valeriaWong commited on
Commit
bfd1982
·
verified ·
1 Parent(s): 084f828

Upload folder using huggingface_hub

Browse files
20250323_172321/20250323_172321.log ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025/03/23 17:23:21 - mmengine - DEBUG - An `DeepSpeedStrategy` instance is built from registry, and its implementation can be found in xtuner.engine._strategy.deepspeed
2
+ 2025/03/23 17:23:21 - mmengine - INFO -
3
+ ------------------------------------------------------------
4
+ System environment:
5
+ sys.platform: linux
6
+ Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
7
+ CUDA available: True
8
+ MUSA available: False
9
+ numpy_random_seed: 1239231278
10
+ GPU 0,1,2,3,4,5,6,7: NVIDIA GeForce RTX 4090
11
+ CUDA_HOME: /usr/local/cuda-12.4
12
+ NVCC: Cuda compilation tools, release 12.4, V12.4.99
13
+ GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
14
+ PyTorch: 2.5.1+cu124
15
+ PyTorch compiling details: PyTorch built with:
16
+ - GCC 9.3
17
+ - C++ Version: 201703
18
+ - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
19
+ - Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
20
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
21
+ - LAPACK is enabled (usually provided by MKL)
22
+ - NNPACK is enabled
23
+ - CPU capability usage: AVX2
24
+ - CUDA Runtime 12.4
25
+ - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
26
+ - CuDNN 90.1
27
+ - Magma 2.6.1
28
+ - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
29
+
30
+ TorchVision: 0.20.1+cu124
31
+ OpenCV: 4.9.0
32
+ MMEngine: 0.10.7
33
+
34
+ Runtime environment:
35
+ launcher: none
36
+ randomness: {'seed': None, 'deterministic': False}
37
+ cudnn_benchmark: False
38
+ mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
39
+ dist_cfg: {'backend': 'nccl'}
40
+ seed: None
41
+ deterministic: False
42
+ Distributed launcher: none
43
+ Distributed training: False
44
+ GPU number: 1
45
+ ------------------------------------------------------------
46
+
47
+ 2025/03/23 17:23:21 - mmengine - INFO - Config:
48
+ accumulative_counts = 2
49
+ batch_size = 1
50
+ betas = (
51
+ 0.9,
52
+ 0.999,
53
+ )
54
+ custom_hooks = [
55
+ dict(
56
+ tokenizer=dict(
57
+ pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
58
+ trust_remote_code=True,
59
+ type='transformers.AutoTokenizer.from_pretrained'),
60
+ type='xtuner.engine.hooks.DatasetInfoHook'),
61
+ ]
62
+ data_path = '/home/wangqun/data/layout_ocr_multi.json'
63
+ dataloader_num_workers = 4
64
+ default_hooks = dict(
65
+ checkpoint=dict(
66
+ by_epoch=False,
67
+ interval=1000,
68
+ max_keep_ckpts=-1,
69
+ save_optimizer=False,
70
+ type='mmengine.hooks.CheckpointHook'),
71
+ logger=dict(
72
+ interval=10,
73
+ log_metric_by_epoch=False,
74
+ type='mmengine.hooks.LoggerHook'),
75
+ param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
76
+ sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
77
+ timer=dict(type='mmengine.hooks.IterTimerHook'))
78
+ env_cfg = dict(
79
+ cudnn_benchmark=False,
80
+ dist_cfg=dict(backend='nccl'),
81
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
82
+ image_folder = '/'
83
+ launcher = 'none'
84
+ llava_dataset = dict(
85
+ data_paths='/home/wangqun/data/layout_ocr_multi.json',
86
+ image_folders='/',
87
+ max_length=8192,
88
+ model_path='/data/wangqun/models/InternVL2_5-2B',
89
+ template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
90
+ type='xtuner.dataset.InternVL_V1_5_Dataset')
91
+ load_from = None
92
+ log_level = 'DEBUG'
93
+ log_processor = dict(by_epoch=False)
94
+ lr = 2e-05
95
+ max_epochs = 4
96
+ max_length = 8192
97
+ max_norm = 1
98
+ model = dict(
99
+ freeze_llm=True,
100
+ freeze_visual_encoder=True,
101
+ llm_lora=dict(
102
+ lora_alpha=256,
103
+ lora_dropout=0.05,
104
+ r=128,
105
+ target_modules=None,
106
+ task_type='CAUSAL_LM',
107
+ type='peft.LoraConfig'),
108
+ model_path='/data/wangqun/models/InternVL2_5-2B',
109
+ quantization_llm=True,
110
+ quantization_vit=False,
111
+ type='xtuner.model.InternVL_V1_5')
112
+ optim_type = 'torch.optim.AdamW'
113
+ optim_wrapper = dict(
114
+ optimizer=dict(
115
+ betas=(
116
+ 0.9,
117
+ 0.999,
118
+ ),
119
+ lr=2e-05,
120
+ type='torch.optim.AdamW',
121
+ weight_decay=0.05),
122
+ type='DeepSpeedOptimWrapper')
123
+ param_scheduler = [
124
+ dict(
125
+ begin=0,
126
+ by_epoch=True,
127
+ convert_to_iter_based=True,
128
+ end=0.12,
129
+ start_factor=1e-05,
130
+ type='mmengine.optim.LinearLR'),
131
+ dict(
132
+ begin=0.12,
133
+ by_epoch=True,
134
+ convert_to_iter_based=True,
135
+ end=4,
136
+ eta_min=0.0,
137
+ type='mmengine.optim.CosineAnnealingLR'),
138
+ ]
139
+ path = '/data/wangqun/models/InternVL2_5-2B'
140
+ prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
141
+ randomness = dict(deterministic=False, seed=None)
142
+ resume = False
143
+ runner_type = 'FlexibleRunner'
144
+ save_steps = 1000
145
+ save_total_limit = -1
146
+ strategy = dict(
147
+ config=dict(
148
+ bf16=dict(enabled=True),
149
+ fp16=dict(enabled=False, initial_scale_power=16),
150
+ gradient_accumulation_steps='auto',
151
+ gradient_clipping='auto',
152
+ train_micro_batch_size_per_gpu='auto',
153
+ zero_allow_untested_optimizer=True,
154
+ zero_force_ds_cpu_optimizer=False,
155
+ zero_optimization=dict(overlap_comm=True, stage=2)),
156
+ exclude_frozen_parameters=True,
157
+ gradient_accumulation_steps=2,
158
+ gradient_clipping=1,
159
+ sequence_parallel_size=1,
160
+ train_micro_batch_size_per_gpu=1,
161
+ type='xtuner.engine.DeepSpeedStrategy')
162
+ tokenizer = dict(
163
+ pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
164
+ trust_remote_code=True,
165
+ type='transformers.AutoTokenizer.from_pretrained')
166
+ train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
167
+ train_dataloader = dict(
168
+ batch_size=1,
169
+ collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
170
+ dataset=dict(
171
+ data_paths='/home/wangqun/data/layout_ocr_multi.json',
172
+ image_folders='/',
173
+ max_length=8192,
174
+ model_path='/data/wangqun/models/InternVL2_5-2B',
175
+ template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
176
+ type='xtuner.dataset.InternVL_V1_5_Dataset'),
177
+ num_workers=4,
178
+ sampler=dict(
179
+ length_property='modality_length',
180
+ per_device_batch_size=2,
181
+ type='xtuner.dataset.samplers.LengthGroupedSampler'))
182
+ visualizer = dict(
183
+ type='mmengine.visualization.Visualizer',
184
+ vis_backends=[
185
+ dict(type='mmengine.visualization.TensorboardVisBackend'),
186
+ ])
187
+ warmup_ratio = 0.03
188
+ weight_decay = 0.05
189
+ work_dir = '/home/wangqun/work_dirs/internvl_ft_run_14_filter'
190
+
191
+ 2025/03/23 17:23:21 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
192
+ 2025/03/23 17:23:21 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
193
+ 2025/03/23 17:23:21 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True
20250323_172357/20250323_172357.log ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `DeepSpeedStrategy` instance is built from registry, and its implementation can be found in xtuner.engine._strategy.deepspeed
2
+ 2025/03/23 17:23:57 - mmengine - INFO -
3
+ ------------------------------------------------------------
4
+ System environment:
5
+ sys.platform: linux
6
+ Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
7
+ CUDA available: True
8
+ MUSA available: False
9
+ numpy_random_seed: 116888592
10
+ GPU 0,1,2,3,4,5,6,7: NVIDIA GeForce RTX 4090
11
+ CUDA_HOME: /usr/local/cuda-12.4
12
+ NVCC: Cuda compilation tools, release 12.4, V12.4.99
13
+ GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
14
+ PyTorch: 2.5.1+cu124
15
+ PyTorch compiling details: PyTorch built with:
16
+ - GCC 9.3
17
+ - C++ Version: 201703
18
+ - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
19
+ - Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
20
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
21
+ - LAPACK is enabled (usually provided by MKL)
22
+ - NNPACK is enabled
23
+ - CPU capability usage: AVX2
24
+ - CUDA Runtime 12.4
25
+ - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
26
+ - CuDNN 90.1
27
+ - Magma 2.6.1
28
+ - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
29
+
30
+ TorchVision: 0.20.1+cu124
31
+ OpenCV: 4.9.0
32
+ MMEngine: 0.10.7
33
+
34
+ Runtime environment:
35
+ launcher: none
36
+ randomness: {'seed': None, 'deterministic': False}
37
+ cudnn_benchmark: False
38
+ mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
39
+ dist_cfg: {'backend': 'nccl'}
40
+ seed: None
41
+ deterministic: False
42
+ Distributed launcher: none
43
+ Distributed training: False
44
+ GPU number: 1
45
+ ------------------------------------------------------------
46
+
47
+ 2025/03/23 17:23:57 - mmengine - INFO - Config:
48
+ accumulative_counts = 2
49
+ batch_size = 1
50
+ betas = (
51
+ 0.9,
52
+ 0.999,
53
+ )
54
+ custom_hooks = [
55
+ dict(
56
+ tokenizer=dict(
57
+ pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
58
+ trust_remote_code=True,
59
+ type='transformers.AutoTokenizer.from_pretrained'),
60
+ type='xtuner.engine.hooks.DatasetInfoHook'),
61
+ ]
62
+ data_path = '/home/wangqun/data/layout_ocr_multi.json'
63
+ dataloader_num_workers = 4
64
+ default_hooks = dict(
65
+ checkpoint=dict(
66
+ by_epoch=False,
67
+ interval=1000,
68
+ max_keep_ckpts=-1,
69
+ save_optimizer=False,
70
+ type='mmengine.hooks.CheckpointHook'),
71
+ logger=dict(
72
+ interval=10,
73
+ log_metric_by_epoch=False,
74
+ type='mmengine.hooks.LoggerHook'),
75
+ param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
76
+ sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
77
+ timer=dict(type='mmengine.hooks.IterTimerHook'))
78
+ env_cfg = dict(
79
+ cudnn_benchmark=False,
80
+ dist_cfg=dict(backend='nccl'),
81
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
82
+ image_folder = '/'
83
+ launcher = 'none'
84
+ llava_dataset = dict(
85
+ data_paths='/home/wangqun/data/layout_ocr_multi.json',
86
+ image_folders='/',
87
+ max_length=8192,
88
+ model_path='/data/wangqun/models/InternVL2_5-2B',
89
+ template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
90
+ type='xtuner.dataset.InternVL_V1_5_Dataset')
91
+ load_from = None
92
+ log_level = 'DEBUG'
93
+ log_processor = dict(by_epoch=False)
94
+ lr = 2e-05
95
+ max_epochs = 4
96
+ max_length = 8192
97
+ max_norm = 1
98
+ model = dict(
99
+ freeze_llm=True,
100
+ freeze_visual_encoder=True,
101
+ llm_lora=dict(
102
+ lora_alpha=256,
103
+ lora_dropout=0.05,
104
+ r=128,
105
+ target_modules=None,
106
+ task_type='CAUSAL_LM',
107
+ type='peft.LoraConfig'),
108
+ model_path='/data/wangqun/models/InternVL2_5-2B',
109
+ quantization_llm=True,
110
+ quantization_vit=False,
111
+ type='xtuner.model.InternVL_V1_5')
112
+ optim_type = 'torch.optim.AdamW'
113
+ optim_wrapper = dict(
114
+ optimizer=dict(
115
+ betas=(
116
+ 0.9,
117
+ 0.999,
118
+ ),
119
+ lr=2e-05,
120
+ type='torch.optim.AdamW',
121
+ weight_decay=0.05),
122
+ type='DeepSpeedOptimWrapper')
123
+ param_scheduler = [
124
+ dict(
125
+ begin=0,
126
+ by_epoch=True,
127
+ convert_to_iter_based=True,
128
+ end=0.12,
129
+ start_factor=1e-05,
130
+ type='mmengine.optim.LinearLR'),
131
+ dict(
132
+ begin=0.12,
133
+ by_epoch=True,
134
+ convert_to_iter_based=True,
135
+ end=4,
136
+ eta_min=0.0,
137
+ type='mmengine.optim.CosineAnnealingLR'),
138
+ ]
139
+ path = '/data/wangqun/models/InternVL2_5-2B'
140
+ prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
141
+ randomness = dict(deterministic=False, seed=None)
142
+ resume = False
143
+ runner_type = 'FlexibleRunner'
144
+ save_steps = 1000
145
+ save_total_limit = -1
146
+ strategy = dict(
147
+ config=dict(
148
+ bf16=dict(enabled=True),
149
+ fp16=dict(enabled=False, initial_scale_power=16),
150
+ gradient_accumulation_steps='auto',
151
+ gradient_clipping='auto',
152
+ train_micro_batch_size_per_gpu='auto',
153
+ zero_allow_untested_optimizer=True,
154
+ zero_force_ds_cpu_optimizer=False,
155
+ zero_optimization=dict(overlap_comm=True, stage=2)),
156
+ exclude_frozen_parameters=True,
157
+ gradient_accumulation_steps=2,
158
+ gradient_clipping=1,
159
+ sequence_parallel_size=1,
160
+ train_micro_batch_size_per_gpu=1,
161
+ type='xtuner.engine.DeepSpeedStrategy')
162
+ tokenizer = dict(
163
+ pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
164
+ trust_remote_code=True,
165
+ type='transformers.AutoTokenizer.from_pretrained')
166
+ train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
167
+ train_dataloader = dict(
168
+ batch_size=1,
169
+ collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
170
+ dataset=dict(
171
+ data_paths='/home/wangqun/data/layout_ocr_multi.json',
172
+ image_folders='/',
173
+ max_length=8192,
174
+ model_path='/data/wangqun/models/InternVL2_5-2B',
175
+ template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
176
+ type='xtuner.dataset.InternVL_V1_5_Dataset'),
177
+ num_workers=4,
178
+ sampler=dict(
179
+ length_property='modality_length',
180
+ per_device_batch_size=2,
181
+ type='xtuner.dataset.samplers.LengthGroupedSampler'))
182
+ visualizer = dict(
183
+ type='mmengine.visualization.Visualizer',
184
+ vis_backends=[
185
+ dict(type='mmengine.visualization.TensorboardVisBackend'),
186
+ ])
187
+ warmup_ratio = 0.03
188
+ weight_decay = 0.05
189
+ work_dir = '/home/wangqun/work_dirs/internvl_ft_run_14_filter'
190
+
191
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
192
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
193
+ 2025/03/23 17:23:57 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True
194
+ 2025/03/23 17:23:57 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
195
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, and its implementation can be found in mmengine.hooks.runtime_info_hook
196
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `IterTimerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.iter_timer_hook
197
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `DistSamplerSeedHook` instance is built from registry, and its implementation can be found in mmengine.hooks.sampler_seed_hook
198
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `LoggerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.logger_hook
199
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `ParamSchedulerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.param_scheduler_hook
200
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `CheckpointHook` instance is built from registry, and its implementation can be found in mmengine.hooks.checkpoint_hook
201
+ 2025/03/23 17:23:57 - mmengine - WARNING - Failed to search registry with scope "mmengine" in the "builder" registry tree. As a workaround, the current "builder" registry in "xtuner" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmengine" is a correct scope, or whether the registry is initialized.
202
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `from_pretrained` instance is built from registry, and its implementation can be found in transformers.models.auto.tokenization_auto
203
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `DatasetInfoHook` instance is built from registry, and its implementation can be found in xtuner.engine.hooks.dataset_info_hook
204
+ 2025/03/23 17:23:57 - mmengine - INFO - Hooks will be executed in the following order:
205
+ before_run:
206
+ (VERY_HIGH ) RuntimeInfoHook
207
+ (BELOW_NORMAL) LoggerHook
208
+ --------------------
209
+ before_train:
210
+ (VERY_HIGH ) RuntimeInfoHook
211
+ (NORMAL ) IterTimerHook
212
+ (NORMAL ) DatasetInfoHook
213
+ (VERY_LOW ) CheckpointHook
214
+ --------------------
215
+ before_train_epoch:
216
+ (VERY_HIGH ) RuntimeInfoHook
217
+ (NORMAL ) IterTimerHook
218
+ (NORMAL ) DistSamplerSeedHook
219
+ --------------------
220
+ before_train_iter:
221
+ (VERY_HIGH ) RuntimeInfoHook
222
+ (NORMAL ) IterTimerHook
223
+ --------------------
224
+ after_train_iter:
225
+ (VERY_HIGH ) RuntimeInfoHook
226
+ (NORMAL ) IterTimerHook
227
+ (BELOW_NORMAL) LoggerHook
228
+ (LOW ) ParamSchedulerHook
229
+ (VERY_LOW ) CheckpointHook
230
+ --------------------
231
+ after_train_epoch:
232
+ (NORMAL ) IterTimerHook
233
+ (LOW ) ParamSchedulerHook
234
+ (VERY_LOW ) CheckpointHook
235
+ --------------------
236
+ before_val:
237
+ (VERY_HIGH ) RuntimeInfoHook
238
+ (NORMAL ) DatasetInfoHook
239
+ --------------------
240
+ before_val_epoch:
241
+ (NORMAL ) IterTimerHook
242
+ --------------------
243
+ before_val_iter:
244
+ (NORMAL ) IterTimerHook
245
+ --------------------
246
+ after_val_iter:
247
+ (NORMAL ) IterTimerHook
248
+ (BELOW_NORMAL) LoggerHook
249
+ --------------------
250
+ after_val_epoch:
251
+ (VERY_HIGH ) RuntimeInfoHook
252
+ (NORMAL ) IterTimerHook
253
+ (BELOW_NORMAL) LoggerHook
254
+ (LOW ) ParamSchedulerHook
255
+ (VERY_LOW ) CheckpointHook
256
+ --------------------
257
+ after_val:
258
+ (VERY_HIGH ) RuntimeInfoHook
259
+ --------------------
260
+ after_train:
261
+ (VERY_HIGH ) RuntimeInfoHook
262
+ (VERY_LOW ) CheckpointHook
263
+ --------------------
264
+ before_test:
265
+ (VERY_HIGH ) RuntimeInfoHook
266
+ (NORMAL ) DatasetInfoHook
267
+ --------------------
268
+ before_test_epoch:
269
+ (NORMAL ) IterTimerHook
270
+ --------------------
271
+ before_test_iter:
272
+ (NORMAL ) IterTimerHook
273
+ --------------------
274
+ after_test_iter:
275
+ (NORMAL ) IterTimerHook
276
+ (BELOW_NORMAL) LoggerHook
277
+ --------------------
278
+ after_test_epoch:
279
+ (VERY_HIGH ) RuntimeInfoHook
280
+ (NORMAL ) IterTimerHook
281
+ (BELOW_NORMAL) LoggerHook
282
+ --------------------
283
+ after_test:
284
+ (VERY_HIGH ) RuntimeInfoHook
285
+ --------------------
286
+ after_run:
287
+ (BELOW_NORMAL) LoggerHook
288
+ --------------------
289
+ 2025/03/23 17:23:57 - mmengine - DEBUG - An `FlexibleRunner` instance is built from registry, its implementation can be found inmmengine.runner._flexible_runner
290
+ 2025/03/23 17:23:57 - mmengine - INFO - Starting to loading data and calc length
291
+ 2025/03/23 17:23:57 - mmengine - INFO - =======Starting to process /home/wangqun/data/layout_ocr_multi.json =======
292
+ 2025/03/23 17:24:04 - mmengine - INFO - =======total 4794 samples of /home/wangqun/data/layout_ocr_multi.json=======
293
+ 2025/03/23 17:24:04 - mmengine - INFO - end loading data and calc length
294
+ 2025/03/23 17:24:04 - mmengine - INFO - =======total 4794 samples=======
295
+ 2025/03/23 17:24:04 - mmengine - DEBUG - An `InternVL_V1_5_Dataset` instance is built from registry, and its implementation can be found in xtuner.dataset.internvl_dataset
296
+ 2025/03/23 17:24:04 - mmengine - INFO - LengthGroupedSampler is used.
297
+ 2025/03/23 17:24:04 - mmengine - INFO - LengthGroupedSampler construction is complete, and the selected attribute is modality_length
298
+ 2025/03/23 17:24:04 - mmengine - DEBUG - An `LengthGroupedSampler` instance is built from registry, and its implementation can be found in xtuner.dataset.samplers.length_grouped
299
+ 2025/03/23 17:24:04 - mmengine - WARNING - Dataset InternVL_V1_5_Dataset has no metainfo. ``dataset_meta`` in visualizer will be None.
300
+ 2025/03/23 17:24:04 - mmengine - DEBUG - An `TrainLoop` instance is built from registry, and its implementation can be found in xtuner.engine.runner.loops
301
+ 2025/03/23 17:24:04 - mmengine - INFO - Start to load InternVL_V1_5 model.
302
+ 2025/03/23 17:24:04 - mmengine - DEBUG - Get class `BaseDataPreprocessor` from "model" registry in "mmengine"
303
+ 2025/03/23 17:24:04 - mmengine - DEBUG - An `BaseDataPreprocessor` instance is built from registry, and its implementation can be found in mmengine.model.base_model.data_preprocessor
20250323_172357/vis_data/events.out.tfevents.1742721837.172-16-21-188.3426618.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eb646f809dd6caacb7bb21276ee0b7dcd67db0e5ff9f62f7806cc00cab7a12f
3
+ size 4671
20250323_172626/20250323_172626.log ADDED
The diff for this file is too large to render. See raw diff
 
20250323_172626/vis_data/events.out.tfevents.1742721987.172-16-21-188.3428486.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf2678d6c7c2da82f71d45e4afad5337e3c47a54e858431e68139b7ebefa9639
3
+ size 510444
internvl_v2_internlm2_2b_qlora_finetune_copy.py CHANGED
@@ -7,13 +7,12 @@ betas = (
7
  custom_hooks = [
8
  dict(
9
  tokenizer=dict(
10
- pretrained_model_name_or_path='/data/wangqun/models/internvl2-2B',
11
  trust_remote_code=True,
12
  type='transformers.AutoTokenizer.from_pretrained'),
13
  type='xtuner.engine.hooks.DatasetInfoHook'),
14
  ]
15
- data_path = '/home/wangqun/data/screenshot_od/layout_ocr_multi.json'
16
- data_root = '/home/wangqun/data/'
17
  dataloader_num_workers = 4
18
  default_hooks = dict(
19
  checkpoint=dict(
@@ -33,13 +32,13 @@ env_cfg = dict(
33
  cudnn_benchmark=False,
34
  dist_cfg=dict(backend='nccl'),
35
  mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
36
- image_folder = '/home/wangqun/data/llava_images'
37
  launcher = 'none'
38
  llava_dataset = dict(
39
- data_paths='/home/wangqun/data/screenshot_od/layout_ocr_multi.json',
40
- image_folders='/home/wangqun/data/llava_images',
41
  max_length=8192,
42
- model_path='/data/wangqun/models/internvl2-2B',
43
  template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
44
  type='xtuner.dataset.InternVL_V1_5_Dataset')
45
  load_from = None
@@ -59,7 +58,7 @@ model = dict(
59
  target_modules=None,
60
  task_type='CAUSAL_LM',
61
  type='peft.LoraConfig'),
62
- model_path='/data/wangqun/models/internvl2-2B',
63
  quantization_llm=True,
64
  quantization_vit=False,
65
  type='xtuner.model.InternVL_V1_5')
@@ -90,7 +89,7 @@ param_scheduler = [
90
  eta_min=0.0,
91
  type='mmengine.optim.CosineAnnealingLR'),
92
  ]
93
- path = '/data/wangqun/models/internvl2-2B'
94
  prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
95
  randomness = dict(deterministic=False, seed=None)
96
  resume = False
@@ -114,7 +113,7 @@ strategy = dict(
114
  train_micro_batch_size_per_gpu=1,
115
  type='xtuner.engine.DeepSpeedStrategy')
116
  tokenizer = dict(
117
- pretrained_model_name_or_path='/data/wangqun/models/internvl2-2B',
118
  trust_remote_code=True,
119
  type='transformers.AutoTokenizer.from_pretrained')
120
  train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
@@ -122,10 +121,10 @@ train_dataloader = dict(
122
  batch_size=1,
123
  collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
124
  dataset=dict(
125
- data_paths='/home/wangqun/data/screenshot_od/layout_ocr_multi.json',
126
- image_folders='/home/wangqun/data/llava_images',
127
  max_length=8192,
128
- model_path='/data/wangqun/models/internvl2-2B',
129
  template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
130
  type='xtuner.dataset.InternVL_V1_5_Dataset'),
131
  num_workers=4,
@@ -140,4 +139,4 @@ visualizer = dict(
140
  ])
141
  warmup_ratio = 0.03
142
  weight_decay = 0.05
143
- work_dir = '/home/wangqun/work_dirs/internvl_ft_run_6_filter'
 
7
  custom_hooks = [
8
  dict(
9
  tokenizer=dict(
10
+ pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
11
  trust_remote_code=True,
12
  type='transformers.AutoTokenizer.from_pretrained'),
13
  type='xtuner.engine.hooks.DatasetInfoHook'),
14
  ]
15
+ data_path = '/home/wangqun/data/layout_ocr_multi.json'
 
16
  dataloader_num_workers = 4
17
  default_hooks = dict(
18
  checkpoint=dict(
 
32
  cudnn_benchmark=False,
33
  dist_cfg=dict(backend='nccl'),
34
  mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
35
+ image_folder = '/'
36
  launcher = 'none'
37
  llava_dataset = dict(
38
+ data_paths='/home/wangqun/data/layout_ocr_multi.json',
39
+ image_folders='/',
40
  max_length=8192,
41
+ model_path='/data/wangqun/models/InternVL2_5-2B',
42
  template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
43
  type='xtuner.dataset.InternVL_V1_5_Dataset')
44
  load_from = None
 
58
  target_modules=None,
59
  task_type='CAUSAL_LM',
60
  type='peft.LoraConfig'),
61
+ model_path='/data/wangqun/models/InternVL2_5-2B',
62
  quantization_llm=True,
63
  quantization_vit=False,
64
  type='xtuner.model.InternVL_V1_5')
 
89
  eta_min=0.0,
90
  type='mmengine.optim.CosineAnnealingLR'),
91
  ]
92
+ path = '/data/wangqun/models/InternVL2_5-2B'
93
  prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
94
  randomness = dict(deterministic=False, seed=None)
95
  resume = False
 
113
  train_micro_batch_size_per_gpu=1,
114
  type='xtuner.engine.DeepSpeedStrategy')
115
  tokenizer = dict(
116
+ pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
117
  trust_remote_code=True,
118
  type='transformers.AutoTokenizer.from_pretrained')
119
  train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
 
121
  batch_size=1,
122
  collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
123
  dataset=dict(
124
+ data_paths='/home/wangqun/data/layout_ocr_multi.json',
125
+ image_folders='/',
126
  max_length=8192,
127
+ model_path='/data/wangqun/models/InternVL2_5-2B',
128
  template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
129
  type='xtuner.dataset.InternVL_V1_5_Dataset'),
130
  num_workers=4,
 
139
  ])
140
  warmup_ratio = 0.03
141
  weight_decay = 0.05
142
+ work_dir = '/home/wangqun/work_dirs/internvl_ft_run_14_filter'
iter_1000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ba0e9eb945a64ae450ac8e967acbb5285f57c31cae909afe67ec235207b99855
3
- size 301243842
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:481e53fb7856747b4264e40d18add7468dac96f819e28cee759eca4a5e024ace
3
+ size 301244482
iter_10000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7769493395d9ac7f55d2ca270d26be331773800f4f9a13c1a0ca6269a2e06f5e
3
- size 301911874
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfa8914dd504a4f929216c6c0ebff3ca41ef7ed02f50f09c721b8b92111089f5
3
+ size 301919426
iter_11000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bdabfae07367cc98118fcf09c3310059e18f468a7c518421cb1e86ec6eb69fba
3
- size 301985986
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be8212140d3eb14e0d0601c943b7dc8695addea3b9819b7692d19d35abc5f630
3
+ size 301994178
iter_12000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb4d3d27576ac85df0c9616fc521ffc50b4dc79aca03b17c4f92a391f1998a74
3
- size 302060098
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be457d0e6cf6e2be1e41e8c419bb13fc91a8c09feed416d317afb220737d8dd5
3
+ size 302069186
iter_13000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e55df320dee30c9c96d43502527d0f3b71f8fd255b3187a7e5eec11ec426ca31
3
- size 302134274
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb8f86fabdfe2cc0e9f46aab2a186b36484bfb8d152ecb2a1886d5759aad12c2
3
+ size 302144194
iter_14000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8cd67b12f66e5699c07c9cc800b9018c6fd02be3667a93d8ea70572e18489d7c
3
- size 302208450
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:566df872765cb8ca258be1e0a4bcab172724429008d51d2e5b84d86e279864ed
3
+ size 302219202
iter_15000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b5ba8ed14ae1a4f3c4eff2da4423f4e967f7c5c71911eb2d192c668882f08875
3
- size 302282690
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50adf58892fd870d5d7f8b3682ed8687349ac1a9b515b637dc96000cd8455d0a
3
+ size 302294146
iter_16000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a08c742bdcadda633b8aa1b396266d4bdbdc221688c1910020123c20ed8b86d
3
- size 302356866
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13265f1440c0dccd0c36aa2bbe3282a23eaa58e6e9014a2162ce9d31a4ab196e
3
+ size 302369090
iter_17000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:663a8de1f96ddb228e7e31cb8f3db4e56c4f62bd0c9327aacf280d43b7a78716
3
- size 302431042
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:462de647258ce67f55c412156b3efd8dd1eb207acac1e7c18c3a71328b736151
3
+ size 302444098
iter_18000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4db2450244c72bacd77b0e7bd28468134d9c534adbec5c2512bcee89c9fa669f
3
- size 302505218
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:954491018e38ed55a4cf8277358c960e288fb84b7228a89f44b36f80643adbce
3
+ size 302518978
iter_19000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:78a79f979503ab7cf651d48187fbfda7255c87935a673c8219af8a89174281f6
3
- size 302578626
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62abfe06034f232dbce3f5b6e1d11ae1b83262335f5bc67a764c14fbc520921f
3
+ size 302593154
iter_19176.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4eb7af7065d00e98ceddc5ce42b5635c915a93e3852c7fe5109d9f978d7af8e
3
+ size 302606274
iter_2000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7cf4c0bbf0bfec626773e96a2bb690a2dde372d508317f6ea3fbdc9b36ebf65f
3
- size 301318466
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a35968ff67ec88471423ef474217211f9fa39addedead8a86cfd19290c6a0037
3
+ size 301319810
iter_3000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:125ac4fd4dfbfe8fc7bd2a7b91a95599a4351c3cf4bc9d52d885052393f7319b
3
- size 301392578
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2496d44620dcf04afb3df31c29853532c4fef4e75a2f651b811fa696f2bf171
3
+ size 301394626
iter_4000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:66e3aa886d88d9627aabd2ceea48050fbf757a548d7c857523e26ff58a4c797f
3
- size 301466882
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a235055e07709b1acc4e022ce322f1fa278396af64ff11a47c8ccd28348fc4ca
3
+ size 301469698
iter_5000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b5708634ddeeb502bfbfdc02a2a9359e577d40b8831892d344b42110588e41c0
3
- size 301540994
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adea6aa165836ef74883dbf62b91204872f44ac4fe42e24747f99caf68a4b189
3
+ size 301544642
iter_6000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4188a9b675959b4df3c8037ac46868b433eae25ff03a9cc00c6f0cf9be9a59c6
3
- size 301615106
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23f6f730153c5f00af9a854ab9365e664777d1187edbc0d05be7c27e9c86ace0
3
+ size 301619650
iter_7000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aad793ebcee9c4a7a263e8bf230df4583fcc7d0cc1e2ba235d9a0ccebba46c80
3
- size 301689282
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f015f9c0c64a53ea727ac17617475fcbc86cd384b4be0819787d84155c609006
3
+ size 301694466
iter_8000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:09c0652dba256c98fb28c5cdbb52de1f3d40b86828fb8e28bd2f28f24c6d486d
3
- size 301763458
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec56cd5e746d31071835fc4fba317c119de176ed1366b243d3a0f0c9a7a9f7a3
3
+ size 301769474
iter_9000.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:362e09b3dbf898e8c30dd51064c406ecd7e5b14dcd01d9fcf21b5fd1929fe4e2
3
- size 301837634
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:244c6e3d325c6caaa0dd1d8e9c9f0778dba51a9cc9ceaa3cc68e5391561723eb
3
+ size 301844354
last_checkpoint CHANGED
@@ -1 +1 @@
1
- /root/wangqun/work_dirs/internvl_ft_run_6_filter/iter_19224.pth
 
1
+ /home/wangqun/work_dirs/internvl_ft_run_14_filter/iter_19176.pth