": 2.8935090448244838e-05,
2304
+ "loss": 1.2587,
2305
+ "step": 3270
2306
+ },
2307
+ {
2308
+ "epoch": 3.063623628297922,
2309
+ "grad_norm": 0.03779156244551835,
2310
+ "learning_rate": 2.8393622171968494e-05,
2311
+ "loss": 1.2615,
2312
+ "step": 3280
2313
+ },
2314
+ {
2315
+ "epoch": 3.0729628764884427,
2316
+ "grad_norm": 0.0354713302142897,
2317
+ "learning_rate": 2.7856428683301827e-05,
2318
+ "loss": 1.2552,
2319
+ "step": 3290
2320
+ },
2321
+ {
2322
+ "epoch": 3.0823021246789635,
2323
+ "grad_norm": 0.03861733806219831,
2324
+ "learning_rate": 2.7323542051847305e-05,
2325
+ "loss": 1.2591,
2326
+ "step": 3300
2327
+ },
2328
+ {
2329
+ "epoch": 3.091641372869484,
2330
+ "grad_norm": 0.03927047617762108,
2331
+ "learning_rate": 2.6794994090094748e-05,
2332
+ "loss": 1.2568,
2333
+ "step": 3310
2334
+ },
2335
+ {
2336
+ "epoch": 3.1009806210600046,
2337
+ "grad_norm": 0.03904084831655504,
2338
+ "learning_rate": 2.6270816351522352e-05,
2339
+ "loss": 1.2548,
2340
+ "step": 3320
2341
+ },
2342
+ {
2343
+ "epoch": 3.1103198692505254,
2344
+ "grad_norm": 0.037088038012932166,
2345
+ "learning_rate": 2.57510401287128e-05,
2346
+ "loss": 1.2535,
2347
+ "step": 3330
2348
+ },
2349
+ {
2350
+ "epoch": 3.119659117441046,
2351
+ "grad_norm": 0.039689764947511294,
2352
+ "learning_rate": 2.5235696451485334e-05,
2353
+ "loss": 1.2527,
2354
+ "step": 3340
2355
+ },
2356
+ {
2357
+ "epoch": 3.1289983656315665,
2358
+ "grad_norm": 0.03823754136616741,
2359
+ "learning_rate": 2.4724816085043122e-05,
2360
+ "loss": 1.2614,
2361
+ "step": 3350
2362
+ },
2363
+ {
2364
+ "epoch": 3.1383376138220873,
2365
+ "grad_norm": 0.03869724476981111,
2366
+ "learning_rate": 2.421842952813683e-05,
2367
+ "loss": 1.2539,
2368
+ "step": 3360
2369
+ },
2370
+ {
2371
+ "epoch": 3.147676862012608,
2372
+ "grad_norm": 0.03803608771547874,
2373
+ "learning_rate": 2.371656701124376e-05,
2374
+ "loss": 1.2491,
2375
+ "step": 3370
2376
+ },
2377
+ {
2378
+ "epoch": 3.1570161102031284,
2379
+ "grad_norm": 0.03931544384220963,
2380
+ "learning_rate": 2.321925849476314e-05,
2381
+ "loss": 1.2505,
2382
+ "step": 3380
2383
+ },
2384
+ {
2385
+ "epoch": 3.1663553583936492,
2386
+ "grad_norm": 0.039905322735836295,
2387
+ "learning_rate": 2.2726533667227623e-05,
2388
+ "loss": 1.2585,
2389
+ "step": 3390
2390
+ },
2391
+ {
2392
+ "epoch": 3.17569460658417,
2393
+ "grad_norm": 0.03812720334866993,
2394
+ "learning_rate": 2.223842194353084e-05,
2395
+ "loss": 1.2589,
2396
+ "step": 3400
2397
+ },
2398
+ {
2399
+ "epoch": 3.185033854774691,
2400
+ "grad_norm": 0.03970128613042995,
2401
+ "learning_rate": 2.1754952463171385e-05,
2402
+ "loss": 1.2547,
2403
+ "step": 3410
2404
+ },
2405
+ {
2406
+ "epoch": 3.194373102965211,
2407
+ "grad_norm": 0.03968022448776454,
2408
+ "learning_rate": 2.1276154088513322e-05,
2409
+ "loss": 1.256,
2410
+ "step": 3420
2411
+ },
2412
+ {
2413
+ "epoch": 3.203712351155732,
2414
+ "grad_norm": 0.038047431666726306,
2415
+ "learning_rate": 2.080205540306307e-05,
2416
+ "loss": 1.2618,
2417
+ "step": 3430
2418
+ },
2419
+ {
2420
+ "epoch": 3.2130515993462527,
2421
+ "grad_norm": 0.03796892071652476,
2422
+ "learning_rate": 2.0332684709763037e-05,
2423
+ "loss": 1.258,
2424
+ "step": 3440
2425
+ },
2426
+ {
2427
+ "epoch": 3.222390847536773,
2428
+ "grad_norm": 0.03743002539050354,
2429
+ "learning_rate": 1.986807002930192e-05,
2430
+ "loss": 1.2625,
2431
+ "step": 3450
2432
+ },
2433
+ {
2434
+ "epoch": 3.231730095727294,
2435
+ "grad_norm": 0.03845080735099829,
2436
+ "learning_rate": 1.940823909844198e-05,
2437
+ "loss": 1.2583,
2438
+ "step": 3460
2439
+ },
2440
+ {
2441
+ "epoch": 3.2410693439178146,
2442
+ "grad_norm": 0.0384612122659626,
2443
+ "learning_rate": 1.895321936836324e-05,
2444
+ "loss": 1.2504,
2445
+ "step": 3470
2446
+ },
2447
+ {
2448
+ "epoch": 3.2504085921083354,
2449
+ "grad_norm": 0.03770473444960908,
2450
+ "learning_rate": 1.8503038003024564e-05,
2451
+ "loss": 1.2691,
2452
+ "step": 3480
2453
+ },
2454
+ {
2455
+ "epoch": 3.259747840298856,
2456
+ "grad_norm": 0.0368880551504251,
2457
+ "learning_rate": 1.8057721877542135e-05,
2458
+ "loss": 1.2562,
2459
+ "step": 3490
2460
+ },
2461
+ {
2462
+ "epoch": 3.2690870884893766,
2463
+ "grad_norm": 0.035849085577933516,
2464
+ "learning_rate": 1.7617297576585024e-05,
2465
+ "loss": 1.2557,
2466
+ "step": 3500
2467
+ },
2468
+ {
2469
+ "epoch": 3.2784263366798974,
2470
+ "grad_norm": 0.03880537892593414,
2471
+ "learning_rate": 1.7181791392788016e-05,
2472
+ "loss": 1.2606,
2473
+ "step": 3510
2474
+ },
2475
+ {
2476
+ "epoch": 3.287765584870418,
2477
+ "grad_norm": 0.036791883288228966,
2478
+ "learning_rate": 1.6751229325182195e-05,
2479
+ "loss": 1.2633,
2480
+ "step": 3520
2481
+ },
2482
+ {
2483
+ "epoch": 3.2971048330609385,
2484
+ "grad_norm": 0.03888037048657713,
2485
+ "learning_rate": 1.6325637077642597e-05,
2486
+ "loss": 1.2517,
2487
+ "step": 3530
2488
+ },
2489
+ {
2490
+ "epoch": 3.3064440812514593,
2491
+ "grad_norm": 0.03624411339308035,
2492
+ "learning_rate": 1.590504005735396e-05,
2493
+ "loss": 1.2601,
2494
+ "step": 3540
2495
+ },
2496
+ {
2497
+ "epoch": 3.31578332944198,
2498
+ "grad_norm": 0.037212088295175624,
2499
+ "learning_rate": 1.5489463373293766e-05,
2500
+ "loss": 1.2572,
2501
+ "step": 3550
2502
+ },
2503
+ {
2504
+ "epoch": 3.3251225776325004,
2505
+ "grad_norm": 0.037139053328387565,
2506
+ "learning_rate": 1.5078931834733413e-05,
2507
+ "loss": 1.2587,
2508
+ "step": 3560
2509
+ },
2510
+ {
2511
+ "epoch": 3.334461825823021,
2512
+ "grad_norm": 0.038853212387254546,
2513
+ "learning_rate": 1.467346994975708e-05,
2514
+ "loss": 1.2598,
2515
+ "step": 3570
2516
+ },
2517
+ {
2518
+ "epoch": 3.343801074013542,
2519
+ "grad_norm": 0.038068637710771305,
2520
+ "learning_rate": 1.4273101923798593e-05,
2521
+ "loss": 1.2511,
2522
+ "step": 3580
2523
+ },
2524
+ {
2525
+ "epoch": 3.3531403222040623,
2526
+ "grad_norm": 0.03812184703208946,
2527
+ "learning_rate": 1.3877851658196473e-05,
2528
+ "loss": 1.264,
2529
+ "step": 3590
2530
+ },
2531
+ {
2532
+ "epoch": 3.362479570394583,
2533
+ "grad_norm": 0.03544270078567587,
2534
+ "learning_rate": 1.3487742748767052e-05,
2535
+ "loss": 1.2566,
2536
+ "step": 3600
2537
+ },
2538
+ {
2539
+ "epoch": 3.371818818585104,
2540
+ "grad_norm": 0.03729183894507396,
2541
+ "learning_rate": 1.3102798484395761e-05,
2542
+ "loss": 1.2554,
2543
+ "step": 3610
2544
+ },
2545
+ {
2546
+ "epoch": 3.3811580667756247,
2547
+ "grad_norm": 0.03769688061241049,
2548
+ "learning_rate": 1.2723041845646999e-05,
2549
+ "loss": 1.2424,
2550
+ "step": 3620
2551
+ },
2552
+ {
2553
+ "epoch": 3.390497314966145,
2554
+ "grad_norm": 0.03751980172858499,
2555
+ "learning_rate": 1.2348495503391999e-05,
2556
+ "loss": 1.2601,
2557
+ "step": 3630
2558
+ },
2559
+ {
2560
+ "epoch": 3.399836563156666,
2561
+ "grad_norm": 0.03831727516561825,
2562
+ "learning_rate": 1.1979181817455543e-05,
2563
+ "loss": 1.2545,
2564
+ "step": 3640
2565
+ },
2566
+ {
2567
+ "epoch": 3.4091758113471866,
2568
+ "grad_norm": 0.03929713475600568,
2569
+ "learning_rate": 1.1615122835281156e-05,
2570
+ "loss": 1.2608,
2571
+ "step": 3650
2572
+ },
2573
+ {
2574
+ "epoch": 3.4185150595377074,
2575
+ "grad_norm": 0.04026553291819152,
2576
+ "learning_rate": 1.1256340290614787e-05,
2577
+ "loss": 1.2565,
2578
+ "step": 3660
2579
+ },
2580
+ {
2581
+ "epoch": 3.4278543077282277,
2582
+ "grad_norm": 0.03669233459600138,
2583
+ "learning_rate": 1.0902855602207451e-05,
2584
+ "loss": 1.2512,
2585
+ "step": 3670
2586
+ },
2587
+ {
2588
+ "epoch": 3.4371935559187485,
2589
+ "grad_norm": 0.036514113026692024,
2590
+ "learning_rate": 1.0554689872536515e-05,
2591
+ "loss": 1.2522,
2592
+ "step": 3680
2593
+ },
2594
+ {
2595
+ "epoch": 3.4465328041092693,
2596
+ "grad_norm": 0.040574229602467475,
2597
+ "learning_rate": 1.0211863886545859e-05,
2598
+ "loss": 1.2653,
2599
+ "step": 3690
2600
+ },
2601
+ {
2602
+ "epoch": 3.4558720522997897,
2603
+ "grad_norm": 0.037888410230506514,
2604
+ "learning_rate": 9.87439811040518e-06,
2605
+ "loss": 1.2553,
2606
+ "step": 3700
2607
+ }
2608
+ ],
2609
+ "logging_steps": 10,
2610
+ "max_steps": 4280,
2611
+ "num_input_tokens_seen": 0,
2612
+ "num_train_epochs": 4,
2613
+ "save_steps": 100,
2614
+ "stateful_callbacks": {
2615
+ "TrainerControl": {
2616
+ "args": {
2617
+ "should_epoch_stop": false,
2618
+ "should_evaluate": false,
2619
+ "should_log": false,
2620
+ "should_save": true,
2621
+ "should_training_stop": false
2622
+ },
2623
+ "attributes": {}
2624
+ }
2625
+ },
2626
+ "total_flos": 2.995895146589769e+20,
2627
+ "train_batch_size": 2,
2628
+ "trial_name": null,
2629
+ "trial_params": null
2630
+ }
l2-13b-ga/checkpoint-3700/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
l2-13b-ga/checkpoint-4280/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-13b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
l2-13b-ga/checkpoint-4280/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
l2-13b-ga/checkpoint-4280/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step4280
l2-13b-ga/checkpoint-4280/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
l2-13b-ga/checkpoint-4280/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
l2-13b-ga/checkpoint-4280/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
l2-13b-ga/checkpoint-4280/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
l2-13b-ga/checkpoint-4280/trainer_state.json ADDED
@@ -0,0 +1,3036 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.9975484473499883,
5
+ "eval_steps": 500,
6
+ "global_step": 4280,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0009339248190520663,
13
+ "grad_norm": 6.638877692627699,
14
+ "learning_rate": 9.345794392523364e-07,
15
+ "loss": 9.2917,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.009339248190520663,
20
+ "grad_norm": 1.1560921335705272,
21
+ "learning_rate": 9.345794392523365e-06,
22
+ "loss": 9.0876,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.018678496381041326,
27
+ "grad_norm": 0.8415132296956432,
28
+ "learning_rate": 1.869158878504673e-05,
29
+ "loss": 8.2164,
30
+ "step": 20
31
+ },
32
+ {
33
+ "epoch": 0.02801774457156199,
34
+ "grad_norm": 0.45381630992958155,
35
+ "learning_rate": 2.8037383177570094e-05,
36
+ "loss": 7.5184,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.03735699276208265,
41
+ "grad_norm": 0.8400636107958425,
42
+ "learning_rate": 3.738317757009346e-05,
43
+ "loss": 6.6507,
44
+ "step": 40
45
+ },
46
+ {
47
+ "epoch": 0.046696240952603316,
48
+ "grad_norm": 0.557696240829066,
49
+ "learning_rate": 4.672897196261683e-05,
50
+ "loss": 5.8909,
51
+ "step": 50
52
+ },
53
+ {
54
+ "epoch": 0.05603548914312398,
55
+ "grad_norm": 0.3971996057467842,
56
+ "learning_rate": 5.607476635514019e-05,
57
+ "loss": 5.4127,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 0.06537473733364464,
62
+ "grad_norm": 0.2932710540265688,
63
+ "learning_rate": 6.542056074766355e-05,
64
+ "loss": 5.0106,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.0747139855241653,
69
+ "grad_norm": 0.3682690443551033,
70
+ "learning_rate": 7.476635514018692e-05,
71
+ "loss": 4.6042,
72
+ "step": 80
73
+ },
74
+ {
75
+ "epoch": 0.08405323371468597,
76
+ "grad_norm": 0.3132971920011515,
77
+ "learning_rate": 8.411214953271028e-05,
78
+ "loss": 4.2031,
79
+ "step": 90
80
+ },
81
+ {
82
+ "epoch": 0.09339248190520663,
83
+ "grad_norm": 0.6731868159213446,
84
+ "learning_rate": 9.345794392523365e-05,
85
+ "loss": 3.9423,
86
+ "step": 100
87
+ },
88
+ {
89
+ "epoch": 0.1027317300957273,
90
+ "grad_norm": 0.27848867836763197,
91
+ "learning_rate": 0.000102803738317757,
92
+ "loss": 3.7157,
93
+ "step": 110
94
+ },
95
+ {
96
+ "epoch": 0.11207097828624796,
97
+ "grad_norm": 0.24642109032991807,
98
+ "learning_rate": 0.00011214953271028037,
99
+ "loss": 3.4516,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 0.12141022647676862,
104
+ "grad_norm": 0.25717384664029797,
105
+ "learning_rate": 0.00012149532710280373,
106
+ "loss": 3.2167,
107
+ "step": 130
108
+ },
109
+ {
110
+ "epoch": 0.13074947466728928,
111
+ "grad_norm": 0.20912922668565637,
112
+ "learning_rate": 0.0001308411214953271,
113
+ "loss": 3.0237,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.14008872285780993,
118
+ "grad_norm": 0.15805888388706113,
119
+ "learning_rate": 0.00014018691588785047,
120
+ "loss": 2.8529,
121
+ "step": 150
122
+ },
123
+ {
124
+ "epoch": 0.1494279710483306,
125
+ "grad_norm": 0.23370349497479534,
126
+ "learning_rate": 0.00014953271028037384,
127
+ "loss": 2.7078,
128
+ "step": 160
129
+ },
130
+ {
131
+ "epoch": 0.15876721923885126,
132
+ "grad_norm": 0.1802138633012483,
133
+ "learning_rate": 0.0001588785046728972,
134
+ "loss": 2.6115,
135
+ "step": 170
136
+ },
137
+ {
138
+ "epoch": 0.16810646742937194,
139
+ "grad_norm": 0.13354347610039718,
140
+ "learning_rate": 0.00016822429906542056,
141
+ "loss": 2.5309,
142
+ "step": 180
143
+ },
144
+ {
145
+ "epoch": 0.17744571561989259,
146
+ "grad_norm": 0.09414865188086892,
147
+ "learning_rate": 0.00017757009345794393,
148
+ "loss": 2.4452,
149
+ "step": 190
150
+ },
151
+ {
152
+ "epoch": 0.18678496381041326,
153
+ "grad_norm": 0.08333601554768896,
154
+ "learning_rate": 0.0001869158878504673,
155
+ "loss": 2.3832,
156
+ "step": 200
157
+ },
158
+ {
159
+ "epoch": 0.1961242120009339,
160
+ "grad_norm": 0.15926414699806835,
161
+ "learning_rate": 0.00019626168224299065,
162
+ "loss": 2.3492,
163
+ "step": 210
164
+ },
165
+ {
166
+ "epoch": 0.2054634601914546,
167
+ "grad_norm": 0.09492820761057012,
168
+ "learning_rate": 0.0001999989254250208,
169
+ "loss": 2.323,
170
+ "step": 220
171
+ },
172
+ {
173
+ "epoch": 0.21480270838197524,
174
+ "grad_norm": 0.0801349259356147,
175
+ "learning_rate": 0.00019999235866155886,
176
+ "loss": 2.2731,
177
+ "step": 230
178
+ },
179
+ {
180
+ "epoch": 0.22414195657249592,
181
+ "grad_norm": 0.12210960524693895,
182
+ "learning_rate": 0.00019997982251228469,
183
+ "loss": 2.2433,
184
+ "step": 240
185
+ },
186
+ {
187
+ "epoch": 0.23348120476301656,
188
+ "grad_norm": 3.14289498732125,
189
+ "learning_rate": 0.00019996131772558666,
190
+ "loss": 3.2769,
191
+ "step": 250
192
+ },
193
+ {
194
+ "epoch": 0.24282045295353724,
195
+ "grad_norm": 1.632940983166179,
196
+ "learning_rate": 0.00019993684540617132,
197
+ "loss": 4.9343,
198
+ "step": 260
199
+ },
200
+ {
201
+ "epoch": 0.2521597011440579,
202
+ "grad_norm": 3.4831252230225416,
203
+ "learning_rate": 0.00019990640701499736,
204
+ "loss": 4.2768,
205
+ "step": 270
206
+ },
207
+ {
208
+ "epoch": 0.26149894933457857,
209
+ "grad_norm": 1.6069045920523788,
210
+ "learning_rate": 0.00019987000436918874,
211
+ "loss": 5.9581,
212
+ "step": 280
213
+ },
214
+ {
215
+ "epoch": 0.27083819752509924,
216
+ "grad_norm": 0.2220907936615993,
217
+ "learning_rate": 0.00019982763964192585,
218
+ "loss": 3.8228,
219
+ "step": 290
220
+ },
221
+ {
222
+ "epoch": 0.28017744571561987,
223
+ "grad_norm": 0.24737284913291765,
224
+ "learning_rate": 0.00019977931536231596,
225
+ "loss": 3.1413,
226
+ "step": 300
227
+ },
228
+ {
229
+ "epoch": 0.28951669390614054,
230
+ "grad_norm": 4.010404518241152,
231
+ "learning_rate": 0.00019972503441524224,
232
+ "loss": 2.8432,
233
+ "step": 310
234
+ },
235
+ {
236
+ "epoch": 0.2988559420966612,
237
+ "grad_norm": 0.1515583580811596,
238
+ "learning_rate": 0.00019966480004119142,
239
+ "loss": 2.7859,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 0.3081951902871819,
244
+ "grad_norm": 0.11259395750650594,
245
+ "learning_rate": 0.00019959861583606045,
246
+ "loss": 2.5821,
247
+ "step": 330
248
+ },
249
+ {
250
+ "epoch": 0.3175344384777025,
251
+ "grad_norm": 0.22514797814956813,
252
+ "learning_rate": 0.00019952648575094183,
253
+ "loss": 2.4517,
254
+ "step": 340
255
+ },
256
+ {
257
+ "epoch": 0.3268736866682232,
258
+ "grad_norm": 0.08040136172033542,
259
+ "learning_rate": 0.00019944841409188767,
260
+ "loss": 2.3794,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 0.3362129348587439,
265
+ "grad_norm": 0.054758073593565354,
266
+ "learning_rate": 0.00019936440551965263,
267
+ "loss": 2.3232,
268
+ "step": 360
269
+ },
270
+ {
271
+ "epoch": 0.34555218304926455,
272
+ "grad_norm": 0.06742998909645591,
273
+ "learning_rate": 0.00019927446504941577,
274
+ "loss": 2.2776,
275
+ "step": 370
276
+ },
277
+ {
278
+ "epoch": 0.35489143123978517,
279
+ "grad_norm": 0.048780907584876736,
280
+ "learning_rate": 0.00019917859805048096,
281
+ "loss": 2.2376,
282
+ "step": 380
283
+ },
284
+ {
285
+ "epoch": 0.36423067943030585,
286
+ "grad_norm": 0.0475325963052214,
287
+ "learning_rate": 0.00019907681024595663,
288
+ "loss": 2.2191,
289
+ "step": 390
290
+ },
291
+ {
292
+ "epoch": 0.3735699276208265,
293
+ "grad_norm": 0.054089563211590065,
294
+ "learning_rate": 0.00019896910771241387,
295
+ "loss": 2.1961,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 0.3829091758113472,
300
+ "grad_norm": 0.21798406131864823,
301
+ "learning_rate": 0.00019885549687952372,
302
+ "loss": 2.2078,
303
+ "step": 410
304
+ },
305
+ {
306
+ "epoch": 0.3922484240018678,
307
+ "grad_norm": 0.8673185709111124,
308
+ "learning_rate": 0.00019873598452967338,
309
+ "loss": 2.3731,
310
+ "step": 420
311
+ },
312
+ {
313
+ "epoch": 0.4015876721923885,
314
+ "grad_norm": 0.22424350669971718,
315
+ "learning_rate": 0.0001986105777975613,
316
+ "loss": 2.6195,
317
+ "step": 430
318
+ },
319
+ {
320
+ "epoch": 0.4109269203829092,
321
+ "grad_norm": 0.307418135168262,
322
+ "learning_rate": 0.00019847928416977126,
323
+ "loss": 2.3624,
324
+ "step": 440
325
+ },
326
+ {
327
+ "epoch": 0.42026616857342985,
328
+ "grad_norm": 0.07944722668080402,
329
+ "learning_rate": 0.00019834211148432536,
330
+ "loss": 2.2799,
331
+ "step": 450
332
+ },
333
+ {
334
+ "epoch": 0.4296054167639505,
335
+ "grad_norm": 0.18146933758664588,
336
+ "learning_rate": 0.00019819906793021614,
337
+ "loss": 2.2177,
338
+ "step": 460
339
+ },
340
+ {
341
+ "epoch": 0.43894466495447115,
342
+ "grad_norm": 0.07035825837333018,
343
+ "learning_rate": 0.0001980501620469178,
344
+ "loss": 2.1767,
345
+ "step": 470
346
+ },
347
+ {
348
+ "epoch": 0.44828391314499183,
349
+ "grad_norm": 0.04596186944454228,
350
+ "learning_rate": 0.0001978954027238763,
351
+ "loss": 2.1598,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 0.4576231613355125,
356
+ "grad_norm": 0.041342347745088055,
357
+ "learning_rate": 0.0001977347991999786,
358
+ "loss": 2.131,
359
+ "step": 490
360
+ },
361
+ {
362
+ "epoch": 0.46696240952603313,
363
+ "grad_norm": 0.04172063219841485,
364
+ "learning_rate": 0.00019756836106300137,
365
+ "loss": 2.1231,
366
+ "step": 500
367
+ },
368
+ {
369
+ "epoch": 0.4763016577165538,
370
+ "grad_norm": 0.03373646457711144,
371
+ "learning_rate": 0.00019739609824903843,
372
+ "loss": 2.1146,
373
+ "step": 510
374
+ },
375
+ {
376
+ "epoch": 0.4856409059070745,
377
+ "grad_norm": 0.03736871030676605,
378
+ "learning_rate": 0.00019721802104190748,
379
+ "loss": 2.1003,
380
+ "step": 520
381
+ },
382
+ {
383
+ "epoch": 0.49498015409759516,
384
+ "grad_norm": 0.033931028038211034,
385
+ "learning_rate": 0.00019703414007253645,
386
+ "loss": 2.0983,
387
+ "step": 530
388
+ },
389
+ {
390
+ "epoch": 0.5043194022881158,
391
+ "grad_norm": 0.03790055446070549,
392
+ "learning_rate": 0.00019684446631832868,
393
+ "loss": 2.092,
394
+ "step": 540
395
+ },
396
+ {
397
+ "epoch": 0.5136586504786365,
398
+ "grad_norm": 0.030956192803893078,
399
+ "learning_rate": 0.00019664901110250758,
400
+ "loss": 2.0807,
401
+ "step": 550
402
+ },
403
+ {
404
+ "epoch": 0.5229978986691571,
405
+ "grad_norm": 0.03542530209935129,
406
+ "learning_rate": 0.00019644778609344068,
407
+ "loss": 2.0773,
408
+ "step": 560
409
+ },
410
+ {
411
+ "epoch": 0.5323371468596778,
412
+ "grad_norm": 0.040947757568902336,
413
+ "learning_rate": 0.00019624080330394306,
414
+ "loss": 2.0649,
415
+ "step": 570
416
+ },
417
+ {
418
+ "epoch": 0.5416763950501985,
419
+ "grad_norm": 0.034273415973688146,
420
+ "learning_rate": 0.00019602807509056018,
421
+ "loss": 2.0479,
422
+ "step": 580
423
+ },
424
+ {
425
+ "epoch": 0.5510156432407192,
426
+ "grad_norm": 0.031427481498873144,
427
+ "learning_rate": 0.00019580961415283028,
428
+ "loss": 2.0563,
429
+ "step": 590
430
+ },
431
+ {
432
+ "epoch": 0.5603548914312397,
433
+ "grad_norm": 0.03141549752041532,
434
+ "learning_rate": 0.00019558543353252611,
435
+ "loss": 2.0503,
436
+ "step": 600
437
+ },
438
+ {
439
+ "epoch": 0.5696941396217604,
440
+ "grad_norm": 0.033012392726428204,
441
+ "learning_rate": 0.00019535554661287652,
442
+ "loss": 2.0389,
443
+ "step": 610
444
+ },
445
+ {
446
+ "epoch": 0.5790333878122811,
447
+ "grad_norm": 0.02913261992661444,
448
+ "learning_rate": 0.0001951199671177673,
449
+ "loss": 2.036,
450
+ "step": 620
451
+ },
452
+ {
453
+ "epoch": 0.5883726360028018,
454
+ "grad_norm": 0.030543903708435332,
455
+ "learning_rate": 0.00019487870911092214,
456
+ "loss": 2.0326,
457
+ "step": 630
458
+ },
459
+ {
460
+ "epoch": 0.5977118841933224,
461
+ "grad_norm": 0.03215005545393897,
462
+ "learning_rate": 0.00019463178699506277,
463
+ "loss": 2.0231,
464
+ "step": 640
465
+ },
466
+ {
467
+ "epoch": 0.6070511323838431,
468
+ "grad_norm": 0.03823630791937631,
469
+ "learning_rate": 0.00019437921551104933,
470
+ "loss": 2.0293,
471
+ "step": 650
472
+ },
473
+ {
474
+ "epoch": 0.6163903805743638,
475
+ "grad_norm": 0.03200103149471209,
476
+ "learning_rate": 0.00019412100973700038,
477
+ "loss": 2.017,
478
+ "step": 660
479
+ },
480
+ {
481
+ "epoch": 0.6257296287648845,
482
+ "grad_norm": 0.03841804153577787,
483
+ "learning_rate": 0.00019385718508739262,
484
+ "loss": 2.0135,
485
+ "step": 670
486
+ },
487
+ {
488
+ "epoch": 0.635068876955405,
489
+ "grad_norm": 0.03052396655271533,
490
+ "learning_rate": 0.0001935877573121407,
491
+ "loss": 2.0237,
492
+ "step": 680
493
+ },
494
+ {
495
+ "epoch": 0.6444081251459257,
496
+ "grad_norm": 0.033817837533771815,
497
+ "learning_rate": 0.00019331274249565717,
498
+ "loss": 2.0069,
499
+ "step": 690
500
+ },
501
+ {
502
+ "epoch": 0.6537473733364464,
503
+ "grad_norm": 0.028286999650643876,
504
+ "learning_rate": 0.00019303215705589194,
505
+ "loss": 2.0112,
506
+ "step": 700
507
+ },
508
+ {
509
+ "epoch": 0.6630866215269671,
510
+ "grad_norm": 0.030693948626257357,
511
+ "learning_rate": 0.00019274601774335243,
512
+ "loss": 2.0,
513
+ "step": 710
514
+ },
515
+ {
516
+ "epoch": 0.6724258697174877,
517
+ "grad_norm": 0.029984615635953022,
518
+ "learning_rate": 0.0001924543416401035,
519
+ "loss": 2.0028,
520
+ "step": 720
521
+ },
522
+ {
523
+ "epoch": 0.6817651179080084,
524
+ "grad_norm": 0.02915985673921391,
525
+ "learning_rate": 0.00019215714615874755,
526
+ "loss": 2.0031,
527
+ "step": 730
528
+ },
529
+ {
530
+ "epoch": 0.6911043660985291,
531
+ "grad_norm": 0.028305399777245336,
532
+ "learning_rate": 0.00019185444904138528,
533
+ "loss": 1.9924,
534
+ "step": 740
535
+ },
536
+ {
537
+ "epoch": 0.7004436142890498,
538
+ "grad_norm": 0.036720505429756495,
539
+ "learning_rate": 0.00019154626835855628,
540
+ "loss": 1.9981,
541
+ "step": 750
542
+ },
543
+ {
544
+ "epoch": 0.7097828624795703,
545
+ "grad_norm": 0.0287124048917296,
546
+ "learning_rate": 0.00019123262250816034,
547
+ "loss": 1.9868,
548
+ "step": 760
549
+ },
550
+ {
551
+ "epoch": 0.719122110670091,
552
+ "grad_norm": 0.03318092492837997,
553
+ "learning_rate": 0.00019091353021435915,
554
+ "loss": 1.9943,
555
+ "step": 770
556
+ },
557
+ {
558
+ "epoch": 0.7284613588606117,
559
+ "grad_norm": 0.054035272137015325,
560
+ "learning_rate": 0.00019058901052645844,
561
+ "loss": 1.9838,
562
+ "step": 780
563
+ },
564
+ {
565
+ "epoch": 0.7378006070511324,
566
+ "grad_norm": 0.03184392761983255,
567
+ "learning_rate": 0.00019025908281777078,
568
+ "loss": 1.982,
569
+ "step": 790
570
+ },
571
+ {
572
+ "epoch": 0.747139855241653,
573
+ "grad_norm": 0.029409948164434735,
574
+ "learning_rate": 0.00018992376678445908,
575
+ "loss": 1.9693,
576
+ "step": 800
577
+ },
578
+ {
579
+ "epoch": 0.7564791034321737,
580
+ "grad_norm": 0.029656963043919016,
581
+ "learning_rate": 0.00018958308244436064,
582
+ "loss": 1.9914,
583
+ "step": 810
584
+ },
585
+ {
586
+ "epoch": 0.7658183516226944,
587
+ "grad_norm": 0.030843610865326686,
588
+ "learning_rate": 0.00018923705013579233,
589
+ "loss": 1.9749,
590
+ "step": 820
591
+ },
592
+ {
593
+ "epoch": 0.7751575998132151,
594
+ "grad_norm": 0.0377584286045999,
595
+ "learning_rate": 0.00018888569051633613,
596
+ "loss": 1.9606,
597
+ "step": 830
598
+ },
599
+ {
600
+ "epoch": 0.7844968480037356,
601
+ "grad_norm": 0.03147699916274391,
602
+ "learning_rate": 0.00018852902456160616,
603
+ "loss": 1.9696,
604
+ "step": 840
605
+ },
606
+ {
607
+ "epoch": 0.7938360961942563,
608
+ "grad_norm": 0.029193153251471263,
609
+ "learning_rate": 0.0001881670735639963,
610
+ "loss": 1.9687,
611
+ "step": 850
612
+ },
613
+ {
614
+ "epoch": 0.803175344384777,
615
+ "grad_norm": 0.030201895228156087,
616
+ "learning_rate": 0.00018779985913140924,
617
+ "loss": 1.9678,
618
+ "step": 860
619
+ },
620
+ {
621
+ "epoch": 0.8125145925752977,
622
+ "grad_norm": 0.029272319485493213,
623
+ "learning_rate": 0.00018742740318596632,
624
+ "loss": 1.9697,
625
+ "step": 870
626
+ },
627
+ {
628
+ "epoch": 0.8218538407658184,
629
+ "grad_norm": 0.033740176465285654,
630
+ "learning_rate": 0.000187049727962699,
631
+ "loss": 1.9647,
632
+ "step": 880
633
+ },
634
+ {
635
+ "epoch": 0.831193088956339,
636
+ "grad_norm": 0.029539399251208593,
637
+ "learning_rate": 0.0001866668560082213,
638
+ "loss": 1.9627,
639
+ "step": 890
640
+ },
641
+ {
642
+ "epoch": 0.8405323371468597,
643
+ "grad_norm": 0.028666077337951026,
644
+ "learning_rate": 0.0001862788101793839,
645
+ "loss": 1.9529,
646
+ "step": 900
647
+ },
648
+ {
649
+ "epoch": 0.8498715853373804,
650
+ "grad_norm": 0.030280792492665805,
651
+ "learning_rate": 0.0001858856136419097,
652
+ "loss": 1.9536,
653
+ "step": 910
654
+ },
655
+ {
656
+ "epoch": 0.859210833527901,
657
+ "grad_norm": 0.03921536105057096,
658
+ "learning_rate": 0.0001854872898690106,
659
+ "loss": 1.9474,
660
+ "step": 920
661
+ },
662
+ {
663
+ "epoch": 0.8685500817184216,
664
+ "grad_norm": 0.030632523637038354,
665
+ "learning_rate": 0.0001850838626399865,
666
+ "loss": 1.9423,
667
+ "step": 930
668
+ },
669
+ {
670
+ "epoch": 0.8778893299089423,
671
+ "grad_norm": 0.04615147601979514,
672
+ "learning_rate": 0.00018467535603880548,
673
+ "loss": 1.946,
674
+ "step": 940
675
+ },
676
+ {
677
+ "epoch": 0.887228578099463,
678
+ "grad_norm": 0.028216236017006333,
679
+ "learning_rate": 0.00018426179445266616,
680
+ "loss": 1.9408,
681
+ "step": 950
682
+ },
683
+ {
684
+ "epoch": 0.8965678262899837,
685
+ "grad_norm": 0.0282407563402959,
686
+ "learning_rate": 0.00018384320257054177,
687
+ "loss": 1.9447,
688
+ "step": 960
689
+ },
690
+ {
691
+ "epoch": 0.9059070744805043,
692
+ "grad_norm": 0.029365880854687894,
693
+ "learning_rate": 0.0001834196053817062,
694
+ "loss": 1.9389,
695
+ "step": 970
696
+ },
697
+ {
698
+ "epoch": 0.915246322671025,
699
+ "grad_norm": 0.02855404439130719,
700
+ "learning_rate": 0.00018299102817424234,
701
+ "loss": 1.9425,
702
+ "step": 980
703
+ },
704
+ {
705
+ "epoch": 0.9245855708615457,
706
+ "grad_norm": 0.03238310984070135,
707
+ "learning_rate": 0.00018255749653353225,
708
+ "loss": 1.9392,
709
+ "step": 990
710
+ },
711
+ {
712
+ "epoch": 0.9339248190520663,
713
+ "grad_norm": 0.030115350805430388,
714
+ "learning_rate": 0.00018211903634072983,
715
+ "loss": 1.956,
716
+ "step": 1000
717
+ },
718
+ {
719
+ "epoch": 0.9432640672425869,
720
+ "grad_norm": 0.039090564032501135,
721
+ "learning_rate": 0.0001816756737712158,
722
+ "loss": 1.9358,
723
+ "step": 1010
724
+ },
725
+ {
726
+ "epoch": 0.9526033154331076,
727
+ "grad_norm": 0.028567954476327023,
728
+ "learning_rate": 0.000181227435293035,
729
+ "loss": 1.9342,
730
+ "step": 1020
731
+ },
732
+ {
733
+ "epoch": 0.9619425636236283,
734
+ "grad_norm": 0.028158653241284505,
735
+ "learning_rate": 0.00018077434766531624,
736
+ "loss": 1.9287,
737
+ "step": 1030
738
+ },
739
+ {
740
+ "epoch": 0.971281811814149,
741
+ "grad_norm": 0.02927795717651538,
742
+ "learning_rate": 0.00018031643793667504,
743
+ "loss": 1.9298,
744
+ "step": 1040
745
+ },
746
+ {
747
+ "epoch": 0.9806210600046696,
748
+ "grad_norm": 0.06298340584032344,
749
+ "learning_rate": 0.0001798537334435986,
750
+ "loss": 1.9303,
751
+ "step": 1050
752
+ },
753
+ {
754
+ "epoch": 0.9899603081951903,
755
+ "grad_norm": 0.03627278406983255,
756
+ "learning_rate": 0.00017938626180881407,
757
+ "loss": 1.9285,
758
+ "step": 1060
759
+ },
760
+ {
761
+ "epoch": 0.999299556385711,
762
+ "grad_norm": 0.03916823421329747,
763
+ "learning_rate": 0.00017891405093963938,
764
+ "loss": 1.9239,
765
+ "step": 1070
766
+ },
767
+ {
768
+ "epoch": 1.0087555451786132,
769
+ "grad_norm": 0.03383539251115568,
770
+ "learning_rate": 0.00017843712902631723,
771
+ "loss": 1.8855,
772
+ "step": 1080
773
+ },
774
+ {
775
+ "epoch": 1.0180947933691338,
776
+ "grad_norm": 0.02931021936560147,
777
+ "learning_rate": 0.00017795552454033224,
778
+ "loss": 1.8004,
779
+ "step": 1090
780
+ },
781
+ {
782
+ "epoch": 1.0274340415596543,
783
+ "grad_norm": 0.029173295095350292,
784
+ "learning_rate": 0.0001774692662327113,
785
+ "loss": 1.7912,
786
+ "step": 1100
787
+ },
788
+ {
789
+ "epoch": 1.0367732897501751,
790
+ "grad_norm": 0.035210065642974735,
791
+ "learning_rate": 0.000176978383132307,
792
+ "loss": 1.7902,
793
+ "step": 1110
794
+ },
795
+ {
796
+ "epoch": 1.0461125379406957,
797
+ "grad_norm": 0.029794447659573477,
798
+ "learning_rate": 0.00017648290454406475,
799
+ "loss": 1.8072,
800
+ "step": 1120
801
+ },
802
+ {
803
+ "epoch": 1.0554517861312165,
804
+ "grad_norm": 0.03194584938279939,
805
+ "learning_rate": 0.0001759828600472734,
806
+ "loss": 1.803,
807
+ "step": 1130
808
+ },
809
+ {
810
+ "epoch": 1.064791034321737,
811
+ "grad_norm": 0.031028415312581603,
812
+ "learning_rate": 0.00017547827949379924,
813
+ "loss": 1.7945,
814
+ "step": 1140
815
+ },
816
+ {
817
+ "epoch": 1.0741302825122578,
818
+ "grad_norm": 0.03313245828751237,
819
+ "learning_rate": 0.00017496919300630403,
820
+ "loss": 1.8139,
821
+ "step": 1150
822
+ },
823
+ {
824
+ "epoch": 1.0834695307027784,
825
+ "grad_norm": 0.03049431724979126,
826
+ "learning_rate": 0.00017445563097644664,
827
+ "loss": 1.8031,
828
+ "step": 1160
829
+ },
830
+ {
831
+ "epoch": 1.0928087788932992,
832
+ "grad_norm": 0.02880548705343715,
833
+ "learning_rate": 0.00017393762406306878,
834
+ "loss": 1.7974,
835
+ "step": 1170
836
+ },
837
+ {
838
+ "epoch": 1.1021480270838198,
839
+ "grad_norm": 0.03200427895977668,
840
+ "learning_rate": 0.00017341520319036469,
841
+ "loss": 1.7994,
842
+ "step": 1180
843
+ },
844
+ {
845
+ "epoch": 1.1114872752743403,
846
+ "grad_norm": 0.031293532815600045,
847
+ "learning_rate": 0.00017288839954603496,
848
+ "loss": 1.8073,
849
+ "step": 1190
850
+ },
851
+ {
852
+ "epoch": 1.1208265234648611,
853
+ "grad_norm": 0.032367211109345505,
854
+ "learning_rate": 0.00017235724457942468,
855
+ "loss": 1.7944,
856
+ "step": 1200
857
+ },
858
+ {
859
+ "epoch": 1.1301657716553817,
860
+ "grad_norm": 0.037783793923191374,
861
+ "learning_rate": 0.0001718217699996462,
862
+ "loss": 1.7948,
863
+ "step": 1210
864
+ },
865
+ {
866
+ "epoch": 1.1395050198459025,
867
+ "grad_norm": 0.02881083117349317,
868
+ "learning_rate": 0.00017128200777368567,
869
+ "loss": 1.8029,
870
+ "step": 1220
871
+ },
872
+ {
873
+ "epoch": 1.148844268036423,
874
+ "grad_norm": 0.032997408408175985,
875
+ "learning_rate": 0.00017073799012449524,
876
+ "loss": 1.7914,
877
+ "step": 1230
878
+ },
879
+ {
880
+ "epoch": 1.1581835162269438,
881
+ "grad_norm": 0.030263615801190885,
882
+ "learning_rate": 0.00017018974952906884,
883
+ "loss": 1.792,
884
+ "step": 1240
885
+ },
886
+ {
887
+ "epoch": 1.1675227644174644,
888
+ "grad_norm": 0.03286310429098484,
889
+ "learning_rate": 0.00016963731871650378,
890
+ "loss": 1.8149,
891
+ "step": 1250
892
+ },
893
+ {
894
+ "epoch": 1.1768620126079852,
895
+ "grad_norm": 0.031111621587597126,
896
+ "learning_rate": 0.00016908073066604663,
897
+ "loss": 1.8092,
898
+ "step": 1260
899
+ },
900
+ {
901
+ "epoch": 1.1862012607985057,
902
+ "grad_norm": 0.03372950172075241,
903
+ "learning_rate": 0.0001685200186051246,
904
+ "loss": 1.818,
905
+ "step": 1270
906
+ },
907
+ {
908
+ "epoch": 1.1955405089890263,
909
+ "grad_norm": 0.040782040436567434,
910
+ "learning_rate": 0.00016795521600736164,
911
+ "loss": 1.7999,
912
+ "step": 1280
913
+ },
914
+ {
915
+ "epoch": 1.204879757179547,
916
+ "grad_norm": 0.03451605168178924,
917
+ "learning_rate": 0.00016738635659058044,
918
+ "loss": 1.7945,
919
+ "step": 1290
920
+ },
921
+ {
922
+ "epoch": 1.2142190053700677,
923
+ "grad_norm": 0.03235681588882673,
924
+ "learning_rate": 0.00016681347431478933,
925
+ "loss": 1.8087,
926
+ "step": 1300
927
+ },
928
+ {
929
+ "epoch": 1.2235582535605884,
930
+ "grad_norm": 0.030750745605971932,
931
+ "learning_rate": 0.00016623660338015487,
932
+ "loss": 1.7995,
933
+ "step": 1310
934
+ },
935
+ {
936
+ "epoch": 1.232897501751109,
937
+ "grad_norm": 0.029444668665577274,
938
+ "learning_rate": 0.00016565577822496042,
939
+ "loss": 1.8025,
940
+ "step": 1320
941
+ },
942
+ {
943
+ "epoch": 1.2422367499416298,
944
+ "grad_norm": 0.038528856709584745,
945
+ "learning_rate": 0.00016507103352354996,
946
+ "loss": 1.7954,
947
+ "step": 1330
948
+ },
949
+ {
950
+ "epoch": 1.2515759981321504,
951
+ "grad_norm": 0.034217088004383035,
952
+ "learning_rate": 0.00016448240418425814,
953
+ "loss": 1.7962,
954
+ "step": 1340
955
+ },
956
+ {
957
+ "epoch": 1.260915246322671,
958
+ "grad_norm": 0.030205405393195585,
959
+ "learning_rate": 0.00016388992534732645,
960
+ "loss": 1.7973,
961
+ "step": 1350
962
+ },
963
+ {
964
+ "epoch": 1.2702544945131917,
965
+ "grad_norm": 0.029082218516562994,
966
+ "learning_rate": 0.00016329363238280528,
967
+ "loss": 1.796,
968
+ "step": 1360
969
+ },
970
+ {
971
+ "epoch": 1.2795937427037123,
972
+ "grad_norm": 0.029003887688766505,
973
+ "learning_rate": 0.00016269356088844238,
974
+ "loss": 1.7946,
975
+ "step": 1370
976
+ },
977
+ {
978
+ "epoch": 1.288932990894233,
979
+ "grad_norm": 0.03341157363649238,
980
+ "learning_rate": 0.00016208974668755779,
981
+ "loss": 1.7972,
982
+ "step": 1380
983
+ },
984
+ {
985
+ "epoch": 1.2982722390847536,
986
+ "grad_norm": 0.030614480844663026,
987
+ "learning_rate": 0.00016148222582690517,
988
+ "loss": 1.7973,
989
+ "step": 1390
990
+ },
991
+ {
992
+ "epoch": 1.3076114872752744,
993
+ "grad_norm": 0.029741346740467405,
994
+ "learning_rate": 0.00016087103457452,
995
+ "loss": 1.8076,
996
+ "step": 1400
997
+ },
998
+ {
999
+ "epoch": 1.316950735465795,
1000
+ "grad_norm": 0.029569313554185597,
1001
+ "learning_rate": 0.00016025620941755424,
1002
+ "loss": 1.8043,
1003
+ "step": 1410
1004
+ },
1005
+ {
1006
+ "epoch": 1.3262899836563156,
1007
+ "grad_norm": 0.02947637404374054,
1008
+ "learning_rate": 0.0001596377870600983,
1009
+ "loss": 1.797,
1010
+ "step": 1420
1011
+ },
1012
+ {
1013
+ "epoch": 1.3356292318468364,
1014
+ "grad_norm": 0.031005062093959545,
1015
+ "learning_rate": 0.00015901580442098968,
1016
+ "loss": 1.8086,
1017
+ "step": 1430
1018
+ },
1019
+ {
1020
+ "epoch": 1.344968480037357,
1021
+ "grad_norm": 0.029493792984873927,
1022
+ "learning_rate": 0.00015839029863160922,
1023
+ "loss": 1.8026,
1024
+ "step": 1440
1025
+ },
1026
+ {
1027
+ "epoch": 1.3543077282278777,
1028
+ "grad_norm": 0.0288068155951218,
1029
+ "learning_rate": 0.0001577613070336641,
1030
+ "loss": 1.7951,
1031
+ "step": 1450
1032
+ },
1033
+ {
1034
+ "epoch": 1.3636469764183983,
1035
+ "grad_norm": 0.03380404824627639,
1036
+ "learning_rate": 0.00015712886717695885,
1037
+ "loss": 1.7938,
1038
+ "step": 1460
1039
+ },
1040
+ {
1041
+ "epoch": 1.372986224608919,
1042
+ "grad_norm": 0.039744706189693335,
1043
+ "learning_rate": 0.0001564930168171536,
1044
+ "loss": 1.8016,
1045
+ "step": 1470
1046
+ },
1047
+ {
1048
+ "epoch": 1.3823254727994396,
1049
+ "grad_norm": 0.030565530594285437,
1050
+ "learning_rate": 0.00015585379391351012,
1051
+ "loss": 1.7984,
1052
+ "step": 1480
1053
+ },
1054
+ {
1055
+ "epoch": 1.3916647209899602,
1056
+ "grad_norm": 0.04009392805554255,
1057
+ "learning_rate": 0.00015521123662662567,
1058
+ "loss": 1.7999,
1059
+ "step": 1490
1060
+ },
1061
+ {
1062
+ "epoch": 1.401003969180481,
1063
+ "grad_norm": 0.03516196009586836,
1064
+ "learning_rate": 0.000154565383316155,
1065
+ "loss": 1.7979,
1066
+ "step": 1500
1067
+ },
1068
+ {
1069
+ "epoch": 1.4103432173710018,
1070
+ "grad_norm": 0.03534161399054556,
1071
+ "learning_rate": 0.0001539162725385202,
1072
+ "loss": 1.8057,
1073
+ "step": 1510
1074
+ },
1075
+ {
1076
+ "epoch": 1.4196824655615223,
1077
+ "grad_norm": 0.028488879438601067,
1078
+ "learning_rate": 0.000153263943044609,
1079
+ "loss": 1.792,
1080
+ "step": 1520
1081
+ },
1082
+ {
1083
+ "epoch": 1.429021713752043,
1084
+ "grad_norm": 0.03125154490954804,
1085
+ "learning_rate": 0.00015260843377746147,
1086
+ "loss": 1.8008,
1087
+ "step": 1530
1088
+ },
1089
+ {
1090
+ "epoch": 1.4383609619425637,
1091
+ "grad_norm": 0.030194357488801882,
1092
+ "learning_rate": 0.00015194978386994507,
1093
+ "loss": 1.7948,
1094
+ "step": 1540
1095
+ },
1096
+ {
1097
+ "epoch": 1.4477002101330843,
1098
+ "grad_norm": 0.03049246845786265,
1099
+ "learning_rate": 0.00015128803264241852,
1100
+ "loss": 1.7967,
1101
+ "step": 1550
1102
+ },
1103
+ {
1104
+ "epoch": 1.4570394583236048,
1105
+ "grad_norm": 0.030497211097258083,
1106
+ "learning_rate": 0.0001506232196003844,
1107
+ "loss": 1.7894,
1108
+ "step": 1560
1109
+ },
1110
+ {
1111
+ "epoch": 1.4663787065141256,
1112
+ "grad_norm": 0.028748806119737205,
1113
+ "learning_rate": 0.00014995538443213094,
1114
+ "loss": 1.806,
1115
+ "step": 1570
1116
+ },
1117
+ {
1118
+ "epoch": 1.4757179547046464,
1119
+ "grad_norm": 0.036423750322912396,
1120
+ "learning_rate": 0.00014928456700636237,
1121
+ "loss": 1.7995,
1122
+ "step": 1580
1123
+ },
1124
+ {
1125
+ "epoch": 1.485057202895167,
1126
+ "grad_norm": 0.039101516109204065,
1127
+ "learning_rate": 0.00014861080736981906,
1128
+ "loss": 1.8028,
1129
+ "step": 1590
1130
+ },
1131
+ {
1132
+ "epoch": 1.4943964510856875,
1133
+ "grad_norm": 0.031368399541673815,
1134
+ "learning_rate": 0.00014793414574488663,
1135
+ "loss": 1.8005,
1136
+ "step": 1600
1137
+ },
1138
+ {
1139
+ "epoch": 1.5037356992762083,
1140
+ "grad_norm": 0.029788484702512056,
1141
+ "learning_rate": 0.00014725462252719495,
1142
+ "loss": 1.7963,
1143
+ "step": 1610
1144
+ },
1145
+ {
1146
+ "epoch": 1.5130749474667289,
1147
+ "grad_norm": 0.029719041811636312,
1148
+ "learning_rate": 0.00014657227828320635,
1149
+ "loss": 1.7957,
1150
+ "step": 1620
1151
+ },
1152
+ {
1153
+ "epoch": 1.5224141956572494,
1154
+ "grad_norm": 0.02820041575417432,
1155
+ "learning_rate": 0.00014588715374779407,
1156
+ "loss": 1.7986,
1157
+ "step": 1630
1158
+ },
1159
+ {
1160
+ "epoch": 1.5317534438477702,
1161
+ "grad_norm": 1.8322544897261024,
1162
+ "learning_rate": 0.0001451992898218102,
1163
+ "loss": 2.016,
1164
+ "step": 1640
1165
+ },
1166
+ {
1167
+ "epoch": 1.541092692038291,
1168
+ "grad_norm": 0.8676995793107466,
1169
+ "learning_rate": 0.0001445087275696443,
1170
+ "loss": 2.1095,
1171
+ "step": 1650
1172
+ },
1173
+ {
1174
+ "epoch": 1.5504319402288116,
1175
+ "grad_norm": 0.08688193434631736,
1176
+ "learning_rate": 0.00014381550821677155,
1177
+ "loss": 2.0497,
1178
+ "step": 1660
1179
+ },
1180
+ {
1181
+ "epoch": 1.5597711884193322,
1182
+ "grad_norm": 0.18321381224589608,
1183
+ "learning_rate": 0.0001431196731472921,
1184
+ "loss": 1.9023,
1185
+ "step": 1670
1186
+ },
1187
+ {
1188
+ "epoch": 1.569110436609853,
1189
+ "grad_norm": 0.058214343698110564,
1190
+ "learning_rate": 0.00014242126390145998,
1191
+ "loss": 1.8566,
1192
+ "step": 1680
1193
+ },
1194
+ {
1195
+ "epoch": 1.5784496848003737,
1196
+ "grad_norm": 0.03965578147557666,
1197
+ "learning_rate": 0.0001417203221732036,
1198
+ "loss": 1.8206,
1199
+ "step": 1690
1200
+ },
1201
+ {
1202
+ "epoch": 1.587788932990894,
1203
+ "grad_norm": 0.03131802880017099,
1204
+ "learning_rate": 0.00014101688980763658,
1205
+ "loss": 1.8272,
1206
+ "step": 1700
1207
+ },
1208
+ {
1209
+ "epoch": 1.5971281811814149,
1210
+ "grad_norm": 0.02788722706683908,
1211
+ "learning_rate": 0.00014031100879855968,
1212
+ "loss": 1.8145,
1213
+ "step": 1710
1214
+ },
1215
+ {
1216
+ "epoch": 1.6064674293719357,
1217
+ "grad_norm": 0.02781057130092059,
1218
+ "learning_rate": 0.00013960272128595372,
1219
+ "loss": 1.8122,
1220
+ "step": 1720
1221
+ },
1222
+ {
1223
+ "epoch": 1.6158066775624562,
1224
+ "grad_norm": 0.032067383734154756,
1225
+ "learning_rate": 0.00013889206955346403,
1226
+ "loss": 1.8064,
1227
+ "step": 1730
1228
+ },
1229
+ {
1230
+ "epoch": 1.6251459257529768,
1231
+ "grad_norm": 0.03448807133884858,
1232
+ "learning_rate": 0.00013817909602587613,
1233
+ "loss": 1.8128,
1234
+ "step": 1740
1235
+ },
1236
+ {
1237
+ "epoch": 1.6344851739434976,
1238
+ "grad_norm": 0.04127395288271696,
1239
+ "learning_rate": 0.00013746384326658305,
1240
+ "loss": 1.8041,
1241
+ "step": 1750
1242
+ },
1243
+ {
1244
+ "epoch": 1.6438244221340184,
1245
+ "grad_norm": 0.030243192787820814,
1246
+ "learning_rate": 0.00013674635397504427,
1247
+ "loss": 1.803,
1248
+ "step": 1760
1249
+ },
1250
+ {
1251
+ "epoch": 1.653163670324539,
1252
+ "grad_norm": 0.032183525625428915,
1253
+ "learning_rate": 0.00013602667098423687,
1254
+ "loss": 1.8092,
1255
+ "step": 1770
1256
+ },
1257
+ {
1258
+ "epoch": 1.6625029185150595,
1259
+ "grad_norm": 0.030391044676815377,
1260
+ "learning_rate": 0.00013530483725809818,
1261
+ "loss": 1.8039,
1262
+ "step": 1780
1263
+ },
1264
+ {
1265
+ "epoch": 1.6718421667055803,
1266
+ "grad_norm": 0.03204756818238517,
1267
+ "learning_rate": 0.000134580895888961,
1268
+ "loss": 1.8017,
1269
+ "step": 1790
1270
+ },
1271
+ {
1272
+ "epoch": 1.6811814148961008,
1273
+ "grad_norm": 0.031117112662107062,
1274
+ "learning_rate": 0.00013385489009498124,
1275
+ "loss": 1.8017,
1276
+ "step": 1800
1277
+ },
1278
+ {
1279
+ "epoch": 1.6905206630866214,
1280
+ "grad_norm": 0.028389293445401805,
1281
+ "learning_rate": 0.00013312686321755761,
1282
+ "loss": 1.811,
1283
+ "step": 1810
1284
+ },
1285
+ {
1286
+ "epoch": 1.6998599112771422,
1287
+ "grad_norm": 4.908185097372493,
1288
+ "learning_rate": 0.0001323968587187443,
1289
+ "loss": 2.194,
1290
+ "step": 1820
1291
+ },
1292
+ {
1293
+ "epoch": 1.709199159467663,
1294
+ "grad_norm": 0.2849452041194025,
1295
+ "learning_rate": 0.00013166492017865637,
1296
+ "loss": 2.0785,
1297
+ "step": 1830
1298
+ },
1299
+ {
1300
+ "epoch": 1.7185384076581836,
1301
+ "grad_norm": 0.10989252058989733,
1302
+ "learning_rate": 0.0001309310912928682,
1303
+ "loss": 1.986,
1304
+ "step": 1840
1305
+ },
1306
+ {
1307
+ "epoch": 1.7278776558487041,
1308
+ "grad_norm": 0.057475612656740484,
1309
+ "learning_rate": 0.00013019541586980463,
1310
+ "loss": 1.8614,
1311
+ "step": 1850
1312
+ },
1313
+ {
1314
+ "epoch": 1.737216904039225,
1315
+ "grad_norm": 0.034908181734207726,
1316
+ "learning_rate": 0.000129457937828126,
1317
+ "loss": 1.8326,
1318
+ "step": 1860
1319
+ },
1320
+ {
1321
+ "epoch": 1.7465561522297455,
1322
+ "grad_norm": 0.02892836681897248,
1323
+ "learning_rate": 0.00012871870119410614,
1324
+ "loss": 1.8243,
1325
+ "step": 1870
1326
+ },
1327
+ {
1328
+ "epoch": 1.755895400420266,
1329
+ "grad_norm": 0.03311636981729384,
1330
+ "learning_rate": 0.00012797775009900397,
1331
+ "loss": 1.8183,
1332
+ "step": 1880
1333
+ },
1334
+ {
1335
+ "epoch": 1.7652346486107868,
1336
+ "grad_norm": 0.03151917952358458,
1337
+ "learning_rate": 0.00012723512877642904,
1338
+ "loss": 1.8034,
1339
+ "step": 1890
1340
+ },
1341
+ {
1342
+ "epoch": 1.7745738968013076,
1343
+ "grad_norm": 0.028109921832296925,
1344
+ "learning_rate": 0.000126490881559701,
1345
+ "loss": 1.8129,
1346
+ "step": 1900
1347
+ },
1348
+ {
1349
+ "epoch": 1.7839131449918282,
1350
+ "grad_norm": 0.030350462454962698,
1351
+ "learning_rate": 0.00012574505287920259,
1352
+ "loss": 1.8003,
1353
+ "step": 1910
1354
+ },
1355
+ {
1356
+ "epoch": 1.7932523931823487,
1357
+ "grad_norm": 0.03131380630103849,
1358
+ "learning_rate": 0.00012499768725972754,
1359
+ "loss": 1.814,
1360
+ "step": 1920
1361
+ },
1362
+ {
1363
+ "epoch": 1.8025916413728695,
1364
+ "grad_norm": 0.029450198273050322,
1365
+ "learning_rate": 0.00012424882931782243,
1366
+ "loss": 1.7998,
1367
+ "step": 1930
1368
+ },
1369
+ {
1370
+ "epoch": 1.81193088956339,
1371
+ "grad_norm": 0.0310524261453681,
1372
+ "learning_rate": 0.0001234985237591231,
1373
+ "loss": 1.8078,
1374
+ "step": 1940
1375
+ },
1376
+ {
1377
+ "epoch": 1.8212701377539107,
1378
+ "grad_norm": 0.029362038478982822,
1379
+ "learning_rate": 0.00012274681537568585,
1380
+ "loss": 1.8014,
1381
+ "step": 1950
1382
+ },
1383
+ {
1384
+ "epoch": 1.8306093859444315,
1385
+ "grad_norm": 0.027166816460226118,
1386
+ "learning_rate": 0.00012199374904331337,
1387
+ "loss": 1.8021,
1388
+ "step": 1960
1389
+ },
1390
+ {
1391
+ "epoch": 1.8399486341349522,
1392
+ "grad_norm": 0.03680509283276228,
1393
+ "learning_rate": 0.00012123936971887578,
1394
+ "loss": 1.7973,
1395
+ "step": 1970
1396
+ },
1397
+ {
1398
+ "epoch": 1.8492878823254728,
1399
+ "grad_norm": 0.03135174840346185,
1400
+ "learning_rate": 0.0001204837224376267,
1401
+ "loss": 1.7874,
1402
+ "step": 1980
1403
+ },
1404
+ {
1405
+ "epoch": 1.8586271305159934,
1406
+ "grad_norm": 0.02644533256389969,
1407
+ "learning_rate": 0.0001197268523105148,
1408
+ "loss": 1.798,
1409
+ "step": 1990
1410
+ },
1411
+ {
1412
+ "epoch": 1.8679663787065142,
1413
+ "grad_norm": 0.02999453651649614,
1414
+ "learning_rate": 0.00011896880452149077,
1415
+ "loss": 1.7957,
1416
+ "step": 2000
1417
+ },
1418
+ {
1419
+ "epoch": 1.877305626897035,
1420
+ "grad_norm": 0.026905209700322272,
1421
+ "learning_rate": 0.00011820962432480985,
1422
+ "loss": 1.793,
1423
+ "step": 2010
1424
+ },
1425
+ {
1426
+ "epoch": 1.8866448750875553,
1427
+ "grad_norm": 0.027263640323285022,
1428
+ "learning_rate": 0.00011744935704233005,
1429
+ "loss": 1.7974,
1430
+ "step": 2020
1431
+ },
1432
+ {
1433
+ "epoch": 1.895984123278076,
1434
+ "grad_norm": 0.030479226063932337,
1435
+ "learning_rate": 0.00011668804806080693,
1436
+ "loss": 1.7898,
1437
+ "step": 2030
1438
+ },
1439
+ {
1440
+ "epoch": 1.9053233714685969,
1441
+ "grad_norm": 0.030129902025534238,
1442
+ "learning_rate": 0.00011592574282918369,
1443
+ "loss": 1.7856,
1444
+ "step": 2040
1445
+ },
1446
+ {
1447
+ "epoch": 1.9146626196591174,
1448
+ "grad_norm": 0.027884976674153635,
1449
+ "learning_rate": 0.00011516248685587814,
1450
+ "loss": 1.7858,
1451
+ "step": 2050
1452
+ },
1453
+ {
1454
+ "epoch": 1.924001867849638,
1455
+ "grad_norm": 0.02925266011156687,
1456
+ "learning_rate": 0.00011439832570606586,
1457
+ "loss": 1.7876,
1458
+ "step": 2060
1459
+ },
1460
+ {
1461
+ "epoch": 1.9333411160401588,
1462
+ "grad_norm": 0.028472914828616754,
1463
+ "learning_rate": 0.00011363330499895997,
1464
+ "loss": 1.7834,
1465
+ "step": 2070
1466
+ },
1467
+ {
1468
+ "epoch": 1.9426803642306796,
1469
+ "grad_norm": 0.025877740032137875,
1470
+ "learning_rate": 0.00011286747040508789,
1471
+ "loss": 1.7955,
1472
+ "step": 2080
1473
+ },
1474
+ {
1475
+ "epoch": 1.9520196124212001,
1476
+ "grad_norm": 0.02605295620697312,
1477
+ "learning_rate": 0.0001121008676435648,
1478
+ "loss": 1.7877,
1479
+ "step": 2090
1480
+ },
1481
+ {
1482
+ "epoch": 1.9613588606117207,
1483
+ "grad_norm": 0.026887649929567867,
1484
+ "learning_rate": 0.00011133354247936423,
1485
+ "loss": 1.773,
1486
+ "step": 2100
1487
+ },
1488
+ {
1489
+ "epoch": 1.9706981088022415,
1490
+ "grad_norm": 0.027982045915154026,
1491
+ "learning_rate": 0.00011056554072058596,
1492
+ "loss": 1.7762,
1493
+ "step": 2110
1494
+ },
1495
+ {
1496
+ "epoch": 1.980037356992762,
1497
+ "grad_norm": 0.028077027059053006,
1498
+ "learning_rate": 0.0001097969082157215,
1499
+ "loss": 1.7963,
1500
+ "step": 2120
1501
+ },
1502
+ {
1503
+ "epoch": 1.9893766051832826,
1504
+ "grad_norm": 0.027877078975954036,
1505
+ "learning_rate": 0.00010902769085091686,
1506
+ "loss": 1.7787,
1507
+ "step": 2130
1508
+ },
1509
+ {
1510
+ "epoch": 1.9987158533738034,
1511
+ "grad_norm": 0.026120077388738373,
1512
+ "learning_rate": 0.00010825793454723325,
1513
+ "loss": 1.7842,
1514
+ "step": 2140
1515
+ },
1516
+ {
1517
+ "epoch": 2.0081718421667056,
1518
+ "grad_norm": 0.044810283079268924,
1519
+ "learning_rate": 0.00010748768525790569,
1520
+ "loss": 1.6591,
1521
+ "step": 2150
1522
+ },
1523
+ {
1524
+ "epoch": 2.0175110903572264,
1525
+ "grad_norm": 0.03431848280739808,
1526
+ "learning_rate": 0.00010671698896559968,
1527
+ "loss": 1.5599,
1528
+ "step": 2160
1529
+ },
1530
+ {
1531
+ "epoch": 2.0268503385477468,
1532
+ "grad_norm": 0.04234332973849956,
1533
+ "learning_rate": 0.00010594589167966606,
1534
+ "loss": 1.5494,
1535
+ "step": 2170
1536
+ },
1537
+ {
1538
+ "epoch": 2.0361895867382676,
1539
+ "grad_norm": 0.03260321438171042,
1540
+ "learning_rate": 0.00010517443943339438,
1541
+ "loss": 1.5473,
1542
+ "step": 2180
1543
+ },
1544
+ {
1545
+ "epoch": 2.0455288349287883,
1546
+ "grad_norm": 0.034116901745609114,
1547
+ "learning_rate": 0.00010440267828126478,
1548
+ "loss": 1.5464,
1549
+ "step": 2190
1550
+ },
1551
+ {
1552
+ "epoch": 2.0548680831193087,
1553
+ "grad_norm": 0.030992757239375807,
1554
+ "learning_rate": 0.00010363065429619858,
1555
+ "loss": 1.5514,
1556
+ "step": 2200
1557
+ },
1558
+ {
1559
+ "epoch": 2.0642073313098295,
1560
+ "grad_norm": 0.03365516197786113,
1561
+ "learning_rate": 0.0001028584135668077,
1562
+ "loss": 1.5493,
1563
+ "step": 2210
1564
+ },
1565
+ {
1566
+ "epoch": 2.0735465795003503,
1567
+ "grad_norm": 0.033293307482261586,
1568
+ "learning_rate": 0.00010208600219464355,
1569
+ "loss": 1.5426,
1570
+ "step": 2220
1571
+ },
1572
+ {
1573
+ "epoch": 2.082885827690871,
1574
+ "grad_norm": 0.03653097737467338,
1575
+ "learning_rate": 0.00010131346629144451,
1576
+ "loss": 1.5471,
1577
+ "step": 2230
1578
+ },
1579
+ {
1580
+ "epoch": 2.0922250758813914,
1581
+ "grad_norm": 0.03390291511697895,
1582
+ "learning_rate": 0.0001005408519763833,
1583
+ "loss": 1.5568,
1584
+ "step": 2240
1585
+ },
1586
+ {
1587
+ "epoch": 2.101564324071912,
1588
+ "grad_norm": 0.03192694661852283,
1589
+ "learning_rate": 9.976820537331374e-05,
1590
+ "loss": 1.5452,
1591
+ "step": 2250
1592
+ },
1593
+ {
1594
+ "epoch": 2.110903572262433,
1595
+ "grad_norm": 0.03561740193515691,
1596
+ "learning_rate": 9.899557260801707e-05,
1597
+ "loss": 1.546,
1598
+ "step": 2260
1599
+ },
1600
+ {
1601
+ "epoch": 2.1202428204529538,
1602
+ "grad_norm": 0.029803732953068658,
1603
+ "learning_rate": 9.822299980544862e-05,
1604
+ "loss": 1.5533,
1605
+ "step": 2270
1606
+ },
1607
+ {
1608
+ "epoch": 2.129582068643474,
1609
+ "grad_norm": 0.031232417271289125,
1610
+ "learning_rate": 9.745053308698392e-05,
1611
+ "loss": 1.5469,
1612
+ "step": 2280
1613
+ },
1614
+ {
1615
+ "epoch": 2.138921316833995,
1616
+ "grad_norm": 0.032434793780181034,
1617
+ "learning_rate": 9.667821856766548e-05,
1618
+ "loss": 1.5514,
1619
+ "step": 2290
1620
+ },
1621
+ {
1622
+ "epoch": 2.1482605650245157,
1623
+ "grad_norm": 0.03579370906405582,
1624
+ "learning_rate": 9.590610235344972e-05,
1625
+ "loss": 1.5577,
1626
+ "step": 2300
1627
+ },
1628
+ {
1629
+ "epoch": 2.157599813215036,
1630
+ "grad_norm": 0.029662202478648328,
1631
+ "learning_rate": 9.51342305384546e-05,
1632
+ "loss": 1.5543,
1633
+ "step": 2310
1634
+ },
1635
+ {
1636
+ "epoch": 2.166939061405557,
1637
+ "grad_norm": 0.03178715913934592,
1638
+ "learning_rate": 9.436264920220781e-05,
1639
+ "loss": 1.5579,
1640
+ "step": 2320
1641
+ },
1642
+ {
1643
+ "epoch": 2.1762783095960776,
1644
+ "grad_norm": 0.03384008887051677,
1645
+ "learning_rate": 9.359140440689601e-05,
1646
+ "loss": 1.5595,
1647
+ "step": 2330
1648
+ },
1649
+ {
1650
+ "epoch": 2.1856175577865984,
1651
+ "grad_norm": 0.03316450664408166,
1652
+ "learning_rate": 9.282054219461475e-05,
1653
+ "loss": 1.5556,
1654
+ "step": 2340
1655
+ },
1656
+ {
1657
+ "epoch": 2.1949568059771187,
1658
+ "grad_norm": 0.032176305552558876,
1659
+ "learning_rate": 9.205010858462007e-05,
1660
+ "loss": 1.5638,
1661
+ "step": 2350
1662
+ },
1663
+ {
1664
+ "epoch": 2.2042960541676395,
1665
+ "grad_norm": 0.031134335256756362,
1666
+ "learning_rate": 9.128014957058109e-05,
1667
+ "loss": 1.5629,
1668
+ "step": 2360
1669
+ },
1670
+ {
1671
+ "epoch": 2.2136353023581603,
1672
+ "grad_norm": 0.032205851810441756,
1673
+ "learning_rate": 9.051071111783436e-05,
1674
+ "loss": 1.5613,
1675
+ "step": 2370
1676
+ },
1677
+ {
1678
+ "epoch": 2.2229745505486807,
1679
+ "grad_norm": 0.029048245476020442,
1680
+ "learning_rate": 8.974183916063968e-05,
1681
+ "loss": 1.5594,
1682
+ "step": 2380
1683
+ },
1684
+ {
1685
+ "epoch": 2.2323137987392014,
1686
+ "grad_norm": 0.03183166054573621,
1687
+ "learning_rate": 8.897357959943795e-05,
1688
+ "loss": 1.5606,
1689
+ "step": 2390
1690
+ },
1691
+ {
1692
+ "epoch": 2.2416530469297222,
1693
+ "grad_norm": 0.032309922117136916,
1694
+ "learning_rate": 8.820597829811109e-05,
1695
+ "loss": 1.5524,
1696
+ "step": 2400
1697
+ },
1698
+ {
1699
+ "epoch": 2.250992295120243,
1700
+ "grad_norm": 0.03598922231958808,
1701
+ "learning_rate": 8.743908108124388e-05,
1702
+ "loss": 1.5604,
1703
+ "step": 2410
1704
+ },
1705
+ {
1706
+ "epoch": 2.2603315433107634,
1707
+ "grad_norm": 0.03046424735786346,
1708
+ "learning_rate": 8.667293373138835e-05,
1709
+ "loss": 1.5598,
1710
+ "step": 2420
1711
+ },
1712
+ {
1713
+ "epoch": 2.269670791501284,
1714
+ "grad_norm": 0.030995453538377543,
1715
+ "learning_rate": 8.59075819863307e-05,
1716
+ "loss": 1.5652,
1717
+ "step": 2430
1718
+ },
1719
+ {
1720
+ "epoch": 2.279010039691805,
1721
+ "grad_norm": 0.029309020623010097,
1722
+ "learning_rate": 8.514307153636077e-05,
1723
+ "loss": 1.5651,
1724
+ "step": 2440
1725
+ },
1726
+ {
1727
+ "epoch": 2.2883492878823253,
1728
+ "grad_norm": 0.03158721106736763,
1729
+ "learning_rate": 8.437944802154434e-05,
1730
+ "loss": 1.5581,
1731
+ "step": 2450
1732
+ },
1733
+ {
1734
+ "epoch": 2.297688536072846,
1735
+ "grad_norm": 0.03168229084049938,
1736
+ "learning_rate": 8.361675702899871e-05,
1737
+ "loss": 1.5671,
1738
+ "step": 2460
1739
+ },
1740
+ {
1741
+ "epoch": 2.307027784263367,
1742
+ "grad_norm": 0.031335222148495136,
1743
+ "learning_rate": 8.2855044090171e-05,
1744
+ "loss": 1.5675,
1745
+ "step": 2470
1746
+ },
1747
+ {
1748
+ "epoch": 2.3163670324538876,
1749
+ "grad_norm": 0.031073847325941303,
1750
+ "learning_rate": 8.209435467811998e-05,
1751
+ "loss": 1.5624,
1752
+ "step": 2480
1753
+ },
1754
+ {
1755
+ "epoch": 2.325706280644408,
1756
+ "grad_norm": 0.030099100631045844,
1757
+ "learning_rate": 8.133473420480161e-05,
1758
+ "loss": 1.5606,
1759
+ "step": 2490
1760
+ },
1761
+ {
1762
+ "epoch": 2.3350455288349288,
1763
+ "grad_norm": 0.034147632950361176,
1764
+ "learning_rate": 8.057622801835788e-05,
1765
+ "loss": 1.5703,
1766
+ "step": 2500
1767
+ },
1768
+ {
1769
+ "epoch": 2.3443847770254496,
1770
+ "grad_norm": 0.03051580784550685,
1771
+ "learning_rate": 7.981888140040955e-05,
1772
+ "loss": 1.5731,
1773
+ "step": 2510
1774
+ },
1775
+ {
1776
+ "epoch": 2.3537240252159704,
1777
+ "grad_norm": 0.03068917065832597,
1778
+ "learning_rate": 7.9062739563353e-05,
1779
+ "loss": 1.5723,
1780
+ "step": 2520
1781
+ },
1782
+ {
1783
+ "epoch": 2.3630632734064907,
1784
+ "grad_norm": 0.02899547641705554,
1785
+ "learning_rate": 7.830784764766118e-05,
1786
+ "loss": 1.5691,
1787
+ "step": 2530
1788
+ },
1789
+ {
1790
+ "epoch": 2.3724025215970115,
1791
+ "grad_norm": 0.030965383166701443,
1792
+ "learning_rate": 7.755425071918858e-05,
1793
+ "loss": 1.5627,
1794
+ "step": 2540
1795
+ },
1796
+ {
1797
+ "epoch": 2.3817417697875323,
1798
+ "grad_norm": 0.03252440018336625,
1799
+ "learning_rate": 7.680199376648108e-05,
1800
+ "loss": 1.5536,
1801
+ "step": 2550
1802
+ },
1803
+ {
1804
+ "epoch": 2.3910810179780526,
1805
+ "grad_norm": 0.031720485449340044,
1806
+ "learning_rate": 7.605112169809008e-05,
1807
+ "loss": 1.5617,
1808
+ "step": 2560
1809
+ },
1810
+ {
1811
+ "epoch": 2.4004202661685734,
1812
+ "grad_norm": 0.031796658969132544,
1813
+ "learning_rate": 7.530167933989161e-05,
1814
+ "loss": 1.5595,
1815
+ "step": 2570
1816
+ },
1817
+ {
1818
+ "epoch": 2.409759514359094,
1819
+ "grad_norm": 0.03218288097429844,
1820
+ "learning_rate": 7.45537114324102e-05,
1821
+ "loss": 1.5628,
1822
+ "step": 2580
1823
+ },
1824
+ {
1825
+ "epoch": 2.4190987625496145,
1826
+ "grad_norm": 0.0305713183075559,
1827
+ "learning_rate": 7.380726262814814e-05,
1828
+ "loss": 1.5717,
1829
+ "step": 2590
1830
+ },
1831
+ {
1832
+ "epoch": 2.4284380107401353,
1833
+ "grad_norm": 0.06879342166341705,
1834
+ "learning_rate": 7.30623774889195e-05,
1835
+ "loss": 1.5726,
1836
+ "step": 2600
1837
+ },
1838
+ {
1839
+ "epoch": 2.437777258930656,
1840
+ "grad_norm": 0.04101428600237338,
1841
+ "learning_rate": 7.231910048319011e-05,
1842
+ "loss": 1.5679,
1843
+ "step": 2610
1844
+ },
1845
+ {
1846
+ "epoch": 2.447116507121177,
1847
+ "grad_norm": 0.031060002638443395,
1848
+ "learning_rate": 7.157747598342274e-05,
1849
+ "loss": 1.562,
1850
+ "step": 2620
1851
+ },
1852
+ {
1853
+ "epoch": 2.4564557553116972,
1854
+ "grad_norm": 0.032302829437386466,
1855
+ "learning_rate": 7.083754826342816e-05,
1856
+ "loss": 1.5767,
1857
+ "step": 2630
1858
+ },
1859
+ {
1860
+ "epoch": 2.465795003502218,
1861
+ "grad_norm": 0.03111462744196413,
1862
+ "learning_rate": 7.009936149572205e-05,
1863
+ "loss": 1.5672,
1864
+ "step": 2640
1865
+ },
1866
+ {
1867
+ "epoch": 2.475134251692739,
1868
+ "grad_norm": 0.031134083521743777,
1869
+ "learning_rate": 6.936295974888807e-05,
1870
+ "loss": 1.5665,
1871
+ "step": 2650
1872
+ },
1873
+ {
1874
+ "epoch": 2.4844734998832596,
1875
+ "grad_norm": 0.030961556373721985,
1876
+ "learning_rate": 6.862838698494693e-05,
1877
+ "loss": 1.5608,
1878
+ "step": 2660
1879
+ },
1880
+ {
1881
+ "epoch": 2.49381274807378,
1882
+ "grad_norm": 0.03168121700432082,
1883
+ "learning_rate": 6.789568705673183e-05,
1884
+ "loss": 1.566,
1885
+ "step": 2670
1886
+ },
1887
+ {
1888
+ "epoch": 2.5031519962643007,
1889
+ "grad_norm": 0.030850372541726772,
1890
+ "learning_rate": 6.716490370527081e-05,
1891
+ "loss": 1.5651,
1892
+ "step": 2680
1893
+ },
1894
+ {
1895
+ "epoch": 2.5124912444548215,
1896
+ "grad_norm": 0.03076635908430861,
1897
+ "learning_rate": 6.643608055717519e-05,
1898
+ "loss": 1.5596,
1899
+ "step": 2690
1900
+ },
1901
+ {
1902
+ "epoch": 2.521830492645342,
1903
+ "grad_norm": 0.031897253741779714,
1904
+ "learning_rate": 6.570926112203528e-05,
1905
+ "loss": 1.5716,
1906
+ "step": 2700
1907
+ },
1908
+ {
1909
+ "epoch": 2.5311697408358627,
1910
+ "grad_norm": 0.03085546721246857,
1911
+ "learning_rate": 6.498448878982291e-05,
1912
+ "loss": 1.5647,
1913
+ "step": 2710
1914
+ },
1915
+ {
1916
+ "epoch": 2.5405089890263834,
1917
+ "grad_norm": 0.03127518794548787,
1918
+ "learning_rate": 6.426180682830107e-05,
1919
+ "loss": 1.5573,
1920
+ "step": 2720
1921
+ },
1922
+ {
1923
+ "epoch": 2.549848237216904,
1924
+ "grad_norm": 0.03196649247686066,
1925
+ "learning_rate": 6.354125838044098e-05,
1926
+ "loss": 1.5597,
1927
+ "step": 2730
1928
+ },
1929
+ {
1930
+ "epoch": 2.5591874854074246,
1931
+ "grad_norm": 0.030359755432035333,
1932
+ "learning_rate": 6.282288646184638e-05,
1933
+ "loss": 1.5625,
1934
+ "step": 2740
1935
+ },
1936
+ {
1937
+ "epoch": 2.5685267335979454,
1938
+ "grad_norm": 0.03030640438940187,
1939
+ "learning_rate": 6.210673395818571e-05,
1940
+ "loss": 1.5717,
1941
+ "step": 2750
1942
+ },
1943
+ {
1944
+ "epoch": 2.577865981788466,
1945
+ "grad_norm": 0.032197470232298186,
1946
+ "learning_rate": 6.139284362263185e-05,
1947
+ "loss": 1.5663,
1948
+ "step": 2760
1949
+ },
1950
+ {
1951
+ "epoch": 2.587205229978987,
1952
+ "grad_norm": 0.030983733397891462,
1953
+ "learning_rate": 6.0681258073309756e-05,
1954
+ "loss": 1.5657,
1955
+ "step": 2770
1956
+ },
1957
+ {
1958
+ "epoch": 2.5965444781695073,
1959
+ "grad_norm": 0.030427577702286164,
1960
+ "learning_rate": 5.9972019790752385e-05,
1961
+ "loss": 1.5708,
1962
+ "step": 2780
1963
+ },
1964
+ {
1965
+ "epoch": 2.605883726360028,
1966
+ "grad_norm": 0.032761226318855745,
1967
+ "learning_rate": 5.9265171115364495e-05,
1968
+ "loss": 1.5641,
1969
+ "step": 2790
1970
+ },
1971
+ {
1972
+ "epoch": 2.615222974550549,
1973
+ "grad_norm": 0.0317533648622182,
1974
+ "learning_rate": 5.856075424489511e-05,
1975
+ "loss": 1.5613,
1976
+ "step": 2800
1977
+ },
1978
+ {
1979
+ "epoch": 2.624562222741069,
1980
+ "grad_norm": 0.03251887796623927,
1981
+ "learning_rate": 5.785881123191834e-05,
1982
+ "loss": 1.5644,
1983
+ "step": 2810
1984
+ },
1985
+ {
1986
+ "epoch": 2.63390147093159,
1987
+ "grad_norm": 0.033109556138937665,
1988
+ "learning_rate": 5.7159383981322866e-05,
1989
+ "loss": 1.5613,
1990
+ "step": 2820
1991
+ },
1992
+ {
1993
+ "epoch": 2.643240719122111,
1994
+ "grad_norm": 0.03190494841434546,
1995
+ "learning_rate": 5.646251424781044e-05,
1996
+ "loss": 1.5597,
1997
+ "step": 2830
1998
+ },
1999
+ {
2000
+ "epoch": 2.652579967312631,
2001
+ "grad_norm": 0.03131425467271855,
2002
+ "learning_rate": 5.576824363340293e-05,
2003
+ "loss": 1.5644,
2004
+ "step": 2840
2005
+ },
2006
+ {
2007
+ "epoch": 2.661919215503152,
2008
+ "grad_norm": 0.032580122114687284,
2009
+ "learning_rate": 5.507661358495904e-05,
2010
+ "loss": 1.5651,
2011
+ "step": 2850
2012
+ },
2013
+ {
2014
+ "epoch": 2.6712584636936727,
2015
+ "grad_norm": 0.031118294785578867,
2016
+ "learning_rate": 5.4387665391699814e-05,
2017
+ "loss": 1.5595,
2018
+ "step": 2860
2019
+ },
2020
+ {
2021
+ "epoch": 2.680597711884193,
2022
+ "grad_norm": 0.030454480461742643,
2023
+ "learning_rate": 5.370144018274371e-05,
2024
+ "loss": 1.5607,
2025
+ "step": 2870
2026
+ },
2027
+ {
2028
+ "epoch": 2.689936960074714,
2029
+ "grad_norm": 0.030828671799046907,
2030
+ "learning_rate": 5.301797892465148e-05,
2031
+ "loss": 1.5587,
2032
+ "step": 2880
2033
+ },
2034
+ {
2035
+ "epoch": 2.6992762082652346,
2036
+ "grad_norm": 0.030541588338347705,
2037
+ "learning_rate": 5.2337322418980204e-05,
2038
+ "loss": 1.5698,
2039
+ "step": 2890
2040
+ },
2041
+ {
2042
+ "epoch": 2.7086154564557554,
2043
+ "grad_norm": 0.030634684731728472,
2044
+ "learning_rate": 5.16595112998477e-05,
2045
+ "loss": 1.5628,
2046
+ "step": 2900
2047
+ },
2048
+ {
2049
+ "epoch": 2.717954704646276,
2050
+ "grad_norm": 0.03045168911848818,
2051
+ "learning_rate": 5.098458603150691e-05,
2052
+ "loss": 1.5544,
2053
+ "step": 2910
2054
+ },
2055
+ {
2056
+ "epoch": 2.7272939528367965,
2057
+ "grad_norm": 0.029966073421542574,
2058
+ "learning_rate": 5.0312586905929816e-05,
2059
+ "loss": 1.557,
2060
+ "step": 2920
2061
+ },
2062
+ {
2063
+ "epoch": 2.7366332010273173,
2064
+ "grad_norm": 0.031203173596988765,
2065
+ "learning_rate": 4.964355404040232e-05,
2066
+ "loss": 1.5571,
2067
+ "step": 2930
2068
+ },
2069
+ {
2070
+ "epoch": 2.745972449217838,
2071
+ "grad_norm": 0.02933060802902336,
2072
+ "learning_rate": 4.897752737512944e-05,
2073
+ "loss": 1.5518,
2074
+ "step": 2940
2075
+ },
2076
+ {
2077
+ "epoch": 2.7553116974083585,
2078
+ "grad_norm": 0.03039237943996916,
2079
+ "learning_rate": 4.8314546670850594e-05,
2080
+ "loss": 1.5682,
2081
+ "step": 2950
2082
+ },
2083
+ {
2084
+ "epoch": 2.7646509455988793,
2085
+ "grad_norm": 0.03077504425768828,
2086
+ "learning_rate": 4.765465150646633e-05,
2087
+ "loss": 1.5618,
2088
+ "step": 2960
2089
+ },
2090
+ {
2091
+ "epoch": 2.7739901937894,
2092
+ "grad_norm": 0.02987361489256037,
2093
+ "learning_rate": 4.699788127667517e-05,
2094
+ "loss": 1.5657,
2095
+ "step": 2970
2096
+ },
2097
+ {
2098
+ "epoch": 2.7833294419799204,
2099
+ "grad_norm": 0.030823634404763923,
2100
+ "learning_rate": 4.634427518962209e-05,
2101
+ "loss": 1.5611,
2102
+ "step": 2980
2103
+ },
2104
+ {
2105
+ "epoch": 2.792668690170441,
2106
+ "grad_norm": 0.031136974955910973,
2107
+ "learning_rate": 4.569387226455776e-05,
2108
+ "loss": 1.558,
2109
+ "step": 2990
2110
+ },
2111
+ {
2112
+ "epoch": 2.802007938360962,
2113
+ "grad_norm": 0.032345263568839946,
2114
+ "learning_rate": 4.5046711329508997e-05,
2115
+ "loss": 1.5567,
2116
+ "step": 3000
2117
+ },
2118
+ {
2119
+ "epoch": 2.8113471865514827,
2120
+ "grad_norm": 0.03075590840408306,
2121
+ "learning_rate": 4.440283101896112e-05,
2122
+ "loss": 1.5509,
2123
+ "step": 3010
2124
+ },
2125
+ {
2126
+ "epoch": 2.8206864347420035,
2127
+ "grad_norm": 0.03212380955577142,
2128
+ "learning_rate": 4.376226977155118e-05,
2129
+ "loss": 1.5549,
2130
+ "step": 3020
2131
+ },
2132
+ {
2133
+ "epoch": 2.830025682932524,
2134
+ "grad_norm": 0.030448994102361984,
2135
+ "learning_rate": 4.3125065827773535e-05,
2136
+ "loss": 1.5582,
2137
+ "step": 3030
2138
+ },
2139
+ {
2140
+ "epoch": 2.8393649311230447,
2141
+ "grad_norm": 0.02952309346631166,
2142
+ "learning_rate": 4.249125722769679e-05,
2143
+ "loss": 1.5621,
2144
+ "step": 3040
2145
+ },
2146
+ {
2147
+ "epoch": 2.8487041793135655,
2148
+ "grad_norm": 0.029801760584304334,
2149
+ "learning_rate": 4.18608818086928e-05,
2150
+ "loss": 1.5566,
2151
+ "step": 3050
2152
+ },
2153
+ {
2154
+ "epoch": 2.858043427504086,
2155
+ "grad_norm": 0.029682850572275397,
2156
+ "learning_rate": 4.12339772031781e-05,
2157
+ "loss": 1.563,
2158
+ "step": 3060
2159
+ },
2160
+ {
2161
+ "epoch": 2.8673826756946066,
2162
+ "grad_norm": 0.0295800536252474,
2163
+ "learning_rate": 4.061058083636702e-05,
2164
+ "loss": 1.5478,
2165
+ "step": 3070
2166
+ },
2167
+ {
2168
+ "epoch": 2.8767219238851274,
2169
+ "grad_norm": 0.029683305961870896,
2170
+ "learning_rate": 3.999072992403756e-05,
2171
+ "loss": 1.5628,
2172
+ "step": 3080
2173
+ },
2174
+ {
2175
+ "epoch": 2.8860611720756477,
2176
+ "grad_norm": 0.029644699672258072,
2177
+ "learning_rate": 3.93744614703098e-05,
2178
+ "loss": 1.5541,
2179
+ "step": 3090
2180
+ },
2181
+ {
2182
+ "epoch": 2.8954004202661685,
2183
+ "grad_norm": 0.030518095362273494,
2184
+ "learning_rate": 3.876181226543668e-05,
2185
+ "loss": 1.5702,
2186
+ "step": 3100
2187
+ },
2188
+ {
2189
+ "epoch": 2.9047396684566893,
2190
+ "grad_norm": 0.030536745251161155,
2191
+ "learning_rate": 3.81528188836076e-05,
2192
+ "loss": 1.5551,
2193
+ "step": 3110
2194
+ },
2195
+ {
2196
+ "epoch": 2.9140789166472096,
2197
+ "grad_norm": 0.030847847626104093,
2198
+ "learning_rate": 3.7547517680765244e-05,
2199
+ "loss": 1.5595,
2200
+ "step": 3120
2201
+ },
2202
+ {
2203
+ "epoch": 2.9234181648377304,
2204
+ "grad_norm": 0.029492648716320746,
2205
+ "learning_rate": 3.6945944792434906e-05,
2206
+ "loss": 1.5536,
2207
+ "step": 3130
2208
+ },
2209
+ {
2210
+ "epoch": 2.932757413028251,
2211
+ "grad_norm": 0.03032565633382453,
2212
+ "learning_rate": 3.634813613156753e-05,
2213
+ "loss": 1.5545,
2214
+ "step": 3140
2215
+ },
2216
+ {
2217
+ "epoch": 2.942096661218772,
2218
+ "grad_norm": 0.031152780923178743,
2219
+ "learning_rate": 3.5754127386395496e-05,
2220
+ "loss": 1.5553,
2221
+ "step": 3150
2222
+ },
2223
+ {
2224
+ "epoch": 2.951435909409293,
2225
+ "grad_norm": 0.03107457614016718,
2226
+ "learning_rate": 3.5163954018302313e-05,
2227
+ "loss": 1.5612,
2228
+ "step": 3160
2229
+ },
2230
+ {
2231
+ "epoch": 2.960775157599813,
2232
+ "grad_norm": 0.03104057970445527,
2233
+ "learning_rate": 3.4577651259705545e-05,
2234
+ "loss": 1.5461,
2235
+ "step": 3170
2236
+ },
2237
+ {
2238
+ "epoch": 2.970114405790334,
2239
+ "grad_norm": 0.03135460216536421,
2240
+ "learning_rate": 3.399525411195339e-05,
2241
+ "loss": 1.556,
2242
+ "step": 3180
2243
+ },
2244
+ {
2245
+ "epoch": 2.9794536539808547,
2246
+ "grad_norm": 0.03023549504443143,
2247
+ "learning_rate": 3.3416797343235375e-05,
2248
+ "loss": 1.5513,
2249
+ "step": 3190
2250
+ },
2251
+ {
2252
+ "epoch": 2.988792902171375,
2253
+ "grad_norm": 0.030100263338637512,
2254
+ "learning_rate": 3.284231548650649e-05,
2255
+ "loss": 1.5646,
2256
+ "step": 3200
2257
+ },
2258
+ {
2259
+ "epoch": 2.998132150361896,
2260
+ "grad_norm": 0.03034217414728692,
2261
+ "learning_rate": 3.227184283742591e-05,
2262
+ "loss": 1.5521,
2263
+ "step": 3210
2264
+ },
2265
+ {
2266
+ "epoch": 3.007588139154798,
2267
+ "grad_norm": 0.06632657839957506,
2268
+ "learning_rate": 3.17054134523093e-05,
2269
+ "loss": 1.3861,
2270
+ "step": 3220
2271
+ },
2272
+ {
2273
+ "epoch": 3.016927387345319,
2274
+ "grad_norm": 0.04494797332190053,
2275
+ "learning_rate": 3.114306114609594e-05,
2276
+ "loss": 1.2688,
2277
+ "step": 3230
2278
+ },
2279
+ {
2280
+ "epoch": 3.026266635535839,
2281
+ "grad_norm": 0.04243454415323923,
2282
+ "learning_rate": 3.058481949032998e-05,
2283
+ "loss": 1.2568,
2284
+ "step": 3240
2285
+ },
2286
+ {
2287
+ "epoch": 3.03560588372636,
2288
+ "grad_norm": 0.037189416438265135,
2289
+ "learning_rate": 3.003072181115615e-05,
2290
+ "loss": 1.2674,
2291
+ "step": 3250
2292
+ },
2293
+ {
2294
+ "epoch": 3.0449451319168808,
2295
+ "grad_norm": 0.036342648540388975,
2296
+ "learning_rate": 2.9480801187330308e-05,
2297
+ "loss": 1.2553,
2298
+ "step": 3260
2299
+ },
2300
+ {
2301
+ "epoch": 3.0542843801074016,
2302
+ "grad_norm": 0.03758108482902846,
2303
+ "learning_rate": 2.8935090448244838e-05,
2304
+ "loss": 1.2587,
2305
+ "step": 3270
2306
+ },
2307
+ {
2308
+ "epoch": 3.063623628297922,
2309
+ "grad_norm": 0.03779156244551835,
2310
+ "learning_rate": 2.8393622171968494e-05,
2311
+ "loss": 1.2615,
2312
+ "step": 3280
2313
+ },
2314
+ {
2315
+ "epoch": 3.0729628764884427,
2316
+ "grad_norm": 0.0354713302142897,
2317
+ "learning_rate": 2.7856428683301827e-05,
2318
+ "loss": 1.2552,
2319
+ "step": 3290
2320
+ },
2321
+ {
2322
+ "epoch": 3.0823021246789635,
2323
+ "grad_norm": 0.03861733806219831,
2324
+ "learning_rate": 2.7323542051847305e-05,
2325
+ "loss": 1.2591,
2326
+ "step": 3300
2327
+ },
2328
+ {
2329
+ "epoch": 3.091641372869484,
2330
+ "grad_norm": 0.03927047617762108,
2331
+ "learning_rate": 2.6794994090094748e-05,
2332
+ "loss": 1.2568,
2333
+ "step": 3310
2334
+ },
2335
+ {
2336
+ "epoch": 3.1009806210600046,
2337
+ "grad_norm": 0.03904084831655504,
2338
+ "learning_rate": 2.6270816351522352e-05,
2339
+ "loss": 1.2548,
2340
+ "step": 3320
2341
+ },
2342
+ {
2343
+ "epoch": 3.1103198692505254,
2344
+ "grad_norm": 0.037088038012932166,
2345
+ "learning_rate": 2.57510401287128e-05,
2346
+ "loss": 1.2535,
2347
+ "step": 3330
2348
+ },
2349
+ {
2350
+ "epoch": 3.119659117441046,
2351
+ "grad_norm": 0.039689764947511294,
2352
+ "learning_rate": 2.5235696451485334e-05,
2353
+ "loss": 1.2527,
2354
+ "step": 3340
2355
+ },
2356
+ {
2357
+ "epoch": 3.1289983656315665,
2358
+ "grad_norm": 0.03823754136616741,
2359
+ "learning_rate": 2.4724816085043122e-05,
2360
+ "loss": 1.2614,
2361
+ "step": 3350
2362
+ },
2363
+ {
2364
+ "epoch": 3.1383376138220873,
2365
+ "grad_norm": 0.03869724476981111,
2366
+ "learning_rate": 2.421842952813683e-05,
2367
+ "loss": 1.2539,
2368
+ "step": 3360
2369
+ },
2370
+ {
2371
+ "epoch": 3.147676862012608,
2372
+ "grad_norm": 0.03803608771547874,
2373
+ "learning_rate": 2.371656701124376e-05,
2374
+ "loss": 1.2491,
2375
+ "step": 3370
2376
+ },
2377
+ {
2378
+ "epoch": 3.1570161102031284,
2379
+ "grad_norm": 0.03931544384220963,
2380
+ "learning_rate": 2.321925849476314e-05,
2381
+ "loss": 1.2505,
2382
+ "step": 3380
2383
+ },
2384
+ {
2385
+ "epoch": 3.1663553583936492,
2386
+ "grad_norm": 0.039905322735836295,
2387
+ "learning_rate": 2.2726533667227623e-05,
2388
+ "loss": 1.2585,
2389
+ "step": 3390
2390
+ },
2391
+ {
2392
+ "epoch": 3.17569460658417,
2393
+ "grad_norm": 0.03812720334866993,
2394
+ "learning_rate": 2.223842194353084e-05,
2395
+ "loss": 1.2589,
2396
+ "step": 3400
2397
+ },
2398
+ {
2399
+ "epoch": 3.185033854774691,
2400
+ "grad_norm": 0.03970128613042995,
2401
+ "learning_rate": 2.1754952463171385e-05,
2402
+ "loss": 1.2547,
2403
+ "step": 3410
2404
+ },
2405
+ {
2406
+ "epoch": 3.194373102965211,
2407
+ "grad_norm": 0.03968022448776454,
2408
+ "learning_rate": 2.1276154088513322e-05,
2409
+ "loss": 1.256,
2410
+ "step": 3420
2411
+ },
2412
+ {
2413
+ "epoch": 3.203712351155732,
2414
+ "grad_norm": 0.038047431666726306,
2415
+ "learning_rate": 2.080205540306307e-05,
2416
+ "loss": 1.2618,
2417
+ "step": 3430
2418
+ },
2419
+ {
2420
+ "epoch": 3.2130515993462527,
2421
+ "grad_norm": 0.03796892071652476,
2422
+ "learning_rate": 2.0332684709763037e-05,
2423
+ "loss": 1.258,
2424
+ "step": 3440
2425
+ },
2426
+ {
2427
+ "epoch": 3.222390847536773,
2428
+ "grad_norm": 0.03743002539050354,
2429
+ "learning_rate": 1.986807002930192e-05,
2430
+ "loss": 1.2625,
2431
+ "step": 3450
2432
+ },
2433
+ {
2434
+ "epoch": 3.231730095727294,
2435
+ "grad_norm": 0.03845080735099829,
2436
+ "learning_rate": 1.940823909844198e-05,
2437
+ "loss": 1.2583,
2438
+ "step": 3460
2439
+ },
2440
+ {
2441
+ "epoch": 3.2410693439178146,
2442
+ "grad_norm": 0.0384612122659626,
2443
+ "learning_rate": 1.895321936836324e-05,
2444
+ "loss": 1.2504,
2445
+ "step": 3470
2446
+ },
2447
+ {
2448
+ "epoch": 3.2504085921083354,
2449
+ "grad_norm": 0.03770473444960908,
2450
+ "learning_rate": 1.8503038003024564e-05,
2451
+ "loss": 1.2691,
2452
+ "step": 3480
2453
+ },
2454
+ {
2455
+ "epoch": 3.259747840298856,
2456
+ "grad_norm": 0.0368880551504251,
2457
+ "learning_rate": 1.8057721877542135e-05,
2458
+ "loss": 1.2562,
2459
+ "step": 3490
2460
+ },
2461
+ {
2462
+ "epoch": 3.2690870884893766,
2463
+ "grad_norm": 0.035849085577933516,
2464
+ "learning_rate": 1.7617297576585024e-05,
2465
+ "loss": 1.2557,
2466
+ "step": 3500
2467
+ },
2468
+ {
2469
+ "epoch": 3.2784263366798974,
2470
+ "grad_norm": 0.03880537892593414,
2471
+ "learning_rate": 1.7181791392788016e-05,
2472
+ "loss": 1.2606,
2473
+ "step": 3510
2474
+ },
2475
+ {
2476
+ "epoch": 3.287765584870418,
2477
+ "grad_norm": 0.036791883288228966,
2478
+ "learning_rate": 1.6751229325182195e-05,
2479
+ "loss": 1.2633,
2480
+ "step": 3520
2481
+ },
2482
+ {
2483
+ "epoch": 3.2971048330609385,
2484
+ "grad_norm": 0.03888037048657713,
2485
+ "learning_rate": 1.6325637077642597e-05,
2486
+ "loss": 1.2517,
2487
+ "step": 3530
2488
+ },
2489
+ {
2490
+ "epoch": 3.3064440812514593,
2491
+ "grad_norm": 0.03624411339308035,
2492
+ "learning_rate": 1.590504005735396e-05,
2493
+ "loss": 1.2601,
2494
+ "step": 3540
2495
+ },
2496
+ {
2497
+ "epoch": 3.31578332944198,
2498
+ "grad_norm": 0.037212088295175624,
2499
+ "learning_rate": 1.5489463373293766e-05,
2500
+ "loss": 1.2572,
2501
+ "step": 3550
2502
+ },
2503
+ {
2504
+ "epoch": 3.3251225776325004,
2505
+ "grad_norm": 0.037139053328387565,
2506
+ "learning_rate": 1.5078931834733413e-05,
2507
+ "loss": 1.2587,
2508
+ "step": 3560
2509
+ },
2510
+ {
2511
+ "epoch": 3.334461825823021,
2512
+ "grad_norm": 0.038853212387254546,
2513
+ "learning_rate": 1.467346994975708e-05,
2514
+ "loss": 1.2598,
2515
+ "step": 3570
2516
+ },
2517
+ {
2518
+ "epoch": 3.343801074013542,
2519
+ "grad_norm": 0.038068637710771305,
2520
+ "learning_rate": 1.4273101923798593e-05,
2521
+ "loss": 1.2511,
2522
+ "step": 3580
2523
+ },
2524
+ {
2525
+ "epoch": 3.3531403222040623,
2526
+ "grad_norm": 0.03812184703208946,
2527
+ "learning_rate": 1.3877851658196473e-05,
2528
+ "loss": 1.264,
2529
+ "step": 3590
2530
+ },
2531
+ {
2532
+ "epoch": 3.362479570394583,
2533
+ "grad_norm": 0.03544270078567587,
2534
+ "learning_rate": 1.3487742748767052e-05,
2535
+ "loss": 1.2566,
2536
+ "step": 3600
2537
+ },
2538
+ {
2539
+ "epoch": 3.371818818585104,
2540
+ "grad_norm": 0.03729183894507396,
2541
+ "learning_rate": 1.3102798484395761e-05,
2542
+ "loss": 1.2554,
2543
+ "step": 3610
2544
+ },
2545
+ {
2546
+ "epoch": 3.3811580667756247,
2547
+ "grad_norm": 0.03769688061241049,
2548
+ "learning_rate": 1.2723041845646999e-05,
2549
+ "loss": 1.2424,
2550
+ "step": 3620
2551
+ },
2552
+ {
2553
+ "epoch": 3.390497314966145,
2554
+ "grad_norm": 0.03751980172858499,
2555
+ "learning_rate": 1.2348495503391999e-05,
2556
+ "loss": 1.2601,
2557
+ "step": 3630
2558
+ },
2559
+ {
2560
+ "epoch": 3.399836563156666,
2561
+ "grad_norm": 0.03831727516561825,
2562
+ "learning_rate": 1.1979181817455543e-05,
2563
+ "loss": 1.2545,
2564
+ "step": 3640
2565
+ },
2566
+ {
2567
+ "epoch": 3.4091758113471866,
2568
+ "grad_norm": 0.03929713475600568,
2569
+ "learning_rate": 1.1615122835281156e-05,
2570
+ "loss": 1.2608,
2571
+ "step": 3650
2572
+ },
2573
+ {
2574
+ "epoch": 3.4185150595377074,
2575
+ "grad_norm": 0.04026553291819152,
2576
+ "learning_rate": 1.1256340290614787e-05,
2577
+ "loss": 1.2565,
2578
+ "step": 3660
2579
+ },
2580
+ {
2581
+ "epoch": 3.4278543077282277,
2582
+ "grad_norm": 0.03669233459600138,
2583
+ "learning_rate": 1.0902855602207451e-05,
2584
+ "loss": 1.2512,
2585
+ "step": 3670
2586
+ },
2587
+ {
2588
+ "epoch": 3.4371935559187485,
2589
+ "grad_norm": 0.036514113026692024,
2590
+ "learning_rate": 1.0554689872536515e-05,
2591
+ "loss": 1.2522,
2592
+ "step": 3680
2593
+ },
2594
+ {
2595
+ "epoch": 3.4465328041092693,
2596
+ "grad_norm": 0.040574229602467475,
2597
+ "learning_rate": 1.0211863886545859e-05,
2598
+ "loss": 1.2653,
2599
+ "step": 3690
2600
+ },
2601
+ {
2602
+ "epoch": 3.4558720522997897,
2603
+ "grad_norm": 0.037888410230506514,
2604
+ "learning_rate": 9.87439811040518e-06,
2605
+ "loss": 1.2553,
2606
+ "step": 3700
2607
+ },
2608
+ {
2609
+ "epoch": 3.4652113004903105,
2610
+ "grad_norm": 0.037651161268116955,
2611
+ "learning_rate": 9.542312690288036e-06,
2612
+ "loss": 1.2513,
2613
+ "step": 3710
2614
+ },
2615
+ {
2616
+ "epoch": 3.4745505486808312,
2617
+ "grad_norm": 0.03597355201152629,
2618
+ "learning_rate": 9.215627451169317e-06,
2619
+ "loss": 1.2545,
2620
+ "step": 3720
2621
+ },
2622
+ {
2623
+ "epoch": 3.483889796871352,
2624
+ "grad_norm": 0.03806899793632852,
2625
+ "learning_rate": 8.894361895641567e-06,
2626
+ "loss": 1.2495,
2627
+ "step": 3730
2628
+ },
2629
+ {
2630
+ "epoch": 3.4932290450618724,
2631
+ "grad_norm": 0.036576666432106365,
2632
+ "learning_rate": 8.578535202750792e-06,
2633
+ "loss": 1.258,
2634
+ "step": 3740
2635
+ },
2636
+ {
2637
+ "epoch": 3.502568293252393,
2638
+ "grad_norm": 0.03719904682167482,
2639
+ "learning_rate": 8.26816622685157e-06,
2640
+ "loss": 1.2574,
2641
+ "step": 3750
2642
+ },
2643
+ {
2644
+ "epoch": 3.511907541442914,
2645
+ "grad_norm": 0.035727663511753396,
2646
+ "learning_rate": 7.963273496481294e-06,
2647
+ "loss": 1.2605,
2648
+ "step": 3760
2649
+ },
2650
+ {
2651
+ "epoch": 3.5212467896334347,
2652
+ "grad_norm": 0.036155845802186545,
2653
+ "learning_rate": 7.663875213254246e-06,
2654
+ "loss": 1.2607,
2655
+ "step": 3770
2656
+ },
2657
+ {
2658
+ "epoch": 3.530586037823955,
2659
+ "grad_norm": 0.03686419389413766,
2660
+ "learning_rate": 7.369989250774811e-06,
2661
+ "loss": 1.2566,
2662
+ "step": 3780
2663
+ },
2664
+ {
2665
+ "epoch": 3.539925286014476,
2666
+ "grad_norm": 0.03403684597854,
2667
+ "learning_rate": 7.081633153570577e-06,
2668
+ "loss": 1.2494,
2669
+ "step": 3790
2670
+ },
2671
+ {
2672
+ "epoch": 3.5492645342049967,
2673
+ "grad_norm": 0.039208776340876904,
2674
+ "learning_rate": 6.7988241360449126e-06,
2675
+ "loss": 1.2578,
2676
+ "step": 3800
2677
+ },
2678
+ {
2679
+ "epoch": 3.558603782395517,
2680
+ "grad_norm": 0.036990149740882036,
2681
+ "learning_rate": 6.521579081449325e-06,
2682
+ "loss": 1.2557,
2683
+ "step": 3810
2684
+ },
2685
+ {
2686
+ "epoch": 3.567943030586038,
2687
+ "grad_norm": 0.037043700320972345,
2688
+ "learning_rate": 6.249914540875446e-06,
2689
+ "loss": 1.2466,
2690
+ "step": 3820
2691
+ },
2692
+ {
2693
+ "epoch": 3.5772822787765586,
2694
+ "grad_norm": 0.035841902311675944,
2695
+ "learning_rate": 5.983846732267118e-06,
2696
+ "loss": 1.2562,
2697
+ "step": 3830
2698
+ },
2699
+ {
2700
+ "epoch": 3.586621526967079,
2701
+ "grad_norm": 0.038201812926149784,
2702
+ "learning_rate": 5.723391539452061e-06,
2703
+ "loss": 1.2503,
2704
+ "step": 3840
2705
+ },
2706
+ {
2707
+ "epoch": 3.5959607751575997,
2708
+ "grad_norm": 0.03786837415779077,
2709
+ "learning_rate": 5.468564511193785e-06,
2710
+ "loss": 1.2521,
2711
+ "step": 3850
2712
+ },
2713
+ {
2714
+ "epoch": 3.6053000233481205,
2715
+ "grad_norm": 0.03734728180544562,
2716
+ "learning_rate": 5.219380860263168e-06,
2717
+ "loss": 1.254,
2718
+ "step": 3860
2719
+ },
2720
+ {
2721
+ "epoch": 3.6146392715386413,
2722
+ "grad_norm": 0.034903789745343396,
2723
+ "learning_rate": 4.975855462530465e-06,
2724
+ "loss": 1.2496,
2725
+ "step": 3870
2726
+ },
2727
+ {
2728
+ "epoch": 3.623978519729162,
2729
+ "grad_norm": 0.03765870695948473,
2730
+ "learning_rate": 4.738002856077118e-06,
2731
+ "loss": 1.2536,
2732
+ "step": 3880
2733
+ },
2734
+ {
2735
+ "epoch": 3.6333177679196824,
2736
+ "grad_norm": 0.03513914326954358,
2737
+ "learning_rate": 4.505837240327881e-06,
2738
+ "loss": 1.2435,
2739
+ "step": 3890
2740
+ },
2741
+ {
2742
+ "epoch": 3.642657016110203,
2743
+ "grad_norm": 0.03964268261724614,
2744
+ "learning_rate": 4.279372475203181e-06,
2745
+ "loss": 1.2593,
2746
+ "step": 3900
2747
+ },
2748
+ {
2749
+ "epoch": 3.651996264300724,
2750
+ "grad_norm": 0.03469425212172376,
2751
+ "learning_rate": 4.058622080291652e-06,
2752
+ "loss": 1.2532,
2753
+ "step": 3910
2754
+ },
2755
+ {
2756
+ "epoch": 3.6613355124912443,
2757
+ "grad_norm": 0.03598049947724251,
2758
+ "learning_rate": 3.843599234043038e-06,
2759
+ "loss": 1.2556,
2760
+ "step": 3920
2761
+ },
2762
+ {
2763
+ "epoch": 3.670674760681765,
2764
+ "grad_norm": 0.03651926246151059,
2765
+ "learning_rate": 3.6343167729815163e-06,
2766
+ "loss": 1.2587,
2767
+ "step": 3930
2768
+ },
2769
+ {
2770
+ "epoch": 3.680014008872286,
2771
+ "grad_norm": 0.03552581291333623,
2772
+ "learning_rate": 3.430787190939322e-06,
2773
+ "loss": 1.2464,
2774
+ "step": 3940
2775
+ },
2776
+ {
2777
+ "epoch": 3.6893532570628063,
2778
+ "grad_norm": 0.037931227770931816,
2779
+ "learning_rate": 3.233022638310901e-06,
2780
+ "loss": 1.2552,
2781
+ "step": 3950
2782
+ },
2783
+ {
2784
+ "epoch": 3.698692505253327,
2785
+ "grad_norm": 0.036304173322246995,
2786
+ "learning_rate": 3.0410349213275567e-06,
2787
+ "loss": 1.2482,
2788
+ "step": 3960
2789
+ },
2790
+ {
2791
+ "epoch": 3.708031753443848,
2792
+ "grad_norm": 0.03538930810416937,
2793
+ "learning_rate": 2.8548355013526153e-06,
2794
+ "loss": 1.2595,
2795
+ "step": 3970
2796
+ },
2797
+ {
2798
+ "epoch": 3.717371001634368,
2799
+ "grad_norm": 0.03665091668672923,
2800
+ "learning_rate": 2.6744354941972473e-06,
2801
+ "loss": 1.2572,
2802
+ "step": 3980
2803
+ },
2804
+ {
2805
+ "epoch": 3.726710249824889,
2806
+ "grad_norm": 0.03652781100835373,
2807
+ "learning_rate": 2.4998456694568016e-06,
2808
+ "loss": 1.2605,
2809
+ "step": 3990
2810
+ },
2811
+ {
2812
+ "epoch": 3.7360494980154098,
2813
+ "grad_norm": 0.03552338730654514,
2814
+ "learning_rate": 2.331076449867975e-06,
2815
+ "loss": 1.2491,
2816
+ "step": 4000
2817
+ },
2818
+ {
2819
+ "epoch": 3.7453887462059305,
2820
+ "grad_norm": 0.036787806397377276,
2821
+ "learning_rate": 2.168137910686485e-06,
2822
+ "loss": 1.2554,
2823
+ "step": 4010
2824
+ },
2825
+ {
2826
+ "epoch": 3.7547279943964513,
2827
+ "grad_norm": 0.03691275737074826,
2828
+ "learning_rate": 2.011039779085655e-06,
2829
+ "loss": 1.2489,
2830
+ "step": 4020
2831
+ },
2832
+ {
2833
+ "epoch": 3.7640672425869717,
2834
+ "grad_norm": 0.03543531097242808,
2835
+ "learning_rate": 1.8597914335757083e-06,
2836
+ "loss": 1.2541,
2837
+ "step": 4030
2838
+ },
2839
+ {
2840
+ "epoch": 3.7734064907774925,
2841
+ "grad_norm": 0.03588804476631641,
2842
+ "learning_rate": 1.7144019034438851e-06,
2843
+ "loss": 1.2567,
2844
+ "step": 4040
2845
+ },
2846
+ {
2847
+ "epoch": 3.7827457389680132,
2848
+ "grad_norm": 0.036333508073258726,
2849
+ "learning_rate": 1.5748798682154176e-06,
2850
+ "loss": 1.2469,
2851
+ "step": 4050
2852
+ },
2853
+ {
2854
+ "epoch": 3.7920849871585336,
2855
+ "grad_norm": 0.03671560487120199,
2856
+ "learning_rate": 1.4412336571353102e-06,
2857
+ "loss": 1.2549,
2858
+ "step": 4060
2859
+ },
2860
+ {
2861
+ "epoch": 3.8014242353490544,
2862
+ "grad_norm": 0.03385836988167257,
2863
+ "learning_rate": 1.3134712486712163e-06,
2864
+ "loss": 1.2472,
2865
+ "step": 4070
2866
+ },
2867
+ {
2868
+ "epoch": 3.810763483539575,
2869
+ "grad_norm": 0.03514099866475247,
2870
+ "learning_rate": 1.191600270037041e-06,
2871
+ "loss": 1.25,
2872
+ "step": 4080
2873
+ },
2874
+ {
2875
+ "epoch": 3.8201027317300955,
2876
+ "grad_norm": 0.036579757858228146,
2877
+ "learning_rate": 1.075627996737627e-06,
2878
+ "loss": 1.2554,
2879
+ "step": 4090
2880
+ },
2881
+ {
2882
+ "epoch": 3.8294419799206163,
2883
+ "grad_norm": 0.035474764761714114,
2884
+ "learning_rate": 9.655613521344365e-07,
2885
+ "loss": 1.2493,
2886
+ "step": 4100
2887
+ },
2888
+ {
2889
+ "epoch": 3.838781228111137,
2890
+ "grad_norm": 0.035780463770959316,
2891
+ "learning_rate": 8.614069070322473e-07,
2892
+ "loss": 1.2516,
2893
+ "step": 4110
2894
+ },
2895
+ {
2896
+ "epoch": 3.848120476301658,
2897
+ "grad_norm": 0.03667535890217496,
2898
+ "learning_rate": 7.631708792868453e-07,
2899
+ "loss": 1.2525,
2900
+ "step": 4120
2901
+ },
2902
+ {
2903
+ "epoch": 3.857459724492178,
2904
+ "grad_norm": 0.03866821184004067,
2905
+ "learning_rate": 6.708591334338654e-07,
2906
+ "loss": 1.2437,
2907
+ "step": 4130
2908
+ },
2909
+ {
2910
+ "epoch": 3.866798972682699,
2911
+ "grad_norm": 0.035931245102736833,
2912
+ "learning_rate": 5.844771803386828e-07,
2913
+ "loss": 1.2516,
2914
+ "step": 4140
2915
+ },
2916
+ {
2917
+ "epoch": 3.87613822087322,
2918
+ "grad_norm": 0.034107023911041444,
2919
+ "learning_rate": 5.040301768673761e-07,
2920
+ "loss": 1.2472,
2921
+ "step": 4150
2922
+ },
2923
+ {
2924
+ "epoch": 3.8854774690637406,
2925
+ "grad_norm": 0.03555842514434786,
2926
+ "learning_rate": 4.2952292557896234e-07,
2927
+ "loss": 1.2454,
2928
+ "step": 4160
2929
+ },
2930
+ {
2931
+ "epoch": 3.894816717254261,
2932
+ "grad_norm": 0.034240935833829624,
2933
+ "learning_rate": 3.6095987443860445e-07,
2934
+ "loss": 1.2528,
2935
+ "step": 4170
2936
+ },
2937
+ {
2938
+ "epoch": 3.9041559654447817,
2939
+ "grad_norm": 0.03666542915960847,
2940
+ "learning_rate": 2.9834511655211226e-07,
2941
+ "loss": 1.2519,
2942
+ "step": 4180
2943
+ },
2944
+ {
2945
+ "epoch": 3.9134952136353025,
2946
+ "grad_norm": 0.037655412271416625,
2947
+ "learning_rate": 2.4168238992160474e-07,
2948
+ "loss": 1.2555,
2949
+ "step": 4190
2950
+ },
2951
+ {
2952
+ "epoch": 3.922834461825823,
2953
+ "grad_norm": 0.036197022796120186,
2954
+ "learning_rate": 1.9097507722231067e-07,
2955
+ "loss": 1.2591,
2956
+ "step": 4200
2957
+ },
2958
+ {
2959
+ "epoch": 3.9321737100163436,
2960
+ "grad_norm": 0.036305484542715774,
2961
+ "learning_rate": 1.462262056006969e-07,
2962
+ "loss": 1.2474,
2963
+ "step": 4210
2964
+ },
2965
+ {
2966
+ "epoch": 3.9415129582068644,
2967
+ "grad_norm": 0.036303954460438236,
2968
+ "learning_rate": 1.074384464936684e-07,
2969
+ "loss": 1.2418,
2970
+ "step": 4220
2971
+ },
2972
+ {
2973
+ "epoch": 3.9508522063973848,
2974
+ "grad_norm": 0.03569049340659871,
2975
+ "learning_rate": 7.461411546916263e-08,
2976
+ "loss": 1.2496,
2977
+ "step": 4230
2978
+ },
2979
+ {
2980
+ "epoch": 3.9601914545879056,
2981
+ "grad_norm": 0.03796994227856852,
2982
+ "learning_rate": 4.775517208788216e-08,
2983
+ "loss": 1.2479,
2984
+ "step": 4240
2985
+ },
2986
+ {
2987
+ "epoch": 3.9695307027784263,
2988
+ "grad_norm": 0.03394281504926072,
2989
+ "learning_rate": 2.6863219786299465e-08,
2990
+ "loss": 1.2456,
2991
+ "step": 4250
2992
+ },
2993
+ {
2994
+ "epoch": 3.978869950968947,
2995
+ "grad_norm": 0.035760734149513904,
2996
+ "learning_rate": 1.1939505780966808e-08,
2997
+ "loss": 1.2542,
2998
+ "step": 4260
2999
+ },
3000
+ {
3001
+ "epoch": 3.988209199159468,
3002
+ "grad_norm": 0.036716516315121565,
3003
+ "learning_rate": 2.9849209940091547e-09,
3004
+ "loss": 1.2625,
3005
+ "step": 4270
3006
+ },
3007
+ {
3008
+ "epoch": 3.9975484473499883,
3009
+ "grad_norm": 0.03584256618365922,
3010
+ "learning_rate": 0.0,
3011
+ "loss": 1.2575,
3012
+ "step": 4280
3013
+ }
3014
+ ],
3015
+ "logging_steps": 10,
3016
+ "max_steps": 4280,
3017
+ "num_input_tokens_seen": 0,
3018
+ "num_train_epochs": 4,
3019
+ "save_steps": 100,
3020
+ "stateful_callbacks": {
3021
+ "TrainerControl": {
3022
+ "args": {
3023
+ "should_epoch_stop": false,
3024
+ "should_evaluate": false,
3025
+ "should_log": false,
3026
+ "should_save": true,
3027
+ "should_training_stop": true
3028
+ },
3029
+ "attributes": {}
3030
+ }
3031
+ },
3032
+ "total_flos": 3.465521953285163e+20,
3033
+ "train_batch_size": 2,
3034
+ "trial_name": null,
3035
+ "trial_params": null
3036
+ }
l2-13b-ga/checkpoint-4280/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
l2-13b-ga/checkpoint-700/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-13b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
l2-13b-ga/checkpoint-700/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
l2-13b-ga/checkpoint-700/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step700
l2-13b-ga/checkpoint-700/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
l2-13b-ga/checkpoint-700/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
l2-13b-ga/checkpoint-700/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
l2-13b-ga/checkpoint-700/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
l2-13b-ga/checkpoint-700/trainer_state.json ADDED
@@ -0,0 +1,530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6537473733364464,
5
+ "eval_steps": 500,
6
+ "global_step": 700,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0009339248190520663,
13
+ "grad_norm": 6.638877692627699,
14
+ "learning_rate": 9.345794392523364e-07,
15
+ "loss": 9.2917,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.009339248190520663,
20
+ "grad_norm": 1.1560921335705272,
21
+ "learning_rate": 9.345794392523365e-06,
22
+ "loss": 9.0876,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.018678496381041326,
27
+ "grad_norm": 0.8415132296956432,
28
+ "learning_rate": 1.869158878504673e-05,
29
+ "loss": 8.2164,
30
+ "step": 20
31
+ },
32
+ {
33
+ "epoch": 0.02801774457156199,
34
+ "grad_norm": 0.45381630992958155,
35
+ "learning_rate": 2.8037383177570094e-05,
36
+ "loss": 7.5184,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.03735699276208265,
41
+ "grad_norm": 0.8400636107958425,
42
+ "learning_rate": 3.738317757009346e-05,
43
+ "loss": 6.6507,
44
+ "step": 40
45
+ },
46
+ {
47
+ "epoch": 0.046696240952603316,
48
+ "grad_norm": 0.557696240829066,
49
+ "learning_rate": 4.672897196261683e-05,
50
+ "loss": 5.8909,
51
+ "step": 50
52
+ },
53
+ {
54
+ "epoch": 0.05603548914312398,
55
+ "grad_norm": 0.3971996057467842,
56
+ "learning_rate": 5.607476635514019e-05,
57
+ "loss": 5.4127,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 0.06537473733364464,
62
+ "grad_norm": 0.2932710540265688,
63
+ "learning_rate": 6.542056074766355e-05,
64
+ "loss": 5.0106,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.0747139855241653,
69
+ "grad_norm": 0.3682690443551033,
70
+ "learning_rate": 7.476635514018692e-05,
71
+ "loss": 4.6042,
72
+ "step": 80
73
+ },
74
+ {
75
+ "epoch": 0.08405323371468597,
76
+ "grad_norm": 0.3132971920011515,
77
+ "learning_rate": 8.411214953271028e-05,
78
+ "loss": 4.2031,
79
+ "step": 90
80
+ },
81
+ {
82
+ "epoch": 0.09339248190520663,
83
+ "grad_norm": 0.6731868159213446,
84
+ "learning_rate": 9.345794392523365e-05,
85
+ "loss": 3.9423,
86
+ "step": 100
87
+ },
88
+ {
89
+ "epoch": 0.1027317300957273,
90
+ "grad_norm": 0.27848867836763197,
91
+ "learning_rate": 0.000102803738317757,
92
+ "loss": 3.7157,
93
+ "step": 110
94
+ },
95
+ {
96
+ "epoch": 0.11207097828624796,
97
+ "grad_norm": 0.24642109032991807,
98
+ "learning_rate": 0.00011214953271028037,
99
+ "loss": 3.4516,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 0.12141022647676862,
104
+ "grad_norm": 0.25717384664029797,
105
+ "learning_rate": 0.00012149532710280373,
106
+ "loss": 3.2167,
107
+ "step": 130
108
+ },
109
+ {
110
+ "epoch": 0.13074947466728928,
111
+ "grad_norm": 0.20912922668565637,
112
+ "learning_rate": 0.0001308411214953271,
113
+ "loss": 3.0237,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.14008872285780993,
118
+ "grad_norm": 0.15805888388706113,
119
+ "learning_rate": 0.00014018691588785047,
120
+ "loss": 2.8529,
121
+ "step": 150
122
+ },
123
+ {
124
+ "epoch": 0.1494279710483306,
125
+ "grad_norm": 0.23370349497479534,
126
+ "learning_rate": 0.00014953271028037384,
127
+ "loss": 2.7078,
128
+ "step": 160
129
+ },
130
+ {
131
+ "epoch": 0.15876721923885126,
132
+ "grad_norm": 0.1802138633012483,
133
+ "learning_rate": 0.0001588785046728972,
134
+ "loss": 2.6115,
135
+ "step": 170
136
+ },
137
+ {
138
+ "epoch": 0.16810646742937194,
139
+ "grad_norm": 0.13354347610039718,
140
+ "learning_rate": 0.00016822429906542056,
141
+ "loss": 2.5309,
142
+ "step": 180
143
+ },
144
+ {
145
+ "epoch": 0.17744571561989259,
146
+ "grad_norm": 0.09414865188086892,
147
+ "learning_rate": 0.00017757009345794393,
148
+ "loss": 2.4452,
149
+ "step": 190
150
+ },
151
+ {
152
+ "epoch": 0.18678496381041326,
153
+ "grad_norm": 0.08333601554768896,
154
+ "learning_rate": 0.0001869158878504673,
155
+ "loss": 2.3832,
156
+ "step": 200
157
+ },
158
+ {
159
+ "epoch": 0.1961242120009339,
160
+ "grad_norm": 0.15926414699806835,
161
+ "learning_rate": 0.00019626168224299065,
162
+ "loss": 2.3492,
163
+ "step": 210
164
+ },
165
+ {
166
+ "epoch": 0.2054634601914546,
167
+ "grad_norm": 0.09492820761057012,
168
+ "learning_rate": 0.0001999989254250208,
169
+ "loss": 2.323,
170
+ "step": 220
171
+ },
172
+ {
173
+ "epoch": 0.21480270838197524,
174
+ "grad_norm": 0.0801349259356147,
175
+ "learning_rate": 0.00019999235866155886,
176
+ "loss": 2.2731,
177
+ "step": 230
178
+ },
179
+ {
180
+ "epoch": 0.22414195657249592,
181
+ "grad_norm": 0.12210960524693895,
182
+ "learning_rate": 0.00019997982251228469,
183
+ "loss": 2.2433,
184
+ "step": 240
185
+ },
186
+ {
187
+ "epoch": 0.23348120476301656,
188
+ "grad_norm": 3.14289498732125,
189
+ "learning_rate": 0.00019996131772558666,
190
+ "loss": 3.2769,
191
+ "step": 250
192
+ },
193
+ {
194
+ "epoch": 0.24282045295353724,
195
+ "grad_norm": 1.632940983166179,
196
+ "learning_rate": 0.00019993684540617132,
197
+ "loss": 4.9343,
198
+ "step": 260
199
+ },
200
+ {
201
+ "epoch": 0.2521597011440579,
202
+ "grad_norm": 3.4831252230225416,
203
+ "learning_rate": 0.00019990640701499736,
204
+ "loss": 4.2768,
205
+ "step": 270
206
+ },
207
+ {
208
+ "epoch": 0.26149894933457857,
209
+ "grad_norm": 1.6069045920523788,
210
+ "learning_rate": 0.00019987000436918874,
211
+ "loss": 5.9581,
212
+ "step": 280
213
+ },
214
+ {
215
+ "epoch": 0.27083819752509924,
216
+ "grad_norm": 0.2220907936615993,
217
+ "learning_rate": 0.00019982763964192585,
218
+ "loss": 3.8228,
219
+ "step": 290
220
+ },
221
+ {
222
+ "epoch": 0.28017744571561987,
223
+ "grad_norm": 0.24737284913291765,
224
+ "learning_rate": 0.00019977931536231596,
225
+ "loss": 3.1413,
226
+ "step": 300
227
+ },
228
+ {
229
+ "epoch": 0.28951669390614054,
230
+ "grad_norm": 4.010404518241152,
231
+ "learning_rate": 0.00019972503441524224,
232
+ "loss": 2.8432,
233
+ "step": 310
234
+ },
235
+ {
236
+ "epoch": 0.2988559420966612,
237
+ "grad_norm": 0.1515583580811596,
238
+ "learning_rate": 0.00019966480004119142,
239
+ "loss": 2.7859,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 0.3081951902871819,
244
+ "grad_norm": 0.11259395750650594,
245
+ "learning_rate": 0.00019959861583606045,
246
+ "loss": 2.5821,
247
+ "step": 330
248
+ },
249
+ {
250
+ "epoch": 0.3175344384777025,
251
+ "grad_norm": 0.22514797814956813,
252
+ "learning_rate": 0.00019952648575094183,
253
+ "loss": 2.4517,
254
+ "step": 340
255
+ },
256
+ {
257
+ "epoch": 0.3268736866682232,
258
+ "grad_norm": 0.08040136172033542,
259
+ "learning_rate": 0.00019944841409188767,
260
+ "loss": 2.3794,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 0.3362129348587439,
265
+ "grad_norm": 0.054758073593565354,
266
+ "learning_rate": 0.00019936440551965263,
267
+ "loss": 2.3232,
268
+ "step": 360
269
+ },
270
+ {
271
+ "epoch": 0.34555218304926455,
272
+ "grad_norm": 0.06742998909645591,
273
+ "learning_rate": 0.00019927446504941577,
274
+ "loss": 2.2776,
275
+ "step": 370
276
+ },
277
+ {
278
+ "epoch": 0.35489143123978517,
279
+ "grad_norm": 0.048780907584876736,
280
+ "learning_rate": 0.00019917859805048096,
281
+ "loss": 2.2376,
282
+ "step": 380
283
+ },
284
+ {
285
+ "epoch": 0.36423067943030585,
286
+ "grad_norm": 0.0475325963052214,
287
+ "learning_rate": 0.00019907681024595663,
288
+ "loss": 2.2191,
289
+ "step": 390
290
+ },
291
+ {
292
+ "epoch": 0.3735699276208265,
293
+ "grad_norm": 0.054089563211590065,
294
+ "learning_rate": 0.00019896910771241387,
295
+ "loss": 2.1961,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 0.3829091758113472,
300
+ "grad_norm": 0.21798406131864823,
301
+ "learning_rate": 0.00019885549687952372,
302
+ "loss": 2.2078,
303
+ "step": 410
304
+ },
305
+ {
306
+ "epoch": 0.3922484240018678,
307
+ "grad_norm": 0.8673185709111124,
308
+ "learning_rate": 0.00019873598452967338,
309
+ "loss": 2.3731,
310
+ "step": 420
311
+ },
312
+ {
313
+ "epoch": 0.4015876721923885,
314
+ "grad_norm": 0.22424350669971718,
315
+ "learning_rate": 0.0001986105777975613,
316
+ "loss": 2.6195,
317
+ "step": 430
318
+ },
319
+ {
320
+ "epoch": 0.4109269203829092,
321
+ "grad_norm": 0.307418135168262,
322
+ "learning_rate": 0.00019847928416977126,
323
+ "loss": 2.3624,
324
+ "step": 440
325
+ },
326
+ {
327
+ "epoch": 0.42026616857342985,
328
+ "grad_norm": 0.07944722668080402,
329
+ "learning_rate": 0.00019834211148432536,
330
+ "loss": 2.2799,
331
+ "step": 450
332
+ },
333
+ {
334
+ "epoch": 0.4296054167639505,
335
+ "grad_norm": 0.18146933758664588,
336
+ "learning_rate": 0.00019819906793021614,
337
+ "loss": 2.2177,
338
+ "step": 460
339
+ },
340
+ {
341
+ "epoch": 0.43894466495447115,
342
+ "grad_norm": 0.07035825837333018,
343
+ "learning_rate": 0.0001980501620469178,
344
+ "loss": 2.1767,
345
+ "step": 470
346
+ },
347
+ {
348
+ "epoch": 0.44828391314499183,
349
+ "grad_norm": 0.04596186944454228,
350
+ "learning_rate": 0.0001978954027238763,
351
+ "loss": 2.1598,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 0.4576231613355125,
356
+ "grad_norm": 0.041342347745088055,
357
+ "learning_rate": 0.0001977347991999786,
358
+ "loss": 2.131,
359
+ "step": 490
360
+ },
361
+ {
362
+ "epoch": 0.46696240952603313,
363
+ "grad_norm": 0.04172063219841485,
364
+ "learning_rate": 0.00019756836106300137,
365
+ "loss": 2.1231,
366
+ "step": 500
367
+ },
368
+ {
369
+ "epoch": 0.4763016577165538,
370
+ "grad_norm": 0.03373646457711144,
371
+ "learning_rate": 0.00019739609824903843,
372
+ "loss": 2.1146,
373
+ "step": 510
374
+ },
375
+ {
376
+ "epoch": 0.4856409059070745,
377
+ "grad_norm": 0.03736871030676605,
378
+ "learning_rate": 0.00019721802104190748,
379
+ "loss": 2.1003,
380
+ "step": 520
381
+ },
382
+ {
383
+ "epoch": 0.49498015409759516,
384
+ "grad_norm": 0.033931028038211034,
385
+ "learning_rate": 0.00019703414007253645,
386
+ "loss": 2.0983,
387
+ "step": 530
388
+ },
389
+ {
390
+ "epoch": 0.5043194022881158,
391
+ "grad_norm": 0.03790055446070549,
392
+ "learning_rate": 0.00019684446631832868,
393
+ "loss": 2.092,
394
+ "step": 540
395
+ },
396
+ {
397
+ "epoch": 0.5136586504786365,
398
+ "grad_norm": 0.030956192803893078,
399
+ "learning_rate": 0.00019664901110250758,
400
+ "loss": 2.0807,
401
+ "step": 550
402
+ },
403
+ {
404
+ "epoch": 0.5229978986691571,
405
+ "grad_norm": 0.03542530209935129,
406
+ "learning_rate": 0.00019644778609344068,
407
+ "loss": 2.0773,
408
+ "step": 560
409
+ },
410
+ {
411
+ "epoch": 0.5323371468596778,
412
+ "grad_norm": 0.040947757568902336,
413
+ "learning_rate": 0.00019624080330394306,
414
+ "loss": 2.0649,
415
+ "step": 570
416
+ },
417
+ {
418
+ "epoch": 0.5416763950501985,
419
+ "grad_norm": 0.034273415973688146,
420
+ "learning_rate": 0.00019602807509056018,
421
+ "loss": 2.0479,
422
+ "step": 580
423
+ },
424
+ {
425
+ "epoch": 0.5510156432407192,
426
+ "grad_norm": 0.031427481498873144,
427
+ "learning_rate": 0.00019580961415283028,
428
+ "loss": 2.0563,
429
+ "step": 590
430
+ },
431
+ {
432
+ "epoch": 0.5603548914312397,
433
+ "grad_norm": 0.03141549752041532,
434
+ "learning_rate": 0.00019558543353252611,
435
+ "loss": 2.0503,
436
+ "step": 600
437
+ },
438
+ {
439
+ "epoch": 0.5696941396217604,
440
+ "grad_norm": 0.033012392726428204,
441
+ "learning_rate": 0.00019535554661287652,
442
+ "loss": 2.0389,
443
+ "step": 610
444
+ },
445
+ {
446
+ "epoch": 0.5790333878122811,
447
+ "grad_norm": 0.02913261992661444,
448
+ "learning_rate": 0.0001951199671177673,
449
+ "loss": 2.036,
450
+ "step": 620
451
+ },
452
+ {
453
+ "epoch": 0.5883726360028018,
454
+ "grad_norm": 0.030543903708435332,
455
+ "learning_rate": 0.00019487870911092214,
456
+ "loss": 2.0326,
457
+ "step": 630
458
+ },
459
+ {
460
+ "epoch": 0.5977118841933224,
461
+ "grad_norm": 0.03215005545393897,
462
+ "learning_rate": 0.00019463178699506277,
463
+ "loss": 2.0231,
464
+ "step": 640
465
+ },
466
+ {
467
+ "epoch": 0.6070511323838431,
468
+ "grad_norm": 0.03823630791937631,
469
+ "learning_rate": 0.00019437921551104933,
470
+ "loss": 2.0293,
471
+ "step": 650
472
+ },
473
+ {
474
+ "epoch": 0.6163903805743638,
475
+ "grad_norm": 0.03200103149471209,
476
+ "learning_rate": 0.00019412100973700038,
477
+ "loss": 2.017,
478
+ "step": 660
479
+ },
480
+ {
481
+ "epoch": 0.6257296287648845,
482
+ "grad_norm": 0.03841804153577787,
483
+ "learning_rate": 0.00019385718508739262,
484
+ "loss": 2.0135,
485
+ "step": 670
486
+ },
487
+ {
488
+ "epoch": 0.635068876955405,
489
+ "grad_norm": 0.03052396655271533,
490
+ "learning_rate": 0.0001935877573121407,
491
+ "loss": 2.0237,
492
+ "step": 680
493
+ },
494
+ {
495
+ "epoch": 0.6444081251459257,
496
+ "grad_norm": 0.033817837533771815,
497
+ "learning_rate": 0.00019331274249565717,
498
+ "loss": 2.0069,
499
+ "step": 690
500
+ },
501
+ {
502
+ "epoch": 0.6537473733364464,
503
+ "grad_norm": 0.028286999650643876,
504
+ "learning_rate": 0.00019303215705589194,
505
+ "loss": 2.0112,
506
+ "step": 700
507
+ }
508
+ ],
509
+ "logging_steps": 10,
510
+ "max_steps": 4280,
511
+ "num_input_tokens_seen": 0,
512
+ "num_train_epochs": 4,
513
+ "save_steps": 100,
514
+ "stateful_callbacks": {
515
+ "TrainerControl": {
516
+ "args": {
517
+ "should_epoch_stop": false,
518
+ "should_evaluate": false,
519
+ "should_log": false,
520
+ "should_save": true,
521
+ "should_training_stop": false
522
+ },
523
+ "attributes": {}
524
+ }
525
+ },
526
+ "total_flos": 5.667909740273861e+19,
527
+ "train_batch_size": 2,
528
+ "trial_name": null,
529
+ "trial_params": null
530
+ }
l2-13b-ga/checkpoint-700/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)