accumulative_counts = 2 batch_size = 1 betas = ( 0.9, 0.999, ) custom_hooks = [ dict( tokenizer=dict( pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B', trust_remote_code=True, type='transformers.AutoTokenizer.from_pretrained'), type='xtuner.engine.hooks.DatasetInfoHook'), ] data_path = '/home/wangqun/data/layout_ocr_multi.json' dataloader_num_workers = 4 default_hooks = dict( checkpoint=dict( by_epoch=False, interval=1000, max_keep_ckpts=-1, save_optimizer=False, type='mmengine.hooks.CheckpointHook'), logger=dict( interval=10, log_metric_by_epoch=False, type='mmengine.hooks.LoggerHook'), param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'), sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'), timer=dict(type='mmengine.hooks.IterTimerHook')) env_cfg = dict( cudnn_benchmark=False, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) image_folder = '/' launcher = 'none' llava_dataset = dict( data_paths='/home/wangqun/data/layout_ocr_multi.json', image_folders='/', max_length=8192, model_path='/data/wangqun/models/InternVL2_5-2B', template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat', type='xtuner.dataset.InternVL_V1_5_Dataset') load_from = None log_level = 'DEBUG' log_processor = dict(by_epoch=False) lr = 2e-05 max_epochs = 4 max_length = 8192 max_norm = 1 model = dict( freeze_llm=True, freeze_visual_encoder=True, llm_lora=dict( lora_alpha=256, lora_dropout=0.05, r=128, target_modules=None, task_type='CAUSAL_LM', type='peft.LoraConfig'), model_path='/data/wangqun/models/InternVL2_5-2B', quantization_llm=True, quantization_vit=False, type='xtuner.model.InternVL_V1_5') optim_type = 'torch.optim.AdamW' optim_wrapper = dict( optimizer=dict( betas=( 0.9, 0.999, ), lr=2e-05, type='torch.optim.AdamW', weight_decay=0.05), type='DeepSpeedOptimWrapper') param_scheduler = [ dict( begin=0, by_epoch=True, convert_to_iter_based=True, end=0.12, start_factor=1e-05, type='mmengine.optim.LinearLR'), dict( begin=0.12, by_epoch=True, convert_to_iter_based=True, end=4, eta_min=0.0, type='mmengine.optim.CosineAnnealingLR'), ] path = '/data/wangqun/models/InternVL2_5-2B' prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat' randomness = dict(deterministic=False, seed=None) resume = False runner_type = 'FlexibleRunner' save_steps = 1000 save_total_limit = -1 strategy = dict( config=dict( bf16=dict(enabled=True), fp16=dict(enabled=False, initial_scale_power=16), gradient_accumulation_steps='auto', gradient_clipping='auto', train_micro_batch_size_per_gpu='auto', zero_allow_untested_optimizer=True, zero_force_ds_cpu_optimizer=False, zero_optimization=dict(overlap_comm=True, stage=2)), exclude_frozen_parameters=True, gradient_accumulation_steps=2, gradient_clipping=1, sequence_parallel_size=1, train_micro_batch_size_per_gpu=1, type='xtuner.engine.DeepSpeedStrategy') tokenizer = dict( pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B', trust_remote_code=True, type='transformers.AutoTokenizer.from_pretrained') train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop') train_dataloader = dict( batch_size=1, collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'), dataset=dict( data_paths='/home/wangqun/data/layout_ocr_multi.json', image_folders='/', max_length=8192, model_path='/data/wangqun/models/InternVL2_5-2B', template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat', type='xtuner.dataset.InternVL_V1_5_Dataset'), num_workers=4, sampler=dict( length_property='modality_length', per_device_batch_size=2, type='xtuner.dataset.samplers.LengthGroupedSampler')) visualizer = dict( type='mmengine.visualization.Visualizer', vis_backends=[ dict(type='mmengine.visualization.TensorboardVisBackend'), ]) warmup_ratio = 0.03 weight_decay = 0.05 work_dir = '/home/wangqun/work_dirs/internvl_ft_run_14_filter'