File size: 7,994 Bytes
1a38f8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
2024/08/25 18:15:54 - mmengine - INFO - 
------------------------------------------------------------
System environment:
    sys.platform: linux
    Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
    CUDA available: True
    MUSA available: False
    numpy_random_seed: 698415529
    GPU 0,1: NVIDIA A100-SXM4-80GB
    CUDA_HOME: /usr/local/cuda
    NVCC: Cuda compilation tools, release 12.2, V12.2.140
    GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
    PyTorch: 2.3.1+cu121
    PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.3.6 (Git Hash 86e6af5974177e513fd3fee58425e1063e7f1361)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX512
  - CUDA Runtime 12.1
  - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
  - CuDNN 8.9.2
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.3.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, 

    TorchVision: 0.18.1+cu121
    OpenCV: 4.9.0
    MMEngine: 0.10.3

Runtime environment:
    cudnn_benchmark: False
    mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
    dist_cfg: {'backend': 'nccl'}
    seed: 698415529
    deterministic: False
    Distributed launcher: none
    Distributed training: False
    GPU number: 1
------------------------------------------------------------

2024/08/25 18:15:54 - mmengine - INFO - Config:
accumulative_counts = 4
batch_size = 4
betas = (
    0.9,
    0.999,
)
custom_hooks = [
    dict(
        tokenizer=dict(
            pretrained_model_name_or_path='/root/models/InternVL2_2B',
            trust_remote_code=True,
            type='transformers.AutoTokenizer.from_pretrained'),
        type='xtuner.engine.hooks.DatasetInfoHook'),
]
data_path = '/root/data/screenshot_od/layout_ocr_multi.json'
data_root = '/root/data/extracted_images'
dataloader_num_workers = 4
default_hooks = dict(
    checkpoint=dict(
        by_epoch=False,
        interval=1000,
        max_keep_ckpts=-1,
        save_optimizer=False,
        type='mmengine.hooks.CheckpointHook'),
    logger=dict(
        interval=10,
        log_metric_by_epoch=False,
        type='mmengine.hooks.LoggerHook'),
    param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
    sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
    timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(
    cudnn_benchmark=False,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
image_folder = '/root/data/extracted_imagesscreenshot_od/images'
launcher = 'none'
llava_dataset = dict(
    data_paths='/root/data/screenshot_od/layout_ocr_multi.json',
    image_folders='/root/data/extracted_imagesscreenshot_od/images',
    max_length=8192,
    model_path='/root/models/InternVL2_2B',
    template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
    type='xtuner.dataset.InternVL_V1_5_Dataset')
load_from = None
log_level = 'DEBUG'
log_processor = dict(by_epoch=False)
lr = 2e-05
max_epochs = 4
max_length = 8192
max_norm = 1
model = dict(
    freeze_llm=True,
    freeze_visual_encoder=True,
    llm_lora=dict(
        lora_alpha=256,
        lora_dropout=0.05,
        r=128,
        target_modules=None,
        task_type='CAUSAL_LM',
        type='peft.LoraConfig'),
    model_path='/root/models/InternVL2_2B',
    quantization_llm=True,
    quantization_vit=False,
    type='xtuner.model.InternVL_V1_5')
optim_type = 'torch.optim.AdamW'
optim_wrapper = dict(
    accumulative_counts=4,
    clip_grad=dict(error_if_nonfinite=False, max_norm=1),
    constructor='LearningRateDecayOptimWrapperConstructor',
    dtype='float16',
    loss_scale='dynamic',
    optimizer=dict(
        betas=(
            0.9,
            0.999,
        ),
        lr=2e-05,
        type='torch.optim.AdamW',
        weight_decay=0.1),
    paramwise_cfg=dict(layer_decay_rate=0.75),
    type='mmengine.optim.AmpOptimWrapper')
param_scheduler = [
    dict(
        begin=0,
        by_epoch=True,
        convert_to_iter_based=True,
        end=0.12,
        start_factor=1e-05,
        type='mmengine.optim.LinearLR'),
    dict(
        begin=0.12,
        by_epoch=True,
        convert_to_iter_based=True,
        end=4,
        eta_min=0.0,
        type='mmengine.optim.CosineAnnealingLR'),
]
path = '/root/models/InternVL2_2B'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
randomness = dict(deterministic=False, seed=None)
resume = False
save_steps = 1000
save_total_limit = -1
tokenizer = dict(
    pretrained_model_name_or_path='/root/models/InternVL2_2B',
    trust_remote_code=True,
    type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
train_dataloader = dict(
    batch_size=4,
    collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
    dataset=dict(
        data_paths='/root/data/screenshot_od/layout_ocr_multi.json',
        image_folders='/root/data/extracted_imagesscreenshot_od/images',
        max_length=8192,
        model_path='/root/models/InternVL2_2B',
        template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
        type='xtuner.dataset.InternVL_V1_5_Dataset'),
    num_workers=4,
    sampler=dict(
        length_property='modality_length',
        per_device_batch_size=16,
        type='xtuner.dataset.samplers.LengthGroupedSampler'))
visualizer = dict(
    type='mmengine.visualization.Visualizer',
    vis_backends=[
        dict(type='mmengine.visualization.TensorboardVisBackend'),
    ])
warmup_ratio = 0.03
weight_decay = 0.1
work_dir = '/root/wangqun/work_dirs/internvl_ft_run_11_filter'

2024/08/25 18:15:54 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
2024/08/25 18:15:54 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
2024/08/25 18:15:54 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True