Upload folder using huggingface_hub
Browse files- 20250323_172321/20250323_172321.log +193 -0
- 20250323_172357/20250323_172357.log +303 -0
- 20250323_172357/vis_data/events.out.tfevents.1742721837.172-16-21-188.3426618.0 +3 -0
- 20250323_172626/20250323_172626.log +0 -0
- 20250323_172626/vis_data/events.out.tfevents.1742721987.172-16-21-188.3428486.0 +3 -0
- internvl_v2_internlm2_2b_qlora_finetune_copy.py +13 -14
- iter_1000.pth +2 -2
- iter_10000.pth +2 -2
- iter_11000.pth +2 -2
- iter_12000.pth +2 -2
- iter_13000.pth +2 -2
- iter_14000.pth +2 -2
- iter_15000.pth +2 -2
- iter_16000.pth +2 -2
- iter_17000.pth +2 -2
- iter_18000.pth +2 -2
- iter_19000.pth +2 -2
- iter_19176.pth +3 -0
- iter_2000.pth +2 -2
- iter_3000.pth +2 -2
- iter_4000.pth +2 -2
- iter_5000.pth +2 -2
- iter_6000.pth +2 -2
- iter_7000.pth +2 -2
- iter_8000.pth +2 -2
- iter_9000.pth +2 -2
- last_checkpoint +1 -1
20250323_172321/20250323_172321.log
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2025/03/23 17:23:21 - mmengine - DEBUG - An `DeepSpeedStrategy` instance is built from registry, and its implementation can be found in xtuner.engine._strategy.deepspeed
|
| 2 |
+
2025/03/23 17:23:21 - mmengine - INFO -
|
| 3 |
+
------------------------------------------------------------
|
| 4 |
+
System environment:
|
| 5 |
+
sys.platform: linux
|
| 6 |
+
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
|
| 7 |
+
CUDA available: True
|
| 8 |
+
MUSA available: False
|
| 9 |
+
numpy_random_seed: 1239231278
|
| 10 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA GeForce RTX 4090
|
| 11 |
+
CUDA_HOME: /usr/local/cuda-12.4
|
| 12 |
+
NVCC: Cuda compilation tools, release 12.4, V12.4.99
|
| 13 |
+
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
|
| 14 |
+
PyTorch: 2.5.1+cu124
|
| 15 |
+
PyTorch compiling details: PyTorch built with:
|
| 16 |
+
- GCC 9.3
|
| 17 |
+
- C++ Version: 201703
|
| 18 |
+
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
|
| 19 |
+
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
|
| 20 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 21 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 22 |
+
- NNPACK is enabled
|
| 23 |
+
- CPU capability usage: AVX2
|
| 24 |
+
- CUDA Runtime 12.4
|
| 25 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 26 |
+
- CuDNN 90.1
|
| 27 |
+
- Magma 2.6.1
|
| 28 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
|
| 29 |
+
|
| 30 |
+
TorchVision: 0.20.1+cu124
|
| 31 |
+
OpenCV: 4.9.0
|
| 32 |
+
MMEngine: 0.10.7
|
| 33 |
+
|
| 34 |
+
Runtime environment:
|
| 35 |
+
launcher: none
|
| 36 |
+
randomness: {'seed': None, 'deterministic': False}
|
| 37 |
+
cudnn_benchmark: False
|
| 38 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 39 |
+
dist_cfg: {'backend': 'nccl'}
|
| 40 |
+
seed: None
|
| 41 |
+
deterministic: False
|
| 42 |
+
Distributed launcher: none
|
| 43 |
+
Distributed training: False
|
| 44 |
+
GPU number: 1
|
| 45 |
+
------------------------------------------------------------
|
| 46 |
+
|
| 47 |
+
2025/03/23 17:23:21 - mmengine - INFO - Config:
|
| 48 |
+
accumulative_counts = 2
|
| 49 |
+
batch_size = 1
|
| 50 |
+
betas = (
|
| 51 |
+
0.9,
|
| 52 |
+
0.999,
|
| 53 |
+
)
|
| 54 |
+
custom_hooks = [
|
| 55 |
+
dict(
|
| 56 |
+
tokenizer=dict(
|
| 57 |
+
pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
| 60 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 61 |
+
]
|
| 62 |
+
data_path = '/home/wangqun/data/layout_ocr_multi.json'
|
| 63 |
+
dataloader_num_workers = 4
|
| 64 |
+
default_hooks = dict(
|
| 65 |
+
checkpoint=dict(
|
| 66 |
+
by_epoch=False,
|
| 67 |
+
interval=1000,
|
| 68 |
+
max_keep_ckpts=-1,
|
| 69 |
+
save_optimizer=False,
|
| 70 |
+
type='mmengine.hooks.CheckpointHook'),
|
| 71 |
+
logger=dict(
|
| 72 |
+
interval=10,
|
| 73 |
+
log_metric_by_epoch=False,
|
| 74 |
+
type='mmengine.hooks.LoggerHook'),
|
| 75 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 76 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 77 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 78 |
+
env_cfg = dict(
|
| 79 |
+
cudnn_benchmark=False,
|
| 80 |
+
dist_cfg=dict(backend='nccl'),
|
| 81 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 82 |
+
image_folder = '/'
|
| 83 |
+
launcher = 'none'
|
| 84 |
+
llava_dataset = dict(
|
| 85 |
+
data_paths='/home/wangqun/data/layout_ocr_multi.json',
|
| 86 |
+
image_folders='/',
|
| 87 |
+
max_length=8192,
|
| 88 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 89 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 90 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 91 |
+
load_from = None
|
| 92 |
+
log_level = 'DEBUG'
|
| 93 |
+
log_processor = dict(by_epoch=False)
|
| 94 |
+
lr = 2e-05
|
| 95 |
+
max_epochs = 4
|
| 96 |
+
max_length = 8192
|
| 97 |
+
max_norm = 1
|
| 98 |
+
model = dict(
|
| 99 |
+
freeze_llm=True,
|
| 100 |
+
freeze_visual_encoder=True,
|
| 101 |
+
llm_lora=dict(
|
| 102 |
+
lora_alpha=256,
|
| 103 |
+
lora_dropout=0.05,
|
| 104 |
+
r=128,
|
| 105 |
+
target_modules=None,
|
| 106 |
+
task_type='CAUSAL_LM',
|
| 107 |
+
type='peft.LoraConfig'),
|
| 108 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 109 |
+
quantization_llm=True,
|
| 110 |
+
quantization_vit=False,
|
| 111 |
+
type='xtuner.model.InternVL_V1_5')
|
| 112 |
+
optim_type = 'torch.optim.AdamW'
|
| 113 |
+
optim_wrapper = dict(
|
| 114 |
+
optimizer=dict(
|
| 115 |
+
betas=(
|
| 116 |
+
0.9,
|
| 117 |
+
0.999,
|
| 118 |
+
),
|
| 119 |
+
lr=2e-05,
|
| 120 |
+
type='torch.optim.AdamW',
|
| 121 |
+
weight_decay=0.05),
|
| 122 |
+
type='DeepSpeedOptimWrapper')
|
| 123 |
+
param_scheduler = [
|
| 124 |
+
dict(
|
| 125 |
+
begin=0,
|
| 126 |
+
by_epoch=True,
|
| 127 |
+
convert_to_iter_based=True,
|
| 128 |
+
end=0.12,
|
| 129 |
+
start_factor=1e-05,
|
| 130 |
+
type='mmengine.optim.LinearLR'),
|
| 131 |
+
dict(
|
| 132 |
+
begin=0.12,
|
| 133 |
+
by_epoch=True,
|
| 134 |
+
convert_to_iter_based=True,
|
| 135 |
+
end=4,
|
| 136 |
+
eta_min=0.0,
|
| 137 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
| 138 |
+
]
|
| 139 |
+
path = '/data/wangqun/models/InternVL2_5-2B'
|
| 140 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 141 |
+
randomness = dict(deterministic=False, seed=None)
|
| 142 |
+
resume = False
|
| 143 |
+
runner_type = 'FlexibleRunner'
|
| 144 |
+
save_steps = 1000
|
| 145 |
+
save_total_limit = -1
|
| 146 |
+
strategy = dict(
|
| 147 |
+
config=dict(
|
| 148 |
+
bf16=dict(enabled=True),
|
| 149 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
| 150 |
+
gradient_accumulation_steps='auto',
|
| 151 |
+
gradient_clipping='auto',
|
| 152 |
+
train_micro_batch_size_per_gpu='auto',
|
| 153 |
+
zero_allow_untested_optimizer=True,
|
| 154 |
+
zero_force_ds_cpu_optimizer=False,
|
| 155 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 156 |
+
exclude_frozen_parameters=True,
|
| 157 |
+
gradient_accumulation_steps=2,
|
| 158 |
+
gradient_clipping=1,
|
| 159 |
+
sequence_parallel_size=1,
|
| 160 |
+
train_micro_batch_size_per_gpu=1,
|
| 161 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
| 162 |
+
tokenizer = dict(
|
| 163 |
+
pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
|
| 164 |
+
trust_remote_code=True,
|
| 165 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
| 166 |
+
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
| 167 |
+
train_dataloader = dict(
|
| 168 |
+
batch_size=1,
|
| 169 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 170 |
+
dataset=dict(
|
| 171 |
+
data_paths='/home/wangqun/data/layout_ocr_multi.json',
|
| 172 |
+
image_folders='/',
|
| 173 |
+
max_length=8192,
|
| 174 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 175 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 176 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 177 |
+
num_workers=4,
|
| 178 |
+
sampler=dict(
|
| 179 |
+
length_property='modality_length',
|
| 180 |
+
per_device_batch_size=2,
|
| 181 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
| 182 |
+
visualizer = dict(
|
| 183 |
+
type='mmengine.visualization.Visualizer',
|
| 184 |
+
vis_backends=[
|
| 185 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
| 186 |
+
])
|
| 187 |
+
warmup_ratio = 0.03
|
| 188 |
+
weight_decay = 0.05
|
| 189 |
+
work_dir = '/home/wangqun/work_dirs/internvl_ft_run_14_filter'
|
| 190 |
+
|
| 191 |
+
2025/03/23 17:23:21 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
|
| 192 |
+
2025/03/23 17:23:21 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
|
| 193 |
+
2025/03/23 17:23:21 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True
|
20250323_172357/20250323_172357.log
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `DeepSpeedStrategy` instance is built from registry, and its implementation can be found in xtuner.engine._strategy.deepspeed
|
| 2 |
+
2025/03/23 17:23:57 - mmengine - INFO -
|
| 3 |
+
------------------------------------------------------------
|
| 4 |
+
System environment:
|
| 5 |
+
sys.platform: linux
|
| 6 |
+
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
|
| 7 |
+
CUDA available: True
|
| 8 |
+
MUSA available: False
|
| 9 |
+
numpy_random_seed: 116888592
|
| 10 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA GeForce RTX 4090
|
| 11 |
+
CUDA_HOME: /usr/local/cuda-12.4
|
| 12 |
+
NVCC: Cuda compilation tools, release 12.4, V12.4.99
|
| 13 |
+
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
|
| 14 |
+
PyTorch: 2.5.1+cu124
|
| 15 |
+
PyTorch compiling details: PyTorch built with:
|
| 16 |
+
- GCC 9.3
|
| 17 |
+
- C++ Version: 201703
|
| 18 |
+
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
|
| 19 |
+
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
|
| 20 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 21 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 22 |
+
- NNPACK is enabled
|
| 23 |
+
- CPU capability usage: AVX2
|
| 24 |
+
- CUDA Runtime 12.4
|
| 25 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 26 |
+
- CuDNN 90.1
|
| 27 |
+
- Magma 2.6.1
|
| 28 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
|
| 29 |
+
|
| 30 |
+
TorchVision: 0.20.1+cu124
|
| 31 |
+
OpenCV: 4.9.0
|
| 32 |
+
MMEngine: 0.10.7
|
| 33 |
+
|
| 34 |
+
Runtime environment:
|
| 35 |
+
launcher: none
|
| 36 |
+
randomness: {'seed': None, 'deterministic': False}
|
| 37 |
+
cudnn_benchmark: False
|
| 38 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 39 |
+
dist_cfg: {'backend': 'nccl'}
|
| 40 |
+
seed: None
|
| 41 |
+
deterministic: False
|
| 42 |
+
Distributed launcher: none
|
| 43 |
+
Distributed training: False
|
| 44 |
+
GPU number: 1
|
| 45 |
+
------------------------------------------------------------
|
| 46 |
+
|
| 47 |
+
2025/03/23 17:23:57 - mmengine - INFO - Config:
|
| 48 |
+
accumulative_counts = 2
|
| 49 |
+
batch_size = 1
|
| 50 |
+
betas = (
|
| 51 |
+
0.9,
|
| 52 |
+
0.999,
|
| 53 |
+
)
|
| 54 |
+
custom_hooks = [
|
| 55 |
+
dict(
|
| 56 |
+
tokenizer=dict(
|
| 57 |
+
pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
| 60 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 61 |
+
]
|
| 62 |
+
data_path = '/home/wangqun/data/layout_ocr_multi.json'
|
| 63 |
+
dataloader_num_workers = 4
|
| 64 |
+
default_hooks = dict(
|
| 65 |
+
checkpoint=dict(
|
| 66 |
+
by_epoch=False,
|
| 67 |
+
interval=1000,
|
| 68 |
+
max_keep_ckpts=-1,
|
| 69 |
+
save_optimizer=False,
|
| 70 |
+
type='mmengine.hooks.CheckpointHook'),
|
| 71 |
+
logger=dict(
|
| 72 |
+
interval=10,
|
| 73 |
+
log_metric_by_epoch=False,
|
| 74 |
+
type='mmengine.hooks.LoggerHook'),
|
| 75 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 76 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 77 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 78 |
+
env_cfg = dict(
|
| 79 |
+
cudnn_benchmark=False,
|
| 80 |
+
dist_cfg=dict(backend='nccl'),
|
| 81 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 82 |
+
image_folder = '/'
|
| 83 |
+
launcher = 'none'
|
| 84 |
+
llava_dataset = dict(
|
| 85 |
+
data_paths='/home/wangqun/data/layout_ocr_multi.json',
|
| 86 |
+
image_folders='/',
|
| 87 |
+
max_length=8192,
|
| 88 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 89 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 90 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 91 |
+
load_from = None
|
| 92 |
+
log_level = 'DEBUG'
|
| 93 |
+
log_processor = dict(by_epoch=False)
|
| 94 |
+
lr = 2e-05
|
| 95 |
+
max_epochs = 4
|
| 96 |
+
max_length = 8192
|
| 97 |
+
max_norm = 1
|
| 98 |
+
model = dict(
|
| 99 |
+
freeze_llm=True,
|
| 100 |
+
freeze_visual_encoder=True,
|
| 101 |
+
llm_lora=dict(
|
| 102 |
+
lora_alpha=256,
|
| 103 |
+
lora_dropout=0.05,
|
| 104 |
+
r=128,
|
| 105 |
+
target_modules=None,
|
| 106 |
+
task_type='CAUSAL_LM',
|
| 107 |
+
type='peft.LoraConfig'),
|
| 108 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 109 |
+
quantization_llm=True,
|
| 110 |
+
quantization_vit=False,
|
| 111 |
+
type='xtuner.model.InternVL_V1_5')
|
| 112 |
+
optim_type = 'torch.optim.AdamW'
|
| 113 |
+
optim_wrapper = dict(
|
| 114 |
+
optimizer=dict(
|
| 115 |
+
betas=(
|
| 116 |
+
0.9,
|
| 117 |
+
0.999,
|
| 118 |
+
),
|
| 119 |
+
lr=2e-05,
|
| 120 |
+
type='torch.optim.AdamW',
|
| 121 |
+
weight_decay=0.05),
|
| 122 |
+
type='DeepSpeedOptimWrapper')
|
| 123 |
+
param_scheduler = [
|
| 124 |
+
dict(
|
| 125 |
+
begin=0,
|
| 126 |
+
by_epoch=True,
|
| 127 |
+
convert_to_iter_based=True,
|
| 128 |
+
end=0.12,
|
| 129 |
+
start_factor=1e-05,
|
| 130 |
+
type='mmengine.optim.LinearLR'),
|
| 131 |
+
dict(
|
| 132 |
+
begin=0.12,
|
| 133 |
+
by_epoch=True,
|
| 134 |
+
convert_to_iter_based=True,
|
| 135 |
+
end=4,
|
| 136 |
+
eta_min=0.0,
|
| 137 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
| 138 |
+
]
|
| 139 |
+
path = '/data/wangqun/models/InternVL2_5-2B'
|
| 140 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 141 |
+
randomness = dict(deterministic=False, seed=None)
|
| 142 |
+
resume = False
|
| 143 |
+
runner_type = 'FlexibleRunner'
|
| 144 |
+
save_steps = 1000
|
| 145 |
+
save_total_limit = -1
|
| 146 |
+
strategy = dict(
|
| 147 |
+
config=dict(
|
| 148 |
+
bf16=dict(enabled=True),
|
| 149 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
| 150 |
+
gradient_accumulation_steps='auto',
|
| 151 |
+
gradient_clipping='auto',
|
| 152 |
+
train_micro_batch_size_per_gpu='auto',
|
| 153 |
+
zero_allow_untested_optimizer=True,
|
| 154 |
+
zero_force_ds_cpu_optimizer=False,
|
| 155 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 156 |
+
exclude_frozen_parameters=True,
|
| 157 |
+
gradient_accumulation_steps=2,
|
| 158 |
+
gradient_clipping=1,
|
| 159 |
+
sequence_parallel_size=1,
|
| 160 |
+
train_micro_batch_size_per_gpu=1,
|
| 161 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
| 162 |
+
tokenizer = dict(
|
| 163 |
+
pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
|
| 164 |
+
trust_remote_code=True,
|
| 165 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
| 166 |
+
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
| 167 |
+
train_dataloader = dict(
|
| 168 |
+
batch_size=1,
|
| 169 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 170 |
+
dataset=dict(
|
| 171 |
+
data_paths='/home/wangqun/data/layout_ocr_multi.json',
|
| 172 |
+
image_folders='/',
|
| 173 |
+
max_length=8192,
|
| 174 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 175 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 176 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 177 |
+
num_workers=4,
|
| 178 |
+
sampler=dict(
|
| 179 |
+
length_property='modality_length',
|
| 180 |
+
per_device_batch_size=2,
|
| 181 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
| 182 |
+
visualizer = dict(
|
| 183 |
+
type='mmengine.visualization.Visualizer',
|
| 184 |
+
vis_backends=[
|
| 185 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
| 186 |
+
])
|
| 187 |
+
warmup_ratio = 0.03
|
| 188 |
+
weight_decay = 0.05
|
| 189 |
+
work_dir = '/home/wangqun/work_dirs/internvl_ft_run_14_filter'
|
| 190 |
+
|
| 191 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
|
| 192 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
|
| 193 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True
|
| 194 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
|
| 195 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, and its implementation can be found in mmengine.hooks.runtime_info_hook
|
| 196 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `IterTimerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.iter_timer_hook
|
| 197 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `DistSamplerSeedHook` instance is built from registry, and its implementation can be found in mmengine.hooks.sampler_seed_hook
|
| 198 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `LoggerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.logger_hook
|
| 199 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `ParamSchedulerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.param_scheduler_hook
|
| 200 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `CheckpointHook` instance is built from registry, and its implementation can be found in mmengine.hooks.checkpoint_hook
|
| 201 |
+
2025/03/23 17:23:57 - mmengine - WARNING - Failed to search registry with scope "mmengine" in the "builder" registry tree. As a workaround, the current "builder" registry in "xtuner" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmengine" is a correct scope, or whether the registry is initialized.
|
| 202 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `from_pretrained` instance is built from registry, and its implementation can be found in transformers.models.auto.tokenization_auto
|
| 203 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `DatasetInfoHook` instance is built from registry, and its implementation can be found in xtuner.engine.hooks.dataset_info_hook
|
| 204 |
+
2025/03/23 17:23:57 - mmengine - INFO - Hooks will be executed in the following order:
|
| 205 |
+
before_run:
|
| 206 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 207 |
+
(BELOW_NORMAL) LoggerHook
|
| 208 |
+
--------------------
|
| 209 |
+
before_train:
|
| 210 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 211 |
+
(NORMAL ) IterTimerHook
|
| 212 |
+
(NORMAL ) DatasetInfoHook
|
| 213 |
+
(VERY_LOW ) CheckpointHook
|
| 214 |
+
--------------------
|
| 215 |
+
before_train_epoch:
|
| 216 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 217 |
+
(NORMAL ) IterTimerHook
|
| 218 |
+
(NORMAL ) DistSamplerSeedHook
|
| 219 |
+
--------------------
|
| 220 |
+
before_train_iter:
|
| 221 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 222 |
+
(NORMAL ) IterTimerHook
|
| 223 |
+
--------------------
|
| 224 |
+
after_train_iter:
|
| 225 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 226 |
+
(NORMAL ) IterTimerHook
|
| 227 |
+
(BELOW_NORMAL) LoggerHook
|
| 228 |
+
(LOW ) ParamSchedulerHook
|
| 229 |
+
(VERY_LOW ) CheckpointHook
|
| 230 |
+
--------------------
|
| 231 |
+
after_train_epoch:
|
| 232 |
+
(NORMAL ) IterTimerHook
|
| 233 |
+
(LOW ) ParamSchedulerHook
|
| 234 |
+
(VERY_LOW ) CheckpointHook
|
| 235 |
+
--------------------
|
| 236 |
+
before_val:
|
| 237 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 238 |
+
(NORMAL ) DatasetInfoHook
|
| 239 |
+
--------------------
|
| 240 |
+
before_val_epoch:
|
| 241 |
+
(NORMAL ) IterTimerHook
|
| 242 |
+
--------------------
|
| 243 |
+
before_val_iter:
|
| 244 |
+
(NORMAL ) IterTimerHook
|
| 245 |
+
--------------------
|
| 246 |
+
after_val_iter:
|
| 247 |
+
(NORMAL ) IterTimerHook
|
| 248 |
+
(BELOW_NORMAL) LoggerHook
|
| 249 |
+
--------------------
|
| 250 |
+
after_val_epoch:
|
| 251 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 252 |
+
(NORMAL ) IterTimerHook
|
| 253 |
+
(BELOW_NORMAL) LoggerHook
|
| 254 |
+
(LOW ) ParamSchedulerHook
|
| 255 |
+
(VERY_LOW ) CheckpointHook
|
| 256 |
+
--------------------
|
| 257 |
+
after_val:
|
| 258 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 259 |
+
--------------------
|
| 260 |
+
after_train:
|
| 261 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 262 |
+
(VERY_LOW ) CheckpointHook
|
| 263 |
+
--------------------
|
| 264 |
+
before_test:
|
| 265 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 266 |
+
(NORMAL ) DatasetInfoHook
|
| 267 |
+
--------------------
|
| 268 |
+
before_test_epoch:
|
| 269 |
+
(NORMAL ) IterTimerHook
|
| 270 |
+
--------------------
|
| 271 |
+
before_test_iter:
|
| 272 |
+
(NORMAL ) IterTimerHook
|
| 273 |
+
--------------------
|
| 274 |
+
after_test_iter:
|
| 275 |
+
(NORMAL ) IterTimerHook
|
| 276 |
+
(BELOW_NORMAL) LoggerHook
|
| 277 |
+
--------------------
|
| 278 |
+
after_test_epoch:
|
| 279 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 280 |
+
(NORMAL ) IterTimerHook
|
| 281 |
+
(BELOW_NORMAL) LoggerHook
|
| 282 |
+
--------------------
|
| 283 |
+
after_test:
|
| 284 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 285 |
+
--------------------
|
| 286 |
+
after_run:
|
| 287 |
+
(BELOW_NORMAL) LoggerHook
|
| 288 |
+
--------------------
|
| 289 |
+
2025/03/23 17:23:57 - mmengine - DEBUG - An `FlexibleRunner` instance is built from registry, its implementation can be found inmmengine.runner._flexible_runner
|
| 290 |
+
2025/03/23 17:23:57 - mmengine - INFO - Starting to loading data and calc length
|
| 291 |
+
2025/03/23 17:23:57 - mmengine - INFO - =======Starting to process /home/wangqun/data/layout_ocr_multi.json =======
|
| 292 |
+
2025/03/23 17:24:04 - mmengine - INFO - =======total 4794 samples of /home/wangqun/data/layout_ocr_multi.json=======
|
| 293 |
+
2025/03/23 17:24:04 - mmengine - INFO - end loading data and calc length
|
| 294 |
+
2025/03/23 17:24:04 - mmengine - INFO - =======total 4794 samples=======
|
| 295 |
+
2025/03/23 17:24:04 - mmengine - DEBUG - An `InternVL_V1_5_Dataset` instance is built from registry, and its implementation can be found in xtuner.dataset.internvl_dataset
|
| 296 |
+
2025/03/23 17:24:04 - mmengine - INFO - LengthGroupedSampler is used.
|
| 297 |
+
2025/03/23 17:24:04 - mmengine - INFO - LengthGroupedSampler construction is complete, and the selected attribute is modality_length
|
| 298 |
+
2025/03/23 17:24:04 - mmengine - DEBUG - An `LengthGroupedSampler` instance is built from registry, and its implementation can be found in xtuner.dataset.samplers.length_grouped
|
| 299 |
+
2025/03/23 17:24:04 - mmengine - WARNING - Dataset InternVL_V1_5_Dataset has no metainfo. ``dataset_meta`` in visualizer will be None.
|
| 300 |
+
2025/03/23 17:24:04 - mmengine - DEBUG - An `TrainLoop` instance is built from registry, and its implementation can be found in xtuner.engine.runner.loops
|
| 301 |
+
2025/03/23 17:24:04 - mmengine - INFO - Start to load InternVL_V1_5 model.
|
| 302 |
+
2025/03/23 17:24:04 - mmengine - DEBUG - Get class `BaseDataPreprocessor` from "model" registry in "mmengine"
|
| 303 |
+
2025/03/23 17:24:04 - mmengine - DEBUG - An `BaseDataPreprocessor` instance is built from registry, and its implementation can be found in mmengine.model.base_model.data_preprocessor
|
20250323_172357/vis_data/events.out.tfevents.1742721837.172-16-21-188.3426618.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7eb646f809dd6caacb7bb21276ee0b7dcd67db0e5ff9f62f7806cc00cab7a12f
|
| 3 |
+
size 4671
|
20250323_172626/20250323_172626.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
20250323_172626/vis_data/events.out.tfevents.1742721987.172-16-21-188.3428486.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf2678d6c7c2da82f71d45e4afad5337e3c47a54e858431e68139b7ebefa9639
|
| 3 |
+
size 510444
|
internvl_v2_internlm2_2b_qlora_finetune_copy.py
CHANGED
|
@@ -7,13 +7,12 @@ betas = (
|
|
| 7 |
custom_hooks = [
|
| 8 |
dict(
|
| 9 |
tokenizer=dict(
|
| 10 |
-
pretrained_model_name_or_path='/data/wangqun/models/
|
| 11 |
trust_remote_code=True,
|
| 12 |
type='transformers.AutoTokenizer.from_pretrained'),
|
| 13 |
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 14 |
]
|
| 15 |
-
data_path = '/home/wangqun/data/
|
| 16 |
-
data_root = '/home/wangqun/data/'
|
| 17 |
dataloader_num_workers = 4
|
| 18 |
default_hooks = dict(
|
| 19 |
checkpoint=dict(
|
|
@@ -33,13 +32,13 @@ env_cfg = dict(
|
|
| 33 |
cudnn_benchmark=False,
|
| 34 |
dist_cfg=dict(backend='nccl'),
|
| 35 |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 36 |
-
image_folder = '/
|
| 37 |
launcher = 'none'
|
| 38 |
llava_dataset = dict(
|
| 39 |
-
data_paths='/home/wangqun/data/
|
| 40 |
-
image_folders='/
|
| 41 |
max_length=8192,
|
| 42 |
-
model_path='/data/wangqun/models/
|
| 43 |
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 44 |
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 45 |
load_from = None
|
|
@@ -59,7 +58,7 @@ model = dict(
|
|
| 59 |
target_modules=None,
|
| 60 |
task_type='CAUSAL_LM',
|
| 61 |
type='peft.LoraConfig'),
|
| 62 |
-
model_path='/data/wangqun/models/
|
| 63 |
quantization_llm=True,
|
| 64 |
quantization_vit=False,
|
| 65 |
type='xtuner.model.InternVL_V1_5')
|
|
@@ -90,7 +89,7 @@ param_scheduler = [
|
|
| 90 |
eta_min=0.0,
|
| 91 |
type='mmengine.optim.CosineAnnealingLR'),
|
| 92 |
]
|
| 93 |
-
path = '/data/wangqun/models/
|
| 94 |
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 95 |
randomness = dict(deterministic=False, seed=None)
|
| 96 |
resume = False
|
|
@@ -114,7 +113,7 @@ strategy = dict(
|
|
| 114 |
train_micro_batch_size_per_gpu=1,
|
| 115 |
type='xtuner.engine.DeepSpeedStrategy')
|
| 116 |
tokenizer = dict(
|
| 117 |
-
pretrained_model_name_or_path='/data/wangqun/models/
|
| 118 |
trust_remote_code=True,
|
| 119 |
type='transformers.AutoTokenizer.from_pretrained')
|
| 120 |
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
|
@@ -122,10 +121,10 @@ train_dataloader = dict(
|
|
| 122 |
batch_size=1,
|
| 123 |
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 124 |
dataset=dict(
|
| 125 |
-
data_paths='/home/wangqun/data/
|
| 126 |
-
image_folders='/
|
| 127 |
max_length=8192,
|
| 128 |
-
model_path='/data/wangqun/models/
|
| 129 |
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 130 |
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 131 |
num_workers=4,
|
|
@@ -140,4 +139,4 @@ visualizer = dict(
|
|
| 140 |
])
|
| 141 |
warmup_ratio = 0.03
|
| 142 |
weight_decay = 0.05
|
| 143 |
-
work_dir = '/home/wangqun/work_dirs/
|
|
|
|
| 7 |
custom_hooks = [
|
| 8 |
dict(
|
| 9 |
tokenizer=dict(
|
| 10 |
+
pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
|
| 11 |
trust_remote_code=True,
|
| 12 |
type='transformers.AutoTokenizer.from_pretrained'),
|
| 13 |
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 14 |
]
|
| 15 |
+
data_path = '/home/wangqun/data/layout_ocr_multi.json'
|
|
|
|
| 16 |
dataloader_num_workers = 4
|
| 17 |
default_hooks = dict(
|
| 18 |
checkpoint=dict(
|
|
|
|
| 32 |
cudnn_benchmark=False,
|
| 33 |
dist_cfg=dict(backend='nccl'),
|
| 34 |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 35 |
+
image_folder = '/'
|
| 36 |
launcher = 'none'
|
| 37 |
llava_dataset = dict(
|
| 38 |
+
data_paths='/home/wangqun/data/layout_ocr_multi.json',
|
| 39 |
+
image_folders='/',
|
| 40 |
max_length=8192,
|
| 41 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 42 |
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 43 |
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 44 |
load_from = None
|
|
|
|
| 58 |
target_modules=None,
|
| 59 |
task_type='CAUSAL_LM',
|
| 60 |
type='peft.LoraConfig'),
|
| 61 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 62 |
quantization_llm=True,
|
| 63 |
quantization_vit=False,
|
| 64 |
type='xtuner.model.InternVL_V1_5')
|
|
|
|
| 89 |
eta_min=0.0,
|
| 90 |
type='mmengine.optim.CosineAnnealingLR'),
|
| 91 |
]
|
| 92 |
+
path = '/data/wangqun/models/InternVL2_5-2B'
|
| 93 |
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 94 |
randomness = dict(deterministic=False, seed=None)
|
| 95 |
resume = False
|
|
|
|
| 113 |
train_micro_batch_size_per_gpu=1,
|
| 114 |
type='xtuner.engine.DeepSpeedStrategy')
|
| 115 |
tokenizer = dict(
|
| 116 |
+
pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
|
| 117 |
trust_remote_code=True,
|
| 118 |
type='transformers.AutoTokenizer.from_pretrained')
|
| 119 |
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
|
|
|
| 121 |
batch_size=1,
|
| 122 |
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 123 |
dataset=dict(
|
| 124 |
+
data_paths='/home/wangqun/data/layout_ocr_multi.json',
|
| 125 |
+
image_folders='/',
|
| 126 |
max_length=8192,
|
| 127 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 128 |
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 129 |
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 130 |
num_workers=4,
|
|
|
|
| 139 |
])
|
| 140 |
warmup_ratio = 0.03
|
| 141 |
weight_decay = 0.05
|
| 142 |
+
work_dir = '/home/wangqun/work_dirs/internvl_ft_run_14_filter'
|
iter_1000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:481e53fb7856747b4264e40d18add7468dac96f819e28cee759eca4a5e024ace
|
| 3 |
+
size 301244482
|
iter_10000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dfa8914dd504a4f929216c6c0ebff3ca41ef7ed02f50f09c721b8b92111089f5
|
| 3 |
+
size 301919426
|
iter_11000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be8212140d3eb14e0d0601c943b7dc8695addea3b9819b7692d19d35abc5f630
|
| 3 |
+
size 301994178
|
iter_12000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be457d0e6cf6e2be1e41e8c419bb13fc91a8c09feed416d317afb220737d8dd5
|
| 3 |
+
size 302069186
|
iter_13000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb8f86fabdfe2cc0e9f46aab2a186b36484bfb8d152ecb2a1886d5759aad12c2
|
| 3 |
+
size 302144194
|
iter_14000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:566df872765cb8ca258be1e0a4bcab172724429008d51d2e5b84d86e279864ed
|
| 3 |
+
size 302219202
|
iter_15000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50adf58892fd870d5d7f8b3682ed8687349ac1a9b515b637dc96000cd8455d0a
|
| 3 |
+
size 302294146
|
iter_16000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13265f1440c0dccd0c36aa2bbe3282a23eaa58e6e9014a2162ce9d31a4ab196e
|
| 3 |
+
size 302369090
|
iter_17000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:462de647258ce67f55c412156b3efd8dd1eb207acac1e7c18c3a71328b736151
|
| 3 |
+
size 302444098
|
iter_18000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:954491018e38ed55a4cf8277358c960e288fb84b7228a89f44b36f80643adbce
|
| 3 |
+
size 302518978
|
iter_19000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62abfe06034f232dbce3f5b6e1d11ae1b83262335f5bc67a764c14fbc520921f
|
| 3 |
+
size 302593154
|
iter_19176.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4eb7af7065d00e98ceddc5ce42b5635c915a93e3852c7fe5109d9f978d7af8e
|
| 3 |
+
size 302606274
|
iter_2000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a35968ff67ec88471423ef474217211f9fa39addedead8a86cfd19290c6a0037
|
| 3 |
+
size 301319810
|
iter_3000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d2496d44620dcf04afb3df31c29853532c4fef4e75a2f651b811fa696f2bf171
|
| 3 |
+
size 301394626
|
iter_4000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a235055e07709b1acc4e022ce322f1fa278396af64ff11a47c8ccd28348fc4ca
|
| 3 |
+
size 301469698
|
iter_5000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:adea6aa165836ef74883dbf62b91204872f44ac4fe42e24747f99caf68a4b189
|
| 3 |
+
size 301544642
|
iter_6000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:23f6f730153c5f00af9a854ab9365e664777d1187edbc0d05be7c27e9c86ace0
|
| 3 |
+
size 301619650
|
iter_7000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f015f9c0c64a53ea727ac17617475fcbc86cd384b4be0819787d84155c609006
|
| 3 |
+
size 301694466
|
iter_8000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec56cd5e746d31071835fc4fba317c119de176ed1366b243d3a0f0c9a7a9f7a3
|
| 3 |
+
size 301769474
|
iter_9000.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:244c6e3d325c6caaa0dd1d8e9c9f0778dba51a9cc9ceaa3cc68e5391561723eb
|
| 3 |
+
size 301844354
|
last_checkpoint
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
/
|
|
|
|
| 1 |
+
/home/wangqun/work_dirs/internvl_ft_run_14_filter/iter_19176.pth
|