Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- fr
|
| 5 |
+
- de
|
| 6 |
+
- es
|
| 7 |
+
- pt
|
| 8 |
+
- it
|
| 9 |
+
- ja
|
| 10 |
+
- ko
|
| 11 |
+
- ru
|
| 12 |
+
- zh
|
| 13 |
+
- ar
|
| 14 |
+
- fa
|
| 15 |
+
- id
|
| 16 |
+
- ms
|
| 17 |
+
- ne
|
| 18 |
+
- pl
|
| 19 |
+
- ro
|
| 20 |
+
- sr
|
| 21 |
+
- sv
|
| 22 |
+
- tr
|
| 23 |
+
- uk
|
| 24 |
+
- vi
|
| 25 |
+
- hi
|
| 26 |
+
- bn
|
| 27 |
+
license: apache-2.0
|
| 28 |
+
library_name: vllm
|
| 29 |
+
inference: false
|
| 30 |
+
extra_gated_description: >-
|
| 31 |
+
If you want to learn more about how we process your personal data, please read
|
| 32 |
+
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
# Model Card for Mistral-Small-3.1-24B-Base-2503
|
| 36 |
+
|
| 37 |
+
Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) **adds state-of-the-art vision understanding** and enhances **long context capabilities up to 128k tokens** without compromising text performance.
|
| 38 |
+
With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.
|
| 39 |
+
This model is the base model of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503).
|
| 40 |
+
|
| 41 |
+
For enterprises requiring specialized capabilities (increased context, specific modalities, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community.
|
| 42 |
+
|
| 43 |
+
Learn more about Mistral Small 3.1 in our [blog post](https://mistral.ai/news/mistral-small-3-1/).
|
| 44 |
+
|
| 45 |
+
## Key Features
|
| 46 |
+
- **Vision:** Vision capabilities enable the model to analyze images and provide insights based on visual content in addition to text.
|
| 47 |
+
- **Multilingual:** Supports dozens of languages, including English, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Malay, Nepali, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Swedish, Turkish, Ukrainian, Vietnamese, Arabic, Bengali, Chinese, Farshi.
|
| 48 |
+
- **Apache 2.0 License:** Open license allowing usage and modification for both commercial and non-commercial purposes.
|
| 49 |
+
- **Context Window:** A 128k context window.
|
| 50 |
+
- **Tokenizer:** Utilizes a Tekken tokenizer with a 131k vocabulary size.
|
| 51 |
+
|
| 52 |
+
## Benchmark Results
|
| 53 |
+
|
| 54 |
+
When available, we report numbers previously published by other model providers, otherwise we re-evaluate them using our own evaluation harness.
|
| 55 |
+
|
| 56 |
+
### Pretrain Evals
|
| 57 |
+
|
| 58 |
+
| Model | MMLU (5-shot) | MMLU Pro (5-shot CoT) | TriviaQA | GPQA Main (5-shot CoT)| MMMU |
|
| 59 |
+
|--------------------------------|---------------|-----------------------|------------|-----------------------|-----------|
|
| 60 |
+
| **Small 3.1 24B Base** | **81.01%** | **56.03%** | 80.50% | **37.50%** | **59.27%**|
|
| 61 |
+
| Gemma 3 27B PT | 78.60% | 52.20% | **81.30%** | 24.30% | 56.10% |
|
| 62 |
+
|
| 63 |
+
## Usage Examples
|
| 64 |
+
|
| 65 |
+
### vLLM (recommended)
|
| 66 |
+
|
| 67 |
+
We recommend using Mistral-Small 3.1 Base with the [vLLM library](https://github.com/vllm-project/vllm).
|
| 68 |
+
_Note_ however that this is a pretrained-only checkpoint and thus not ready to work as an instruction model out-of-the-box.
|
| 69 |
+
For a production-ready instruction model please use [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503).
|
| 70 |
+
|
| 71 |
+
**_Installation_**
|
| 72 |
+
|
| 73 |
+
Make sure you install [`vLLM nightly`](https://github.com/vllm-project/vllm/):
|
| 74 |
+
|
| 75 |
+
```
|
| 76 |
+
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly --upgrade
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
Doing so should automatically install [`mistral_common >= 1.5.4`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.4).
|
| 80 |
+
|
| 81 |
+
To check:
|
| 82 |
+
```
|
| 83 |
+
python -c "import mistral_common; print(mistral_common.__version__)"
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39) followed by a nightly install of vllm as shown above.
|
| 87 |
+
|
| 88 |
+
**_Example_**
|
| 89 |
+
|
| 90 |
+
```py
|
| 91 |
+
from vllm import LLM
|
| 92 |
+
from vllm.sampling_params import SamplingParams
|
| 93 |
+
from vllm.inputs.data import TokensPrompt
|
| 94 |
+
import requests
|
| 95 |
+
from PIL import Image
|
| 96 |
+
from io import BytesIO
|
| 97 |
+
from vllm.multimodal import MultiModalDataBuiltins
|
| 98 |
+
|
| 99 |
+
from mistral_common.protocol.instruct.messages import TextChunk, ImageURLChunk
|
| 100 |
+
|
| 101 |
+
model_name = "mistralai/Mistral-Small-3.1-24B-Base-2503"
|
| 102 |
+
sampling_params = SamplingParams(max_tokens=8192)
|
| 103 |
+
|
| 104 |
+
llm = LLM(model=model_name, tokenizer_mode="mistral")
|
| 105 |
+
|
| 106 |
+
url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
|
| 107 |
+
response = requests.get(url)
|
| 108 |
+
image = Image.open(BytesIO(response.content))
|
| 109 |
+
|
| 110 |
+
prompt = "The image shows a"
|
| 111 |
+
|
| 112 |
+
user_content = [ImageURLChunk(image_url=url), TextChunk(text=prompt)]
|
| 113 |
+
|
| 114 |
+
tokenizer = llm.llm_engine.tokenizer.tokenizer.mistral.instruct_tokenizer
|
| 115 |
+
tokens, _ = tokenizer.encode_user_content(user_content, False)
|
| 116 |
+
|
| 117 |
+
prompt = TokensPrompt(
|
| 118 |
+
prompt_token_ids=tokens, multi_modal_data=MultiModalDataBuiltins(image=[image])
|
| 119 |
+
)
|
| 120 |
+
outputs = llm.generate(prompt, sampling_params=sampling_params)
|
| 121 |
+
|
| 122 |
+
print(outputs[0].outputs[0].text)
|
| 123 |
+
# ' scene in Yosemite Valley and was taken at ISO 250 with an aperture of f/16 and a shutter speed of 1/18 second. ...'
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
### Transformers (untested)
|
| 127 |
+
|
| 128 |
+
Transformers-compatible model weights are also uploaded (thanks a lot @cyrilvallez).
|
| 129 |
+
However the transformers implementation was **not throughly tested**, but only on "vibe-checks".
|
| 130 |
+
Hence, we can only ensure 100% correct behavior when using the original weight format with vllm (see above).
|