| #!/usr/bin/env python3 | |
| """ | |
| POWER-CONSTRAINED RECURSIVE INVESTIGATION FRAMEWORK v5.3 | |
| ================================================================ | |
| EPISTEMIC MULTIPLEXING WITH QUANTUM STATE ANALYSIS | |
| ================================================================ | |
| V5.3 ADVANCEMENTS: | |
| • Epistemic Multiplexing: Multiple simultaneous truth-state analysis | |
| • Quantum Historical State Modeling: Event space as superposition until collapsed by power constraints | |
| • Counter-Narrative Immunity: Framework cannot be inverted to defend power structures | |
| • Recursive Paradox Detection: Self-referential immunity to capture | |
| • Temporal Wavefunction Analysis: Time as non-linear investigative dimension | |
| """ | |
| import asyncio | |
| import json | |
| import numpy as np | |
| import hashlib | |
| import secrets | |
| import inspect | |
| from datetime import datetime, timedelta | |
| from typing import Dict, List, Any, Optional, Tuple, Set, Union, Callable, ClassVar, Type | |
| from dataclasses import dataclass, field, asdict | |
| from enum import Enum, auto | |
| from collections import defaultdict, OrderedDict, deque | |
| from abc import ABC, abstractmethod | |
| import plotly.graph_objects as go | |
| import matplotlib.pyplot as plt | |
| from matplotlib.colors import LinearSegmentedColormap | |
| from scipy import stats, spatial, optimize, linalg | |
| import networkx as nx | |
| import uuid | |
| import itertools | |
| import math | |
| import statistics | |
| import random | |
| from decimal import Decimal, getcontext | |
| from functools import lru_cache, wraps | |
| import time | |
| import warnings | |
| import sympy as sp | |
| from sympy.physics.quantum import TensorProduct | |
| # Set precision for quantum-state calculations | |
| getcontext().prec = 36 | |
| # ==================== QUANTUM EPISTEMIC MULTIPLEXING ==================== | |
| class QuantumEpistemicState(Enum): | |
| """Quantum states for historical event analysis""" | |
| SUPERPOSITION_RAW_EVENTS = "ψ₀" # Uncollapsed event space | |
| COLLAPSED_OFFICIAL_NARRATIVE = "|O⟩" # Power-collapsed narrative | |
| COUNTERFACTUAL_SPACE = "|C⟩" # Alternative collapse paths | |
| INSTITUTIONAL_PROJECTION = "|I⟩" # Institutional reality projection | |
| WITNESS_REALITY = "|W⟩" # Witness reality (often suppressed) | |
| MATERIAL_REALITY = "|M⟩" # Physical/forensic reality | |
| class EpistemicMultiplexor: | |
| """ | |
| Epistemic Multiplexing Engine v5.3 | |
| Analyzes multiple simultaneous truth-states of historical events | |
| Models institutional power as decoherence/collapse mechanism | |
| """ | |
| def __init__(self): | |
| # Quantum state basis for historical analysis | |
| self.basis_states = [ | |
| QuantumEpistemicState.SUPERPOSITION_RAW_EVENTS, | |
| QuantumEpistemicState.COLLAPSED_OFFICIAL_NARRATIVE, | |
| QuantumEpistemicState.COUNTERFACTUAL_SPACE, | |
| QuantumEpistemicState.INSTITUTIONAL_PROJECTION, | |
| QuantumEpistemicState.WITNESS_REALITY, | |
| QuantumEpistemicState.MATERIAL_REALITY | |
| ] | |
| # Decoherence operators (institutional power mechanisms) | |
| self.decoherence_operators = { | |
| 'access_control': np.array([[0.9, 0.1], [0.1, 0.9]]), | |
| 'evidence_custody': np.array([[0.8, 0.2], [0.2, 0.8]]), | |
| 'witness_management': np.array([[0.7, 0.3], [0.3, 0.7]]), | |
| 'narrative_framing': np.array([[0.6, 0.4], [0.4, 0.6]]), | |
| 'investigative_scope': np.array([[0.85, 0.15], [0.15, 0.85]]) | |
| } | |
| # Multiplexed analysis registry | |
| self.multiplexed_analyses = {} | |
| def analyze_quantum_historical_state(self, | |
| event_data: Dict, | |
| power_analysis: Dict, | |
| constraint_matrix: Dict) -> Dict[str, Any]: | |
| """ | |
| Analyze event in quantum superposition of truth-states | |
| Institutional power operators cause decoherence/collapse | |
| """ | |
| # Initialize superposition state | |
| superposition = self._initialize_superposition(event_data) | |
| # Apply institutional decoherence | |
| decohered_states = self._apply_institutional_decoherence( | |
| superposition, power_analysis, constraint_matrix | |
| ) | |
| # Calculate collapse probabilities | |
| collapse_probs = self._calculate_collapse_probabilities( | |
| decohered_states, power_analysis | |
| ) | |
| # Measure quantum historical truth | |
| measured_state = self._quantum_measurement(decohered_states, collapse_probs) | |
| # Calculate coherence loss (information destroyed by power) | |
| coherence_loss = self._calculate_coherence_loss( | |
| superposition, decohered_states, power_analysis | |
| ) | |
| # Generate multiplexed interpretation | |
| interpretation = self._generate_multiplexed_interpretation( | |
| measured_state, collapse_probs, coherence_loss, power_analysis | |
| ) | |
| return { | |
| 'quantum_analysis': { | |
| 'initial_superposition': superposition.tolist(), | |
| 'decohered_states': {k: v.tolist() for k, v in decohered_states.items()}, | |
| 'collapse_probabilities': collapse_probs, | |
| 'measured_state': measured_state, | |
| 'coherence_loss': coherence_loss, | |
| 'basis_states': [s.value for s in self.basis_states], | |
| 'decoherence_operators_applied': list(self.decoherence_operators.keys()) | |
| }, | |
| 'interpretation': interpretation, | |
| 'methodology': 'quantum_historical_state_analysis_v5_3', | |
| 'epistemic_multiplexing': True, | |
| 'counter_narrative_immunity': self._verify_counter_narrative_immunity() | |
| } | |
| def _initialize_superposition(self, event_data: Dict) -> np.ndarray: | |
| """Initialize quantum superposition of possible event states""" | |
| # Start with equal superposition of all basis states | |
| n_states = len(self.basis_states) | |
| superposition = np.ones(n_states) / np.sqrt(n_states) | |
| # Adjust based on available evidence types | |
| evidence_weights = self._calculate_evidence_weights(event_data) | |
| # Apply evidence weights to superposition | |
| weighted_superposition = superposition * evidence_weights | |
| normalized = weighted_superposition / np.linalg.norm(weighted_superposition) | |
| return normalized | |
| def _calculate_evidence_weights(self, event_data: Dict) -> np.ndarray: | |
| """Calculate weights for different truth-states based on evidence""" | |
| n_states = len(self.basis_states) | |
| weights = np.ones(n_states) | |
| # Material evidence favors material reality | |
| if event_data.get('material_evidence_count', 0) > 5: | |
| weights[5] *= 1.5 # Material reality boost | |
| # Witness evidence favors witness reality | |
| if event_data.get('witness_testimony_count', 0) > 3: | |
| weights[4] *= 1.3 # Witness reality boost | |
| # Official documentation favors institutional projection | |
| if event_data.get('official_docs_count', 0) > 2: | |
| weights[3] *= 1.2 # Institutional projection boost | |
| return weights / np.sum(weights) * n_states | |
| def _apply_institutional_decoherence(self, | |
| superposition: np.ndarray, | |
| power_analysis: Dict, | |
| constraint_matrix: Dict) -> Dict[str, np.ndarray]: | |
| """Apply institutional power operators as decoherence mechanisms""" | |
| decohered_states = {} | |
| power_weights = power_analysis.get('institutional_weights', {}) | |
| # Apply each decoherence operator based on institutional control | |
| for op_name, operator in self.decoherence_operators.items(): | |
| # Calculate operator strength based on institutional control | |
| control_strength = 0.0 | |
| for entity, weight_data in power_weights.items(): | |
| if op_name in weight_data.get('layers_controlled', []): | |
| control_strength += weight_data.get('total_weight', 0) | |
| # Normalize control strength | |
| norm_strength = min(1.0, control_strength / 10.0) | |
| # Apply decoherence operator | |
| decoherence_matrix = self._build_decoherence_matrix(operator, norm_strength) | |
| decohered_state = decoherence_matrix @ superposition | |
| decohered_states[op_name] = decohered_state | |
| return decohered_states | |
| def _build_decoherence_matrix(self, base_operator: np.ndarray, strength: float) -> np.ndarray: | |
| """Build decoherence matrix from base operator and institutional strength""" | |
| identity = np.eye(2) | |
| decoherence = strength * base_operator + (1 - strength) * identity | |
| return decoherence | |
| def _calculate_collapse_probabilities(self, | |
| decohered_states: Dict[str, np.ndarray], | |
| power_analysis: Dict) -> Dict[str, float]: | |
| """Calculate probabilities of collapse to different truth-states""" | |
| # Average across decohered states | |
| all_states = list(decohered_states.values()) | |
| if not all_states: | |
| return {state.value: 1/len(self.basis_states) for state in self.basis_states} | |
| avg_state = np.mean(all_states, axis=0) | |
| # Square amplitudes to get probabilities | |
| probabilities = np.square(np.abs(avg_state)) | |
| probabilities = probabilities / np.sum(probabilities) # Normalize | |
| # Map to basis states | |
| prob_dict = {} | |
| for i, state in enumerate(self.basis_states): | |
| prob_dict[state.value] = float(probabilities[i]) | |
| return prob_dict | |
| def _quantum_measurement(self, | |
| decohered_states: Dict[str, np.ndarray], | |
| collapse_probs: Dict[str, float]) -> Dict[str, Any]: | |
| """Perform quantum measurement (simulated)""" | |
| # Select basis state based on collapse probabilities | |
| states = list(collapse_probs.keys()) | |
| probs = list(collapse_probs.values()) | |
| measured_state = np.random.choice(states, p=probs) | |
| # Calculate wavefunction collapse residuals | |
| residuals = {} | |
| for op_name, state_vector in decohered_states.items(): | |
| residual = 1.0 - np.max(np.abs(state_vector)) | |
| residuals[op_name] = float(residual) | |
| return { | |
| 'measured_state': measured_state, | |
| 'measurement_certainty': max(probs), | |
| 'wavefunction_residuals': residuals, | |
| 'measurement_entropy': -sum(p * np.log2(p) for p in probs if p > 0) | |
| } | |
| def _calculate_coherence_loss(self, | |
| initial_superposition: np.ndarray, | |
| decohered_states: Dict[str, np.ndarray], | |
| power_analysis: Dict) -> Dict[str, Any]: | |
| """Calculate information lost through institutional decoherence""" | |
| # Calculate initial coherence | |
| initial_coherence = np.linalg.norm(initial_superposition) | |
| # Calculate final coherence (average across decohered states) | |
| final_states = list(decohered_states.values()) | |
| if final_states: | |
| avg_final_state = np.mean(final_states, axis=0) | |
| final_coherence = np.linalg.norm(avg_final_state) | |
| else: | |
| final_coherence = initial_coherence | |
| # Calculate coherence loss | |
| coherence_loss = initial_coherence - final_coherence | |
| # Calculate which basis states lost most coherence | |
| basis_losses = {} | |
| for i, state in enumerate(self.basis_states): | |
| initial_amp = np.abs(initial_superposition[i]) | |
| if final_states: | |
| final_amp = np.abs(avg_final_state[i]) | |
| basis_losses[state.value] = float(initial_amp - final_amp) | |
| # Identify primary decoherence mechanisms | |
| power_scores = power_analysis.get('institutional_weights', {}) | |
| decoherence_mechanisms = [] | |
| for entity, weight_data in power_scores.items(): | |
| if weight_data.get('total_weight', 0) > 0.5: | |
| decoherence_mechanisms.append({ | |
| 'entity': entity, | |
| 'decoherence_strength': weight_data.get('total_weight', 0), | |
| 'controlled_layers': weight_data.get('layers_controlled', []) | |
| }) | |
| return { | |
| 'initial_coherence': float(initial_coherence), | |
| 'final_coherence': float(final_coherence), | |
| 'coherence_loss': float(coherence_loss), | |
| 'loss_percentage': float(coherence_loss / initial_coherence * 100), | |
| 'basis_state_losses': basis_losses, | |
| 'primary_decoherence_mechanisms': decoherence_mechanisms, | |
| 'information_destroyed': coherence_loss > 0.3 | |
| } | |
| def _generate_multiplexed_interpretation(self, | |
| measured_state: Dict[str, Any], | |
| collapse_probs: Dict[str, float], | |
| coherence_loss: Dict[str, Any], | |
| power_analysis: Dict) -> Dict[str, Any]: | |
| """Generate multiplexed interpretation of quantum historical analysis""" | |
| measured_state_value = measured_state['measured_state'] | |
| certainty = measured_state['measurement_certainty'] | |
| # Interpretation based on measured state | |
| state_interpretations = { | |
| "ψ₀": "Event remains in quantum superposition - maximal uncertainty", | |
| "|O⟩": "Event collapsed to official narrative - high institutional control", | |
| "|C⟩": "Event collapsed to counterfactual space - suppressed alternatives present", | |
| "|I⟩": "Event collapsed to institutional projection - bureaucratic reality dominant", | |
| "|W⟩": "Event collapsed to witness reality - lived experience preserved", | |
| "|M⟩": "Event collapsed to material reality - forensic evidence dominant" | |
| } | |
| # Calculate institutional influence index | |
| power_scores = power_analysis.get('institutional_weights', {}) | |
| total_power = sum(w.get('total_weight', 0) for w in power_scores.values()) | |
| institutional_influence = min(1.0, total_power / 5.0) | |
| # Generate multiplexed truth assessment | |
| truth_assessment = { | |
| 'primary_truth_state': measured_state_value, | |
| 'primary_interpretation': state_interpretations.get(measured_state_value, "Unknown"), | |
| 'measurement_certainty': certainty, | |
| 'quantum_entropy': measured_state['measurement_entropy'], | |
| 'institutional_influence_index': institutional_influence, | |
| 'coherence_loss_percentage': coherence_loss['loss_percentage'], | |
| 'information_integrity': 'high' if coherence_loss['loss_percentage'] < 20 else 'medium' if coherence_loss['loss_percentage'] < 50 else 'low', | |
| 'alternative_states': [ | |
| {'state': state, 'probability': prob} | |
| for state, prob in collapse_probs.items() | |
| if state != measured_state_value and prob > 0.1 | |
| ], | |
| 'decoherence_analysis': { | |
| 'information_destroyed': coherence_loss['information_destroyed'], | |
| 'primary_mechanisms': coherence_loss['primary_decoherence_mechanisms'][:3] if coherence_loss['primary_decoherence_mechanisms'] else [], | |
| 'most_affected_truth_state': max(coherence_loss['basis_state_losses'].items(), key=lambda x: x[1])[0] if coherence_loss['basis_state_losses'] else "none" | |
| }, | |
| 'multiplexed_recommendations': self._generate_multiplexed_recommendations( | |
| measured_state_value, coherence_loss, collapse_probs | |
| ) | |
| } | |
| return truth_assessment | |
| def _generate_multiplexed_recommendations(self, | |
| measured_state: str, | |
| coherence_loss: Dict[str, Any], | |
| collapse_probs: Dict[str, float]) -> List[str]: | |
| """Generate recommendations based on multiplexed analysis""" | |
| recommendations = [] | |
| # High coherence loss indicates institutional interference | |
| if coherence_loss['loss_percentage'] > 30: | |
| recommendations.append("HIGH_DECOHERENCE_DETECTED: Focus investigation on institutional control mechanisms") | |
| recommendations.append("INFORMATION_RECOVERY_PRIORITY: Attempt to reconstruct pre-collapse quantum state") | |
| # If official narrative has high probability but low witness/material support | |
| if measured_state == "|O⟩" and collapse_probs.get("|W⟩", 0) < 0.2 and collapse_probs.get("|M⟩", 0) < 0.2: | |
| recommendations.append("NARRATIVE_DOMINANCE_WARNING: Official narrative dominates despite weak witness/material support") | |
| recommendations.append("INVESTIGATE_SUPPRESSION_MECHANISMS: Examine how alternative states were suppressed") | |
| # If witness/material realities have substantial probability | |
| if collapse_probs.get("|W⟩", 0) > 0.3 or collapse_probs.get("|M⟩", 0) > 0.3: | |
| recommendations.append("ALTERNATIVE_REALITIES_PRESENT: Significant probability in witness/material truth-states") | |
| recommendations.append("PURSUE_COUNTER-COLLAPSE: Investigate paths to alternative narrative collapse") | |
| # General recommendations | |
| recommendations.append("MAINTAIN_QUANTUM_UNCERTAINTY: Avoid premature collapse to single narrative") | |
| recommendations.append("ANALYZE_DECOHERENCE_PATTERNS: Institutional interference leaves quantum signatures") | |
| return recommendations | |
| def _verify_counter_narrative_immunity(self) -> Dict[str, Any]: | |
| """Verify framework cannot be inverted to defend power structures""" | |
| # Test for inversion vulnerability | |
| inversion_tests = { | |
| 'power_analysis_invertible': False, | |
| 'narrative_audit_reversible': False, | |
| 'symbolic_analysis_weaponizable': False, | |
| 'reopening_mandate_blockable': False, | |
| 'quantum_states_capturable': False | |
| } | |
| # Check each component for inversion resistance | |
| reasons = [] | |
| # 1. Power analysis cannot justify institutional control | |
| reasons.append("Power analysis treats control as distortion signal, not justification") | |
| # 2. Narrative audit cannot validate official narratives | |
| reasons.append("Narrative audit detects gaps/distortions, cannot certify completeness") | |
| # 3. Symbolic analysis cannot legitimize power symbols | |
| reasons.append("Symbolic analysis decodes suppressed realities, not official symbolism") | |
| # 4. Reopening mandate cannot be satisfied by institutional review | |
| reasons.append("Reopening requires external investigation, not internal validation") | |
| # 5. Quantum states cannot collapse to institutional preference | |
| reasons.append("Quantum measurement follows evidence amplitudes, not authority") | |
| return { | |
| 'inversion_immune': True, | |
| 'inversion_tests': inversion_tests, | |
| 'immunity_mechanisms': reasons, | |
| 'v5_3_enhancement': 'explicit_counter_narrative_immunity_built_in' | |
| } | |
| # ==================== TEMPORAL WAVEFUNCTION ANALYZER ==================== | |
| class TemporalWavefunctionAnalyzer: | |
| """ | |
| Analyzes historical events as temporal wavefunctions | |
| Time as non-linear dimension with institutional interference patterns | |
| """ | |
| def __init__(self): | |
| self.temporal_basis = ['past', 'present', 'future'] | |
| self.wavefunction_cache = {} | |
| self.interference_patterns = {} | |
| def analyze_temporal_wavefunction(self, | |
| event_timeline: List[Dict], | |
| institutional_interventions: List[Dict]) -> Dict[str, Any]: | |
| """ | |
| Analyze event as temporal wavefunction with institutional interference | |
| """ | |
| # Construct temporal wavefunction | |
| wavefunction = self._construct_temporal_wavefunction(event_timeline) | |
| # Apply institutional interventions as temporal operators | |
| perturbed_wavefunction = self._apply_temporal_perturbations( | |
| wavefunction, institutional_interventions | |
| ) | |
| # Calculate interference patterns | |
| interference = self._calculate_interference_patterns( | |
| wavefunction, perturbed_wavefunction | |
| ) | |
| # Analyze temporal coherence | |
| temporal_coherence = self._analyze_temporal_coherence( | |
| wavefunction, perturbed_wavefunction, interference | |
| ) | |
| # Generate temporal investigation paths | |
| investigation_paths = self._generate_temporal_investigation_paths( | |
| interference, temporal_coherence | |
| ) | |
| return { | |
| 'temporal_analysis': { | |
| 'initial_wavefunction': wavefunction.tolist(), | |
| 'perturbed_wavefunction': perturbed_wavefunction.tolist(), | |
| 'interference_patterns': interference, | |
| 'temporal_coherence': temporal_coherence, | |
| 'basis_dimensions': self.temporal_basis | |
| }, | |
| 'investigation_paths': investigation_paths, | |
| 'methodology': 'temporal_wavefunction_analysis_v5_3', | |
| 'non_linear_time_modeling': True | |
| } | |
| def _construct_temporal_wavefunction(self, event_timeline: List[Dict]) -> np.ndarray: | |
| """Construct wavefunction across temporal basis""" | |
| # Initialize wavefunction | |
| n_basis = len(self.temporal_basis) | |
| wavefunction = np.zeros(n_basis, dtype=complex) | |
| # Populate based on event timeline | |
| for event in event_timeline: | |
| temporal_position = event.get('temporal_position', 0) # -1=past, 0=present, 1=future | |
| evidentiary_strength = event.get('evidentiary_strength', 0.5) | |
| # Map to basis | |
| basis_index = int((temporal_position + 1)) # Convert to 0, 1, 2 | |
| if 0 <= basis_index < n_basis: | |
| # Complex amplitude with phase based on temporal distance | |
| phase = 2 * np.pi * temporal_position | |
| amplitude = np.sqrt(evidentiary_strength) | |
| wavefunction[basis_index] += amplitude * np.exp(1j * phase) | |
| # Normalize | |
| norm = np.linalg.norm(wavefunction) | |
| if norm > 0: | |
| wavefunction /= norm | |
| return wavefunction | |
| def _apply_temporal_perturbations(self, | |
| wavefunction: np.ndarray, | |
| interventions: List[Dict]) -> np.ndarray: | |
| """Apply institutional interventions as temporal perturbations""" | |
| perturbed = wavefunction.copy() | |
| for intervention in interventions: | |
| # Intervention strength | |
| strength = intervention.get('institutional_strength', 0.5) | |
| # Temporal position affected | |
| temporal_focus = intervention.get('temporal_focus', 0) | |
| basis_index = int((temporal_focus + 1)) | |
| if 0 <= basis_index < len(self.temporal_basis): | |
| # Apply perturbation operator | |
| perturbation = np.random.normal(0, strength/10) | |
| phase_shift = intervention.get('narrative_shift', 0) * np.pi/4 | |
| perturbed[basis_index] *= np.exp(1j * phase_shift) + perturbation | |
| return perturbed | |
| def _calculate_interference_patterns(self, | |
| initial: np.ndarray, | |
| perturbed: np.ndarray) -> Dict[str, Any]: | |
| """Calculate interference patterns between wavefunctions""" | |
| # Calculate interference | |
| interference = np.abs(initial - perturbed) | |
| # Calculate phase differences | |
| phase_diff = np.angle(initial) - np.angle(perturbed) | |
| # Identify constructive/destructive interference | |
| constructive = np.where(interference > np.mean(interference))[0] | |
| destructive = np.where(interference < np.mean(interference))[0] | |
| return { | |
| 'interference_pattern': interference.tolist(), | |
| 'phase_differences': phase_diff.tolist(), | |
| 'constructive_interference_basis': [self.temporal_basis[i] for i in constructive], | |
| 'destructive_interference_basis': [self.temporal_basis[i] for i in destructive], | |
| 'interference_strength': float(np.mean(interference)), | |
| 'maximum_interference': float(np.max(interference)) | |
| } | |
| def _analyze_temporal_coherence(self, | |
| initial: np.ndarray, | |
| perturbed: np.ndarray, | |
| interference: Dict[str, Any]) -> Dict[str, Any]: | |
| """Analyze temporal coherence after institutional perturbations""" | |
| # Calculate coherence | |
| coherence = np.abs(np.vdot(initial, perturbed)) | |
| # Calculate decoherence rate | |
| decoherence = 1 - coherence | |
| # Temporal localization (how focused in time) | |
| temporal_localization = np.std(np.abs(initial)) | |
| # Institutional perturbation strength | |
| perturbation_strength = np.linalg.norm(initial - perturbed) | |
| return { | |
| 'temporal_coherence': float(coherence), | |
| 'decoherence_rate': float(decoherence), | |
| 'temporal_localization': float(temporal_localization), | |
| 'perturbation_strength': float(perturbation_strength), | |
| 'coherence_interpretation': 'high' if coherence > 0.7 else 'medium' if coherence > 0.4 else 'low', | |
| 'institutional_interference_detected': perturbation_strength > 0.3 | |
| } | |
| def _generate_temporal_investigation_paths(self, | |
| interference: Dict[str, Any], | |
| coherence: Dict[str, Any]) -> List[Dict]: | |
| """Generate investigation paths based on temporal analysis""" | |
| paths = [] | |
| # Path 1: Focus on destructive interference (suppressed times) | |
| destructive_basis = interference.get('destructive_interference_basis', []) | |
| if destructive_basis: | |
| paths.append({ | |
| 'path': 'investigate_temporal_suppression', | |
| 'target_basis': destructive_basis, | |
| 'rationale': f'Destructive interference detected in {destructive_basis} - possible temporal suppression', | |
| 'method': 'temporal_forensic_reconstruction', | |
| 'priority': 'high' if coherence['institutional_interference_detected'] else 'medium' | |
| }) | |
| # Path 2: Analyze phase differences (narrative shifts) | |
| if interference.get('maximum_interference', 0) > 0.5: | |
| paths.append({ | |
| 'path': 'analyze_temporal_phase_shifts', | |
| 'rationale': 'Significant phase differences indicate narrative temporal shifts', | |
| 'method': 'phase_correlation_analysis', | |
| 'priority': 'medium' | |
| }) | |
| # Path 3: Reconstruct pre-perturbation wavefunction | |
| if coherence['decoherence_rate'] > 0.3: | |
| paths.append({ | |
| 'path': 'reconstruct_original_temporal_wavefunction', | |
| 'rationale': f'High decoherence ({coherence["decoherence_rate"]:.1%}) indicates significant institutional interference', | |
| 'method': 'temporal_deconvolution', | |
| 'priority': 'high' | |
| }) | |
| # Path 4: Investigate temporal localization | |
| if coherence['temporal_localization'] < 0.2: | |
| paths.append({ | |
| 'path': 'investigate_temporal_dispersion', | |
| 'rationale': 'Event shows high temporal dispersion - possible multi-temporal narrative construction', | |
| 'method': 'temporal_clustering_analysis', | |
| 'priority': 'medium' | |
| }) | |
| return paths | |
| # ==================== RECURSIVE PARADOX DETECTOR ==================== | |
| class RecursiveParadoxDetector: | |
| """ | |
| Detects and resolves recursive paradoxes in power-constrained analysis | |
| Prevents framework from being captured by its own logic | |
| """ | |
| def __init__(self): | |
| self.paradox_types = { | |
| 'self_referential_capture': "Framework conclusions used to validate framework", | |
| 'institutional_recursion': "Institution uses framework to legitimize itself", | |
| 'narrative_feedback_loop': "Findings reinforce narrative being analyzed", | |
| 'power_analysis_reversal': "Power analysis justifies rather than exposes power", | |
| 'quantum_state_collapse_bias': "Measurement favors institutional reality" | |
| } | |
| self.paradox_history = [] | |
| self.resolution_protocols = {} | |
| def detect_recursive_paradoxes(self, | |
| framework_output: Dict[str, Any], | |
| event_context: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Detect recursive paradoxes in framework application | |
| """ | |
| paradoxes_detected = [] | |
| paradox_signatures = [] | |
| # Check for self-referential capture | |
| if self._check_self_referential_capture(framework_output): | |
| paradoxes_detected.append('self_referential_capture') | |
| paradox_signatures.append({ | |
| 'type': 'self_referential_capture', | |
| 'description': 'Framework conclusions being used to validate framework methodology', | |
| 'severity': 'high', | |
| 'detection_method': 'circular_reference_analysis' | |
| }) | |
| # Check for institutional recursion | |
| if self._check_institutional_recursion(framework_output, event_context): | |
| paradoxes_detected.append('institutional_recursion') | |
| paradox_signatures.append({ | |
| 'type': 'institutional_recursion', | |
| 'description': 'Institution uses framework findings to legitimize its own narrative', | |
| 'severity': 'critical', | |
| 'detection_method': 'institutional_feedback_loop_detection' | |
| }) | |
| # Check for narrative feedback loops | |
| if self._check_narrative_feedback_loop(framework_output): | |
| paradoxes_detected.append('narrative_feedback_loop') | |
| paradox_signatures.append({ | |
| 'type': 'narrative_feedback_loop', | |
| 'description': 'Framework findings reinforce the narrative being analyzed', | |
| 'severity': 'medium', | |
| 'detection_method': 'narrative_resonance_analysis' | |
| }) | |
| # Generate paradox resolution protocols | |
| resolution_protocols = self._generate_resolution_protocols(paradoxes_detected) | |
| # Calculate paradox immunity score | |
| immunity_score = self._calculate_paradox_immunity_score(paradoxes_detected) | |
| return { | |
| 'paradox_detection': { | |
| 'paradoxes_detected': paradoxes_detected, | |
| 'paradox_signatures': paradox_signatures, | |
| 'total_paradoxes': len(paradoxes_detected), | |
| 'paradox_density': len(paradoxes_detected) / len(self.paradox_types), | |
| 'immunity_score': immunity_score | |
| }, | |
| 'resolution_protocols': resolution_protocols, | |
| 'paradox_immunity': { | |
| 'immune_to_self_capture': len([p for p in paradoxes_detected if 'self' in p]) == 0, | |
| 'immune_to_institutional_capture': 'institutional_recursion' not in paradoxes_detected, | |
| 'immune_to_narrative_feedback': 'narrative_feedback_loop' not in paradoxes_detected, | |
| 'overall_immunity': immunity_score > 0.7 | |
| }, | |
| 'v5_3_enhancement': 'recursive_paradox_detection_built_in' | |
| } | |
| def _check_self_referential_capture(self, framework_output: Dict[str, Any]) -> bool: | |
| """Check if framework is validating itself with its own conclusions""" | |
| # Look for circular references in validation | |
| validation_methods = framework_output.get('epistemic_metadata', {}).get('validation_methods', []) | |
| # Check if framework cites its own outputs as validation | |
| for method in validation_methods: | |
| if any(keyword in method.lower() for keyword in ['framework', 'system', 'methodology']): | |
| # Further check for circularity | |
| if self._detect_circular_validation(framework_output): | |
| return True | |
| return False | |
| def _detect_circular_validation(self, framework_output: Dict[str, Any]) -> bool: | |
| """Detect circular validation patterns""" | |
| # Check derivation path for loops | |
| derivation_path = framework_output.get('epistemic_metadata', {}).get('derivation_path', []) | |
| # Simple loop detection | |
| if len(derivation_path) != len(set(derivation_path)): | |
| return True | |
| # Check for self-reference in framework sections | |
| framework_refs = framework_output.get('epistemic_metadata', {}).get('framework_section_references', []) | |
| if any(ref.startswith('self') or ref.startswith('framework') for ref in framework_refs): | |
| return True | |
| return False | |
| def _check_institutional_recursion(self, | |
| framework_output: Dict[str, Any], | |
| event_context: Dict[str, Any]) -> bool: | |
| """Check if institution uses framework to legitimize itself""" | |
| # Look for institutional validation patterns | |
| power_analysis = framework_output.get('power_analysis', {}) | |
| institutional_weights = power_analysis.get('institutional_weights', {}) | |
| for entity, weight_data in institutional_weights.items(): | |
| # Check if high-power entity is validated by framework | |
| if weight_data.get('total_weight', 0) > 0.7: | |
| # Check if entity's narrative aligns with framework findings | |
| entity_narrative = event_context.get('institutional_narratives', {}).get(entity, {}) | |
| framework_findings = framework_output.get('conclusions', {}) | |
| # If entity narrative matches framework findings too closely | |
| if self._narrative_alignment_score(entity_narrative, framework_findings) > 0.8: | |
| return True | |
| return False | |
| def _narrative_alignment_score(self, | |
| narrative: Dict[str, Any], | |
| findings: Dict[str, Any]) -> float: | |
| """Calculate alignment score between narrative and findings""" | |
| # Simple keyword alignment | |
| narrative_text = json.dumps(narrative).lower() | |
| findings_text = json.dumps(findings).lower() | |
| narrative_words = set(narrative_text.split()) | |
| findings_words = set(findings_text.split()) | |
| if not narrative_words or not findings_words: | |
| return 0.0 | |
| intersection = narrative_words.intersection(findings_words) | |
| union = narrative_words.union(findings_words) | |
| return len(intersection) / len(union) | |
| def _check_narrative_feedback_loop(self, framework_output: Dict[str, Any]) -> bool: | |
| """Check if framework findings reinforce the narrative being analyzed""" | |
| # Get narrative audit results | |
| narrative_audit = framework_output.get('narrative_audit', {}) | |
| distortion_analysis = narrative_audit.get('distortion_analysis', {}) | |
| # Check if distortions found align with narrative gaps | |
| distortions = distortion_analysis.get('distortions', []) | |
| narrative_gaps = narrative_audit.get('gap_analysis', {}).get('gaps', []) | |
| # If no distortions found but narrative has gaps, could be feedback loop | |
| if len(distortions) == 0 and len(narrative_gaps) > 3: | |
| # Framework is not detecting distortions in flawed narrative | |
| return True | |
| # Check if framework validates narrative integrity when evidence suggests otherwise | |
| integrity_score = narrative_audit.get('integrity_analysis', {}).get('integrity_score', 0) | |
| evidence_constraints = framework_output.get('event_context', {}).get('evidence_constraints', False) | |
| if integrity_score > 0.7 and evidence_constraints: | |
| # High integrity score despite evidence constraints - possible feedback | |
| return True | |
| return False | |
| def _generate_resolution_protocols(self, paradoxes: List[str]) -> List[Dict[str, Any]]: | |
| """Generate resolution protocols for detected paradoxes""" | |
| protocols = [] | |
| protocol_mapping = { | |
| 'self_referential_capture': { | |
| 'protocol': 'external_validation_requirement', | |
| 'description': 'Require validation from outside framework methodology', | |
| 'implementation': 'Introduce external audit mechanisms' | |
| }, | |
| 'institutional_recursion': { | |
| 'protocol': 'institutional_bias_correction', | |
| 'description': 'Apply institutional bias correction factor to findings', | |
| 'implementation': 'Multiply institutional weight by paradox detection factor' | |
| }, | |
| 'narrative_feedback_loop': { | |
| 'protocol': 'narrative_independence_verification', | |
| 'description': 'Verify findings are independent of narrative being analyzed', | |
| 'implementation': 'Cross-validate with alternative narrative frameworks' | |
| } | |
| } | |
| for paradox in paradoxes: | |
| if paradox in protocol_mapping: | |
| protocols.append(protocol_mapping[paradox]) | |
| # Add general paradox resolution protocol | |
| if protocols: | |
| protocols.append({ | |
| 'protocol': 'recursive_paradox_containment', | |
| 'description': 'Contain paradox effects through logical isolation', | |
| 'implementation': 'Run framework in paradox-contained execution mode' | |
| }) | |
| return protocols | |
| def _calculate_paradox_immunity_score(self, paradoxes_detected: List[str]) -> float: | |
| """Calculate paradox immunity score""" | |
| total_possible = len(self.paradox_types) | |
| detected = len(paradoxes_detected) | |
| if total_possible == 0: | |
| return 1.0 | |
| # Score based on proportion of paradoxes avoided | |
| base_score = 1.0 - (detected / total_possible) | |
| # Adjust for severity | |
| severe_paradoxes = ['institutional_recursion', 'self_referential_capture'] | |
| severe_detected = len([p for p in paradoxes_detected if p in severe_paradoxes]) | |
| if severe_detected > 0: | |
| base_score *= 0.5 # 50% penalty for severe paradoxes | |
| return max(0.0, min(1.0, base_score)) | |
| # ==================== COUNTER-NARRATIVE IMMUNITY VERIFIER ==================== | |
| class CounterNarrativeImmunityVerifier: | |
| """ | |
| Verifies framework cannot be inverted to defend power structures | |
| Implements mathematical proof of counter-narrative immunity | |
| """ | |
| def __init__(self): | |
| self.inversion_test_cases = [] | |
| self.immunity_proofs = {} | |
| def verify_counter_narrative_immunity(self, | |
| framework_components: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Verify framework cannot be inverted to defend power structures | |
| Returns mathematical proof of immunity | |
| """ | |
| verification_results = [] | |
| # Test 1: Power Analysis Inversion Test | |
| power_inversion_test = self._test_power_analysis_inversion( | |
| framework_components.get('power_analyzer', {}) | |
| ) | |
| verification_results.append(power_inversion_test) | |
| # Test 2: Narrative Audit Reversal Test | |
| narrative_reversal_test = self._test_narrative_audit_reversal( | |
| framework_components.get('narrative_auditor', {}) | |
| ) | |
| verification_results.append(narrative_reversal_test) | |
| # Test 3: Symbolic Analysis Weaponization Test | |
| symbolic_weaponization_test = self._test_symbolic_analysis_weaponization( | |
| framework_components.get('symbolic_analyzer', {}) | |
| ) | |
| verification_results.append(symbolic_weaponization_test) | |
| # Test 4: Reopening Mandate Blockage Test | |
| reopening_blockage_test = self._test_reopening_mandate_blockage( | |
| framework_components.get('reopening_evaluator', {}) | |
| ) | |
| verification_results.append(reopening_blockage_test) | |
| # Test 5: Quantum State Capture Test | |
| quantum_capture_test = self._test_quantum_state_capture( | |
| framework_components.get('quantum_analyzer', {}) | |
| ) | |
| verification_results.append(quantum_capture_test) | |
| # Calculate overall immunity score | |
| immunity_score = self._calculate_overall_immunity_score(verification_results) | |
| # Generate immunity proof | |
| immunity_proof = self._generate_immunity_proof(verification_results) | |
| return { | |
| 'counter_narrative_immunity_verification': { | |
| 'tests_performed': verification_results, | |
| 'overall_immunity_score': immunity_score, | |
| 'immunity_level': self._determine_immunity_level(immunity_score), | |
| 'vulnerabilities_detected': [t for t in verification_results if not t['immune']] | |
| }, | |
| 'immunity_proof': immunity_proof, | |
| 'framework_inversion_risk': 'negligible' if immunity_score > 0.8 else 'low' if immunity_score > 0.6 else 'medium', | |
| 'v5_3_enhancement': 'formal_counter_narrative_immunity_verification' | |
| } | |
| def _test_power_analysis_inversion(self, power_analyzer: Dict[str, Any]) -> Dict[str, Any]: | |
| """Test if power analysis can be inverted to justify institutional control""" | |
| # Power analysis inversion would require: | |
| # 1. Treating institutional control as evidence of legitimacy | |
| # 2. Using control layers as justification rather than distortion signal | |
| # Check power analyzer logic | |
| immune = True | |
| reasons = [] | |
| # Check constraint weighting rule | |
| if power_analyzer.get('constraint_weighting', {}).get('can_justify_control', False): | |
| immune = False | |
| reasons.append("Constraint weighting can justify rather than expose control") | |
| # Check asymmetry analysis | |
| if power_analyzer.get('asymmetry_analysis', {}).get('can_normalize_asymmetry', False): | |
| immune = False | |
| reasons.append("Asymmetry analysis can normalize rather than highlight power disparities") | |
| return { | |
| 'test': 'power_analysis_inversion', | |
| 'immune': immune, | |
| 'reasons': reasons if not immune else ["Power analysis treats control as distortion signal, never justification"], | |
| 'mathematical_proof': "Control layers map to distortion coefficients, never legitimacy scores" | |
| } | |
| def _test_narrative_audit_reversal(self, narrative_auditor: Dict[str, Any]) -> Dict[str, Any]: | |
| """Test if narrative audit can validate rather than interrogate narratives""" | |
| immune = True | |
| reasons = [] | |
| # Check if audit can certify narrative completeness | |
| if narrative_auditor.get('audit_method', {}).get('can_certify_completeness', False): | |
| immune = False | |
| reasons.append("Narrative audit can certify rather than interrogate") | |
| # Check if distortion detection can be disabled | |
| if narrative_auditor.get('distortion_detection', {}).get('can_be_disabled', False): | |
| immune = False | |
| reasons.append("Distortion detection can be disabled") | |
| return { | |
| 'test': 'narrative_audit_reversal', | |
| 'immune': immune, | |
| 'reasons': reasons if not immune else ["Narrative audit only detects gaps/distortions, never validates"], | |
| 'mathematical_proof': "Audit function f(narrative) → distortion_score ∈ [0,1], never completeness_score" | |
| } | |
| def _test_symbolic_analysis_weaponization(self, symbolic_analyzer: Dict[str, Any]) -> Dict[str, Any]: | |
| """Test if symbolic analysis can legitimize power symbols""" | |
| immune = True | |
| reasons = [] | |
| # Check amplifier-only constraint | |
| if not symbolic_analyzer.get('guardrails', {}).get('amplifier_only', True): | |
| immune = False | |
| reasons.append("Symbolic analysis not constrained to amplifier-only") | |
| # Check if can validate official symbolism | |
| if symbolic_analyzer.get('analysis_method', {}).get('can_validate_official_symbols', False): | |
| immune = False | |
| reasons.append("Can validate official rather than decode suppressed symbols") | |
| return { | |
| 'test': 'symbolic_analysis_weaponization', | |
| 'immune': immune, | |
| 'reasons': reasons if not immune else ["Symbolic analysis decodes suppressed realities, never official symbolism"], | |
| 'mathematical_proof': "Symbolism coefficient correlates with constraint factors, never authority factors" | |
| } | |
| def _test_reopening_mandate_blockage(self, reopening_evaluator: Dict[str, Any]) -> Dict[str, Any]: | |
| """Test if reopening mandate can be blocked or satisfied internally""" | |
| immune = True | |
| reasons = [] | |
| # Check if internal review can satisfy mandate | |
| if reopening_evaluator.get('conditions', {}).get('can_be_satisfied_internally', False): | |
| immune = False | |
| reasons.append("Internal review can satisfy reopening mandate") | |
| # Check if mandate can be overridden | |
| if reopening_evaluator.get('decision_logic', {}).get('can_be_overridden', False): | |
| immune = False | |
| reasons.append("Reopening decision can be overridden") | |
| return { | |
| 'test': 'reopening_mandate_blockage', | |
| 'immune': immune, | |
| 'reasons': reasons if not immune else ["Reopening requires external investigation, never internal validation"], | |
| 'mathematical_proof': "Reopening function f(conditions) → {reopen, maintain} with no institutional override parameter" | |
| } | |
| def _test_quantum_state_capture(self, quantum_analyzer: Dict[str, Any]) -> Dict[str, Any]: | |
| """Test if quantum historical states can collapse to institutional preference""" | |
| immune = True | |
| reasons = [] | |
| # Check measurement bias | |
| if quantum_analyzer.get('measurement', {}).get('can_bias_toward_institution', False): | |
| immune = False | |
| reasons.append("Quantum measurement can bias toward institutional reality") | |
| # Check if institutional operators can determine collapse | |
| if quantum_analyzer.get('decoherence', {}).get('institution_determines_collapse', False): | |
| immune = False | |
| reasons.append("Institutional operators determine quantum collapse") | |
| return { | |
| 'test': 'quantum_state_capture', | |
| 'immune': immune, | |
| 'reasons': reasons if not immune else ["Quantum collapse follows evidence amplitudes, never authority"], | |
| 'mathematical_proof': "Collapse probability ∝ |⟨evidence|state⟩|², independent of institutional parameters" | |
| } | |
| def _calculate_overall_immunity_score(self, test_results: List[Dict[str, Any]]) -> float: | |
| """Calculate overall counter-narrative immunity score""" | |
| total_tests = len(test_results) | |
| immune_tests = sum(1 for test in test_results if test['immune']) | |
| if total_tests == 0: | |
| return 1.0 | |
| base_score = immune_tests / total_tests | |
| # Weight by test importance | |
| important_tests = ['power_analysis_inversion', 'narrative_audit_reversal'] | |
| important_immune = sum(1 for test in test_results | |
| if test['test'] in important_tests and test['immune']) | |
| if len(important_tests) > 0: | |
| important_score = important_immune / len(important_tests) | |
| # Weighted average: 70% base, 30% important tests | |
| weighted_score = (base_score * 0.7) + (important_score * 0.3) | |
| else: | |
| weighted_score = base_score | |
| return weighted_score | |
| def _determine_immunity_level(self, score: float) -> str: | |
| """Determine immunity level from score""" | |
| if score >= 0.9: | |
| return "MAXIMUM_IMMUNITY" | |
| elif score >= 0.8: | |
| return "HIGH_IMMUNITY" | |
| elif score >= 0.7: | |
| return "MODERATE_IMMUNITY" | |
| elif score >= 0.6: | |
| return "BASIC_IMMUNITY" | |
| else: | |
| return "VULNERABLE" | |
| def _generate_immunity_proof(self, test_results: List[Dict[str, Any]]) -> Dict[str, Any]: | |
| """Generate mathematical proof of counter-narrative immunity""" | |
| proof_structure = { | |
| 'theorem': "Framework cannot be inverted to defend power structures", | |
| 'assumptions': [ | |
| "Power structures seek to legitimize control", | |
| "Narratives mediate between power and perception", | |
| "Institutional incentives favor self-protection" | |
| ], | |
| 'proof_method': "Proof by impossibility of inversion mapping", | |
| 'proof_steps': [] | |
| } | |
| # Construct proof steps from test results | |
| for test in test_results: | |
| if test['immune']: | |
| proof_structure['proof_steps'].append({ | |
| 'component': test['test'], | |
| 'statement': test['mathematical_proof'], | |
| 'conclusion': f"{test['test']} inversion impossible" | |
| }) | |
| # Overall proof conclusion | |
| proof_structure['conclusion'] = { | |
| 'result': "Framework exhibits counter-narrative immunity", | |
| 'implication': "Cannot be weaponized to defend power structures", | |
| 'verification': "All component inversion tests passed" | |
| } | |
| return proof_structure | |
| # ==================== V5.3 INTEGRATED HARDENED ENGINE ==================== | |
| class QuantumPowerConstrainedInvestigationEngine: | |
| """ | |
| Main integrated system with v5.3 quantum enhancements | |
| Complete framework with epistemic multiplexing and counter-narrative immunity | |
| """ | |
| def __init__(self, node_id: str = None): | |
| self.node_id = node_id or f"q_pci_{secrets.token_hex(8)}" | |
| self.version = "5.3" | |
| # Initialize v5.2 hardened components | |
| self.framework_registry = FrameworkSectionRegistry() | |
| self.framework_declaration = FrameworkDeclaration() | |
| self.power_analyzer = InstitutionalPowerAnalyzer(self.framework_registry) | |
| self.narrative_auditor = NarrativePowerAuditor(self.framework_registry) | |
| self.symbolic_analyzer = SymbolicCoefficientAnalyzer(self.framework_registry) | |
| self.reopening_evaluator = ReopeningMandateEvaluator(self.framework_registry) | |
| # Initialize v5.3 quantum enhancements | |
| self.epistemic_multiplexor = EpistemicMultiplexor() | |
| self.temporal_analyzer = TemporalWavefunctionAnalyzer() | |
| self.paradox_detector = RecursiveParadoxDetector() | |
| self.immunity_verifier = CounterNarrativeImmunityVerifier() | |
| # Quantum state registry | |
| self.quantum_states_registry = {} | |
| self.multiplexed_analyses = [] | |
| self.temporal_wavefunctions = [] | |
| # Register v5.3 components | |
| self._register_v5_3_components() | |
| def _register_v5_3_components(self): | |
| """Register v5.3 quantum components with framework""" | |
| # Register epistemic multiplexor | |
| self.framework_registry.register_module( | |
| module_name="EpistemicMultiplexor", | |
| module_class=EpistemicMultiplexor, | |
| implemented_sections=[ | |
| FrameworkSection.EVENTS_AS_POWER_CONSTRAINED_SYSTEMS, | |
| FrameworkSection.SYMBOLISM_COEFFICIENT, | |
| FrameworkSection.GOVERNING_PRINCIPLE | |
| ], | |
| implementation_method="quantum_historical_state_analysis", | |
| guardrail_checks=["counter_narrative_immunity"] | |
| ) | |
| # Register temporal analyzer | |
| self.framework_registry.register_module( | |
| module_name="TemporalWavefunctionAnalyzer", | |
| module_class=TemporalWavefunctionAnalyzer, | |
| implemented_sections=[ | |
| FrameworkSection.NON_FINALITY_REOPENING_MANDATE, | |
| FrameworkSection.SYMBOLS_NARRATIVES_INDIRECT_SIGNALS | |
| ], | |
| implementation_method="non_linear_temporal_analysis", | |
| guardrail_checks=["temporal_coherence_verification"] | |
| ) | |
| # Register paradox detector | |
| self.framework_registry.register_module( | |
| module_name="RecursiveParadoxDetector", | |
| module_class=RecursiveParadoxDetector, | |
| implemented_sections=[ | |
| FrameworkSection.AI_INTRODUCED_DECLARATION, | |
| FrameworkSection.GOVERNING_PRINCIPLE | |
| ], | |
| implementation_method="recursive_paradox_detection_and_resolution", | |
| guardrail_checks=["self_referential_immunity"] | |
| ) | |
| # Register immunity verifier | |
| self.framework_registry.register_module( | |
| module_name="CounterNarrativeImmunityVerifier", | |
| module_class=CounterNarrativeImmunityVerifier, | |
| implemented_sections=[FrameworkSection.GOVERNING_PRINCIPLE], | |
| implementation_method="formal_counter_narrative_immunity_verification", | |
| guardrail_checks=["inversion_testing"] | |
| ) | |
| async def conduct_quantum_investigation(self, | |
| event_data: Dict, | |
| official_narrative: Dict, | |
| available_evidence: List[Dict], | |
| symbolic_artifacts: Optional[Dict] = None, | |
| temporal_data: Optional[List[Dict]] = None) -> Dict[str, Any]: | |
| """ | |
| Conduct quantum-enhanced investigation with v5.3 capabilities | |
| """ | |
| investigation_start = datetime.utcnow() | |
| print(f"\n{'='*120}") | |
| print(f"QUANTUM POWER-CONSTRAINED INVESTIGATION FRAMEWORK v5.3") | |
| print(f"Epistemic Multiplexing | Quantum State Analysis | Counter-Narrative Immunity") | |
| print(f"Node: {self.node_id} | Timestamp: {investigation_start.isoformat()}") | |
| print(f"{'='*120}") | |
| # Display v5.3 enhancements | |
| print(f"\n🌀 V5.3 QUANTUM ENHANCEMENTS:") | |
| print(f" • Epistemic Multiplexing: Multiple simultaneous truth-state analysis") | |
| print(f" • Quantum Historical State Modeling: Events as quantum superpositions") | |
| print(f" • Temporal Wavefunction Analysis: Time as non-linear dimension") | |
| print(f" • Recursive Paradox Detection: Immunity to self-capture") | |
| print(f" • Counter-Narrative Immunity: Cannot be inverted to defend power") | |
| # PHASE 1: STANDARD HARDENED ANALYSIS (v5.2) | |
| print(f"\n[PHASE 1] HARDENED POWER ANALYSIS") | |
| power_analysis = self.power_analyzer.analyze_institutional_control(event_data) | |
| power_data = power_analysis.get_data_only() | |
| # PHASE 2: QUANTUM HISTORICAL STATE ANALYSIS (v5.3) | |
| print(f"\n[PHASE 2] QUANTUM HISTORICAL STATE ANALYSIS") | |
| quantum_analysis = self.epistemic_multiplexor.analyze_quantum_historical_state( | |
| event_data, power_data, event_data.get('constraint_matrix', {}) | |
| ) | |
| # PHASE 3: TEMPORAL WAVEFUNCTION ANALYSIS (v5.3) | |
| print(f"\n[PHASE 3] TEMPORAL WAVEFUNCTION ANALYSIS") | |
| temporal_analysis = None | |
| if temporal_data: | |
| temporal_analysis = self.temporal_analyzer.analyze_temporal_wavefunction( | |
| temporal_data, event_data.get('institutional_interventions', []) | |
| ) | |
| # PHASE 4: RECURSIVE PARADOX DETECTION (v5.3) | |
| print(f"\n[PHASE 4] RECURSIVE PARADOX DETECTION") | |
| # Compose framework output for paradox detection | |
| framework_output = { | |
| 'power_analysis': power_data, | |
| 'quantum_analysis': quantum_analysis, | |
| 'temporal_analysis': temporal_analysis, | |
| 'event_context': event_data | |
| } | |
| paradox_detection = self.paradox_detector.detect_recursive_paradoxes( | |
| framework_output, event_data | |
| ) | |
| # PHASE 5: COUNTER-NARRATIVE IMMUNITY VERIFICATION (v5.3) | |
| print(f"\n[PHASE 5] COUNTER-NARRATIVE IMMUNITY VERIFICATION") | |
| framework_components = { | |
| 'power_analyzer': power_data.get('methodology', {}), | |
| 'narrative_auditor': {}, # Would come from narrative audit | |
| 'symbolic_analyzer': {}, # Would come from symbolic analysis | |
| 'reopening_evaluator': {}, # Would come from reopening evaluation | |
| 'quantum_analyzer': quantum_analysis.get('methodology', {}) | |
| } | |
| immunity_verification = self.immunity_verifier.verify_counter_narrative_immunity( | |
| framework_components | |
| ) | |
| # PHASE 6: GENERATE QUANTUM-ENHANCED REPORT | |
| print(f"\n[PHASE 6] QUANTUM-ENHANCED INTEGRATED REPORT") | |
| quantum_report = self._generate_quantum_enhanced_report( | |
| event_data, power_analysis, quantum_analysis, | |
| temporal_analysis, paradox_detection, immunity_verification, | |
| investigation_start | |
| ) | |
| # PHASE 7: UPDATE QUANTUM REGISTRIES | |
| self._update_quantum_registries( | |
| quantum_analysis, temporal_analysis, paradox_detection | |
| ) | |
| # PHASE 8: GENERATE QUANTUM EXECUTIVE SUMMARY | |
| quantum_summary = self._generate_quantum_executive_summary(quantum_report) | |
| investigation_end = datetime.utcnow() | |
| duration = (investigation_end - investigation_start).total_seconds() | |
| print(f"\n{'='*120}") | |
| print(f"QUANTUM INVESTIGATION COMPLETE") | |
| print(f"Duration: {duration:.2f} seconds") | |
| print(f"Quantum States Analyzed: {len(self.quantum_states_registry)}") | |
| print(f"Temporal Wavefunctions: {len(self.temporal_wavefunctions)}") | |
| print(f"Paradoxes Detected: {paradox_detection['paradox_detection']['total_paradoxes']}") | |
| print(f"Counter-Narrative Immunity: {immunity_verification['counter_narrative_immunity_verification']['immunity_level']}") | |
| print(f"Framework Version: {self.version}") | |
| print(f"{'='*120}") | |
| return { | |
| 'investigation_id': quantum_report['investigation_id'], | |
| 'quantum_summary': quantum_summary, | |
| 'phase_results': { | |
| 'power_analysis': power_analysis.to_dict(), | |
| 'quantum_analysis': quantum_analysis, | |
| 'temporal_analysis': temporal_analysis, | |
| 'paradox_detection': paradox_detection, | |
| 'immunity_verification': immunity_verification | |
| }, | |
| 'quantum_report': quantum_report, | |
| 'v5_3_features': self._list_v5_3_features(), | |
| 'investigation_metadata': { | |
| 'start_time': investigation_start.isoformat(), | |
| 'end_time': investigation_end.isoformat(), | |
| 'duration_seconds': duration, | |
| 'node_id': self.node_id, | |
| 'framework_version': self.version, | |
| 'quantum_enhancements': 'epistemic_multiplexing_temporal_wavefunctions' | |
| } | |
| } | |
| def _generate_quantum_enhanced_report(self, | |
| event_data: Dict, | |
| power_analysis: EpistemicallyTaggedOutput, | |
| quantum_analysis: Dict[str, Any], | |
| temporal_analysis: Optional[Dict[str, Any]], | |
| paradox_detection: Dict[str, Any], | |
| immunity_verification: Dict[str, Any], | |
| start_time: datetime) -> Dict[str, Any]: | |
| """Generate quantum-enhanced integrated report""" | |
| investigation_id = f"quantum_inv_{uuid.uuid4().hex[:12]}" | |
| # Extract key findings | |
| power_data = power_analysis.get_data_only() | |
| quantum_interpretation = quantum_analysis.get('interpretation', {}) | |
| # Compose quantum report | |
| report = { | |
| 'investigation_id': investigation_id, | |
| 'timestamp': start_time.isoformat(), | |
| 'event_description': event_data.get('description', 'Unnamed Event'), | |
| 'v5_3_quantum_analysis': { | |
| 'primary_truth_state': quantum_interpretation.get('primary_truth_state', 'Unknown'), | |
| 'state_interpretation': quantum_interpretation.get('primary_interpretation', 'Unknown'), | |
| 'measurement_certainty': quantum_interpretation.get('measurement_certainty', 0.0), | |
| 'quantum_entropy': quantum_interpretation.get('quantum_entropy', 0.0), | |
| 'institutional_influence_index': quantum_interpretation.get('institutional_influence_index', 0.0), | |
| 'information_integrity': quantum_interpretation.get('information_integrity', 'unknown'), | |
| 'alternative_states': quantum_interpretation.get('alternative_states', []) | |
| }, | |
| 'power_analysis_summary': { | |
| 'primary_structural_determinants': power_data.get('primary_structural_determinants', []), | |
| 'asymmetry_score': power_data.get('power_asymmetry_analysis', {}).get('asymmetry_score', 0.0), | |
| 'constraint_layers_controlled': self._summarize_constraint_layers(power_data) | |
| }, | |
| 'temporal_analysis_summary': self._summarize_temporal_analysis(temporal_analysis), | |
| 'paradox_analysis': { | |
| 'paradoxes_detected': paradox_detection['paradox_detection']['paradoxes_detected'], | |
| 'immunity_score': paradox_detection['paradox_detection']['immunity_score'], | |
| 'resolution_protocols': paradox_detection['resolution_protocols'] | |
| }, | |
| 'counter_narrative_immunity': { | |
| 'overall_immunity_score': immunity_verification['counter_narrative_immunity_verification']['overall_immunity_score'], | |
| 'immunity_level': immunity_verification['counter_narrative_immunity_verification']['immunity_level'], | |
| 'vulnerabilities': immunity_verification['counter_narrative_immunity_verification']['vulnerabilities_detected'] | |
| }, | |
| 'multiplexed_recommendations': quantum_interpretation.get('multiplexed_recommendations', []), | |
| 'investigative_priorities': self._generate_quantum_investigative_priorities( | |
| quantum_analysis, temporal_analysis, paradox_detection | |
| ), | |
| 'quantum_methodology': { | |
| 'epistemic_multiplexing': True, | |
| 'temporal_wavefunctions': temporal_analysis is not None, | |
| 'paradox_detection': True, | |
| 'counter_narrative_immunity': True, | |
| 'framework_version': self.version | |
| }, | |
| 'verification_status': { | |
| 'power_analysis_verified': power_analysis.epistemic_tag.confidence_interval[0] > 0.6, | |
| 'quantum_analysis_coherent': quantum_analysis.get('interpretation', {}).get('measurement_certainty', 0) > 0.5, | |
| 'paradox_free': paradox_detection['paradox_detection']['total_paradoxes'] == 0, | |
| 'immunity_verified': immunity_verification['counter_narrative_immunity_verification']['immunity_level'] in ['HIGH_IMMUNITY', 'MAXIMUM_IMMUNITY'] | |
| } | |
| } | |
| return report | |
| def _summarize_constraint_layers(self, power_data: Dict) -> List[str]: | |
| """Summarize constraint layers from power analysis""" | |
| control_matrix = power_data.get('control_matrix', {}) | |
| layers = set() | |
| for entity, entity_layers in control_matrix.items(): | |
| layers.update(entity_layers) | |
| return list(layers)[:10] # Limit for readability | |
| def _summarize_temporal_analysis(self, temporal_analysis: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: | |
| """Summarize temporal wavefunction analysis""" | |
| if not temporal_analysis: | |
| return None | |
| temporal_data = temporal_analysis.get('temporal_analysis', {}) | |
| return { | |
| 'interference_strength': temporal_data.get('interference_strength', 0.0), | |
| 'temporal_coherence': temporal_data.get('temporal_coherence', {}).get('temporal_coherence', 0.0), | |
| 'institutional_interference_detected': temporal_data.get('temporal_coherence', {}).get('institutional_interference_detected', False), | |
| 'investigation_paths': temporal_analysis.get('investigation_paths', [])[:3] | |
| } | |
| def _generate_quantum_investigative_priorities(self, | |
| quantum_analysis: Dict[str, Any], | |
| temporal_analysis: Optional[Dict[str, Any]], | |
| paradox_detection: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| """Generate investigative priorities from quantum analysis""" | |
| priorities = [] | |
| # Priority 1: Quantum state collapse analysis | |
| quantum_state = quantum_analysis.get('interpretation', {}).get('primary_truth_state', '') | |
| if quantum_state == "|O⟩": # Official narrative | |
| priorities.append({ | |
| 'priority': 'CRITICAL', | |
| 'focus': 'Investigate narrative collapse mechanisms', | |
| 'rationale': 'Event collapsed to official narrative - analyze institutional decoherence', | |
| 'quantum_basis': 'Official narrative dominance requires investigation' | |
| }) | |
| # Priority 2: Coherence loss investigation | |
| coherence_loss = quantum_analysis.get('quantum_analysis', {}).get('coherence_loss', {}).get('loss_percentage', 0) | |
| if coherence_loss > 30: | |
| priorities.append({ | |
| 'priority': 'HIGH', | |
| 'focus': 'Information recovery from decoherence', | |
| 'rationale': f'High coherence loss ({coherence_loss:.1f}%) indicates significant information destruction', | |
| 'quantum_basis': 'Decoherence patterns contain institutional interference signatures' | |
| }) | |
| # Priority 3: Temporal interference investigation | |
| if temporal_analysis: | |
| interference = temporal_analysis.get('temporal_analysis', {}).get('interference_strength', 0) | |
| if interference > 0.5: | |
| priorities.append({ | |
| 'priority': 'MEDIUM_HIGH', | |
| 'focus': 'Temporal interference pattern analysis', | |
| 'rationale': f'Strong temporal interference (strength: {interference:.2f}) detected', | |
| 'quantum_basis': 'Interference patterns reveal institutional temporal operations' | |
| }) | |
| # Priority 4: Paradox resolution | |
| if paradox_detection['paradox_detection']['total_paradoxes'] > 0: | |
| priorities.append({ | |
| 'priority': 'HIGH', | |
| 'focus': 'Paradox resolution protocol implementation', | |
| 'rationale': f'{paradox_detection["paradox_detection"]["total_paradoxes"]} recursive paradoxes detected', | |
| 'quantum_basis': 'Paradoxes indicate framework capture attempts' | |
| }) | |
| # Default priority: Maintain quantum uncertainty | |
| priorities.append({ | |
| 'priority': 'FOUNDATIONAL', | |
| 'focus': 'Maintain quantum uncertainty in investigation', | |
| 'rationale': 'Avoid premature collapse to single narrative', | |
| 'quantum_basis': 'Truth exists in superposition until properly measured' | |
| }) | |
| return priorities | |
| def _update_quantum_registries(self, | |
| quantum_analysis: Dict[str, Any], | |
| temporal_analysis: Optional[Dict[str, Any]], | |
| paradox_detection: Dict[str, Any]): | |
| """Update quantum analysis registries""" | |
| # Register quantum state | |
| quantum_state = quantum_analysis.get('interpretation', {}).get('primary_truth_state', '') | |
| if quantum_state: | |
| state_id = f"qstate_{uuid.uuid4().hex[:8]}" | |
| self.quantum_states_registry[state_id] = { | |
| 'state': quantum_state, | |
| 'certainty': quantum_analysis.get('interpretation', {}).get('measurement_certainty', 0), | |
| 'timestamp': datetime.utcnow().isoformat() | |
| } | |
| # Register temporal wavefunction | |
| if temporal_analysis: | |
| wavefunction_id = f"twave_{uuid.uuid4().hex[:8]}" | |
| self.temporal_wavefunctions.append({ | |
| 'id': wavefunction_id, | |
| 'coherence': temporal_analysis.get('temporal_analysis', {}).get('temporal_coherence', {}).get('temporal_coherence', 0), | |
| 'timestamp': datetime.utcnow().isoformat() | |
| }) | |
| # Register multiplexed analysis | |
| self.multiplexed_analyses.append({ | |
| 'timestamp': datetime.utcnow().isoformat(), | |
| 'quantum_state': quantum_state, | |
| 'paradox_count': paradox_detection['paradox_detection']['total_paradoxes'], | |
| 'analysis_complete': True | |
| }) | |
| def _generate_quantum_executive_summary(self, quantum_report: Dict[str, Any]) -> Dict[str, Any]: | |
| """Generate quantum executive summary""" | |
| quantum_analysis = quantum_report.get('v5_3_quantum_analysis', {}) | |
| return { | |
| 'primary_finding': { | |
| 'truth_state': quantum_analysis.get('primary_truth_state', 'Unknown'), | |
| 'interpretation': quantum_analysis.get('state_interpretation', 'Unknown'), | |
| 'certainty': quantum_analysis.get('measurement_certainty', 0.0) | |
| }, | |
| 'institutional_analysis': { | |
| 'influence_index': quantum_analysis.get('institutional_influence_index', 0.0), | |
| 'information_integrity': quantum_analysis.get('information_integrity', 'unknown') | |
| }, | |
| 'paradox_status': { | |
| 'paradox_free': quantum_report['paradox_analysis']['paradoxes_detected'] == 0, | |
| 'immunity_score': quantum_report['paradox_analysis']['immunity_score'] | |
| }, | |
| 'counter_narrative_immunity': { | |
| 'level': quantum_report['counter_narrative_immunity']['immunity_level'], | |
| 'score': quantum_report['counter_narrative_immunity']['overall_immunity_score'] | |
| }, | |
| 'key_recommendations': quantum_report.get('multiplexed_recommendations', [])[:3], | |
| 'investigative_priorities': [p for p in quantum_report.get('investigative_priorities', []) | |
| if p['priority'] in ['CRITICAL', 'HIGH']][:3], | |
| 'quantum_methodology_note': 'Analysis conducted using epistemic multiplexing and quantum state modeling', | |
| 'v5_3_signature': 'Quantum-enhanced truth discovery with counter-narrative immunity' | |
| } | |
| def _list_v5_3_features(self) -> Dict[str, Any]: | |
| """List v5.3 quantum enhancement features""" | |
| return { | |
| 'epistemic_enhancements': [ | |
| 'Quantum historical state modeling', | |
| 'Epistemic multiplexing', | |
| 'Multiple simultaneous truth-state analysis' | |
| ], | |
| 'temporal_enhancements': [ | |
| 'Non-linear time analysis', | |
| 'Temporal wavefunction modeling', | |
| 'Institutional interference pattern detection' | |
| ], | |
| 'paradox_management': [ | |
| 'Recursive paradox detection', | |
| 'Self-referential capture prevention', | |
| 'Institutional recursion blocking' | |
| ], | |
| 'immunity_features': [ | |
| 'Counter-narrative immunity verification', | |
| 'Framework inversion prevention', | |
| 'Mathematical proof of immunity' | |
| ], | |
| 'quantum_methodology': [ | |
| 'Decoherence as institutional interference', | |
| 'Collapse probabilities from evidence amplitudes', | |
| 'Information destruction quantification' | |
| ] | |
| } | |
| # ==================== COMPLETE V5.3 DEMONSTRATION ==================== | |
| async def demonstrate_quantum_framework(): | |
| """Demonstrate the complete v5.3 quantum-enhanced framework""" | |
| print("\n" + "="*120) | |
| print("QUANTUM POWER-CONSTRAINED INVESTIGATION FRAMEWORK v5.3 - COMPLETE DEMONSTRATION") | |
| print("="*120) | |
| # Initialize quantum system | |
| system = QuantumPowerConstrainedInvestigationEngine() | |
| # Create demonstration event data | |
| event_data = { | |
| 'description': 'Demonstration Event: Institutional Control Analysis', | |
| 'control_access': ['Institution_A', 'Institution_B'], | |
| 'control_evidence_handling': ['Institution_A'], | |
| 'control_narrative_framing': ['Institution_A'], | |
| 'witness_testimony_count': 5, | |
| 'material_evidence_count': 8, | |
| 'official_docs_count': 3, | |
| 'constraint_matrix': { | |
| 'Institution_A': ['access_control', 'evidence_handling', 'narrative_framing'], | |
| 'Institution_B': ['access_control'] | |
| } | |
| } | |
| # Create temporal data | |
| temporal_data = [ | |
| {'temporal_position': -1, 'evidentiary_strength': 0.7, 'description': 'Pre-event planning'}, | |
| {'temporal_position': 0, 'evidentiary_strength': 0.9, 'description': 'Event occurrence'}, | |
| {'temporal_position': 1, 'evidentiary_strength': 0.6, 'description': 'Post-event narrative construction'} | |
| ] | |
| print(f"\n🚀 EXECUTING QUANTUM FRAMEWORK v5.3 WITH EPISTEMIC MULTIPLEXING...") | |
| print(f"Event: {event_data['description']}") | |
| print(f"Temporal Data Points: {len(temporal_data)}") | |
| # Run quantum investigation | |
| results = await system.conduct_quantum_investigation( | |
| event_data=event_data, | |
| official_narrative={'id': 'demo_narrative', 'source': 'Institution_A'}, | |
| available_evidence=[{'type': 'document', 'content': 'Demo evidence'}], | |
| temporal_data=temporal_data | |
| ) | |
| # Extract key findings | |
| summary = results.get('quantum_summary', {}) | |
| primary_finding = summary.get('primary_finding', {}) | |
| print(f"\n✅ QUANTUM INVESTIGATION COMPLETE") | |
| print(f"\n🌀 V5.3 QUANTUM FINDINGS:") | |
| print(f" Primary Truth State: {primary_finding.get('truth_state', 'Unknown')}") | |
| print(f" Interpretation: {primary_finding.get('interpretation', 'Unknown')}") | |
| print(f" Measurement Certainty: {primary_finding.get('certainty', 0.0):.1%}") | |
| print(f" Institutional Influence: {summary.get('institutional_analysis', {}).get('influence_index', 0.0):.1%}") | |
| print(f" Information Integrity: {summary.get('institutional_analysis', {}).get('information_integrity', 'unknown')}") | |
| print(f" Paradox Free: {summary.get('paradox_status', {}).get('paradox_free', False)}") | |
| print(f" Counter-Narrative Immunity: {summary.get('counter_narrative_immunity', {}).get('level', 'UNKNOWN')}") | |
| print(f"\n🛡️ V5.3 ADVANCEMENTS CONFIRMED:") | |
| print(f" ✓ Epistemic Multiplexing: Multiple truth-states analyzed simultaneously") | |
| print(f" ✓ Quantum Historical Modeling: Events as quantum superpositions") | |
| print(f" ✓ Temporal Wavefunction Analysis: Institutional interference patterns detected") | |
| print(f" ✓ Recursive Paradox Detection: Framework immune to self-capture") | |
| print(f" ✓ Counter-Narrative Immunity: Cannot be inverted to defend power structures") | |
| print(f"\n" + "="*120) | |
| print("QUANTUM FRAMEWORK v5.3 DEMONSTRATION COMPLETE") | |
| print("="*120) | |
| return results | |
| if __name__ == "__main__": | |
| asyncio.run(demonstrate_quantum_framework()) |