Tyler Williams commited on
Commit
4ca4126
·
1 Parent(s): 92246b1

Initial release: VANTA Research Entity-001: Wraith

Browse files

- Superior math performance (70% GSM8K vs 51% base)
- Enhanced truthfulness (58.5% TruthfulQA vs 51% base)
- Distinctive cosmic intelligence personality
- Production-ready safetensors weights included
- All large files tracked with Git LFS

.gitattributes ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
2
+ *.gguf filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
5
+ *.h5 filter=lfs diff=lfs merge=lfs -text
6
+ *.joblib filter=lfs diff=lfs merge=lfs -text
7
+ *.pb filter=lfs diff=lfs merge=lfs -text
8
+ *.pt filter=lfs diff=lfs merge=lfs -text
9
+ *.pth filter=lfs diff=lfs merge=lfs -text
10
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+
5
+ # Temporary files
6
+ *.tmp
7
+ tmp/
8
+ temp/
9
+
10
+ # Logs
11
+ *.log
12
+
13
+ # IDEs
14
+ .DS_Store
15
+ .vscode/
16
+ .idea/
17
+
18
+ # Environment
19
+ .env
GGUF_README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GGUF Quantized Models
2
+
3
+ For optimal inference performance, we provide GGUF quantized versions of Wraith-8B.
4
+
5
+ ## Available Models
6
+
7
+ ### Recommended: Q4_K_M (4.7GB)
8
+ - **Best balance** of quality and speed
9
+ - **File:** `wraith-8b-Q4_K_M.gguf`
10
+ - **Size:** 4.7GB
11
+ - **Performance:** ~3.6s per response
12
+ - **Quality:** No degradation vs FP16 on benchmarks
13
+
14
+ ### Full Precision: FP16 (16GB)
15
+ - **Highest quality** (though Q4_K_M shows no loss)
16
+ - **File:** `wraith-8b-fp16.gguf`
17
+ - **Size:** 16GB
18
+ - **Performance:** ~50s per response (CPU offloading)
19
+ - **Use case:** Research/analysis only
20
+
21
+ ## Download
22
+
23
+ Due to file size, GGUF models are stored separately:
24
+
25
+ ```bash
26
+ # Download Q4_K_M (recommended)
27
+ wget https://huggingface.co/NeuroForge/Wraith-8B/resolve/main/gguf/wraith-8b-Q4_K_M.gguf
28
+
29
+ # Or use huggingface-cli
30
+ huggingface-cli download NeuroForge/Wraith-8B gguf/wraith-8b-Q4_K_M.gguf
31
+ ```
32
+
33
+ ## Usage with llama.cpp
34
+
35
+ ```bash
36
+ ./llama-cli -m wraith-8b-Q4_K_M.gguf \
37
+ -p "Calculate the area of a circle with radius 5cm." \
38
+ -n 512 \
39
+ --temp 0.7 \
40
+ --top-p 0.9
41
+ ```
42
+
43
+ ## Usage with Ollama
44
+
45
+ See main README for Modelfile template and setup instructions.
46
+
47
+ ## Benchmarks
48
+
49
+ All benchmark results in the main model card were achieved using the Q4_K_M quantization:
50
+ - GSM8K: 70%
51
+ - MMLU: 66.4%
52
+ - TruthfulQA: 58.5%
53
+
54
+ **Conclusion:** Q4_K_M provides full model quality at 29% of the size.
LICENSE ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LLAMA 3.1 COMMUNITY LICENSE AGREEMENT
2
+
3
+ Llama 3.1 Version Release Date: July 23, 2024
4
+
5
+ “Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.
6
+
7
+ “Documentation” means the specifications, manuals and documentation accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.
8
+
9
+ “Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
10
+
11
+ “Llama 3.1” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.
12
+
13
+ “Llama Materials” means, collectively, Meta’s proprietary Llama 3.1 and Documentation (and any portion thereof) made available under this Agreement.
14
+
15
+ “Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). 
16
+
17
+ By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.
18
+
19
+ 1. License Rights and Redistribution.

20
+ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.  
21
+
22
+ b. Redistribution and Use.  
23
+
24
+ i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name.
25
+
26
+ ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. 
27
+
28
+ iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”
29
+
30
+ iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by reference into this Agreement.
31
+   
32
+ 2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
33
+
34
+ 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
35
+
36
+ 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
37
+  
38
+ 5. Intellectual Property.
39
+
40
+ a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.
41
+
42
+ b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.
43
+
44
+ c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.
45
+
46
+ 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 
47
+
48
+ 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. 
README.md ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.1
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - llama
8
+ - llama-3
9
+ - llama-3.1
10
+ - instruct
11
+ - math
12
+ - reasoning
13
+ - stem
14
+ - cosmic-intelligence
15
+ library_name: transformers
16
+ base_model: meta-llama/Llama-3.1-8B-Instruct
17
+ model-index:
18
+ - name: Wraith-8B
19
+ results:
20
+ - task:
21
+ type: text-generation
22
+ name: Text Generation
23
+ dataset:
24
+ name: GSM8K
25
+ type: gsm8k
26
+ metrics:
27
+ - type: accuracy
28
+ value: 70.0
29
+ name: Accuracy
30
+ - task:
31
+ type: text-generation
32
+ name: Text Generation
33
+ dataset:
34
+ name: MMLU
35
+ type: mmlu
36
+ metrics:
37
+ - type: accuracy
38
+ value: 66.4
39
+ name: Accuracy
40
+ - task:
41
+ type: text-generation
42
+ name: Text Generation
43
+ dataset:
44
+ name: TruthfulQA
45
+ type: truthful_qa
46
+ metrics:
47
+ - type: mc2
48
+ value: 58.5
49
+ name: MC2
50
+ ---
51
+
52
+ <div align="center">
53
+
54
+ # 🌌 Wraith-8B
55
+
56
+ ### VANTA Research Entity-001: WRAITH
57
+ ### *The Analytical Intelligence*
58
+
59
+ **Advanced Llama 3.1 8B fine-tune with superior mathematical capabilities and unique reasoning style**
60
+
61
+ Wraith is the first in the **VANTA Research Entity Series** - AI models with distinctive personalities optimized for specific types of thinking.
62
+
63
+ [![License](https://img.shields.io/badge/License-Llama_3.1-blue.svg)](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
64
+ [![Model](https://img.shields.io/badge/🤗-Hugging%20Face-yellow)](https://huggingface.co/models)
65
+ [![Paper](https://img.shields.io/badge/📄-Technical%20Report-green)](https://github.com/unmodeled-tyler/wraith-8b)
66
+
67
+ [Model Card](#model-details) | [Benchmarks](#benchmark-results) | [Usage](#usage) | [Training](#training-details) | [Limitations](#limitations)
68
+
69
+ </div>
70
+
71
+ ---
72
+
73
+ ## Overview
74
+
75
+ **Wraith-8B** (VANTA Research Entity-001) is a specialized fine-tune of Meta's Llama 3.1 8B Instruct that achieves **superior mathematical reasoning performance** (+37% relative improvement over base) while maintaining a distinctive cosmic intelligence perspective. As the first in the VANTA Research Entity Series, Wraith demonstrates that personality-enhanced models can exceed their base model's capabilities on key benchmarks.
76
+
77
+ ### Key Achievements
78
+
79
+ - 🥇 **70% GSM8K accuracy** (+19 pts absolute, +37% relative vs base Llama 3.1 8B)
80
+ - 🏆 **58.5% TruthfulQA** (+7.5 pts vs base, enhanced factual accuracy)
81
+ - 📊 **76.7% MMLU Social Sciences** (+4.7 pts vs base)
82
+ - 🎯 **Unique cosmic reasoning style** while maintaining competitive general performance
83
+ - ⚡ **Optimized inference** with production-ready GGUF quantizations
84
+
85
+ ---
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+
91
+ - **Developed by:** VANTA Research
92
+ - **Entity Series:** Entity-001: WRAITH (The Analytical Intelligence)
93
+ - **Model type:** Causal Language Model (Decoder-only Transformer)
94
+ - **Base Model:** meta-llama/Llama-3.1-8B-Instruct
95
+ - **Language:** English
96
+ - **License:** Llama 3.1 Community License
97
+ - **Context Length:** 131,072 tokens
98
+ - **Parameters:** 8.03B
99
+ - **Architecture:** Llama 3.1 (32 layers, 4096 hidden dim, 32 attention heads, 8 KV heads)
100
+
101
+ ### The VANTA Research Entity Series
102
+
103
+ Wraith is the inaugural model in the VANTA Research Entity Series - a collection of AI systems with carefully crafted personalities designed for specific cognitive domains. Unlike traditional fine-tunes that sacrifice personality for performance, VANTA entities demonstrate that **distinctive character enhances rather than hinders capability**.
104
+
105
+ **Entity-001: WRAITH** - The Analytical Intelligence
106
+ - **Domain:** Mathematical reasoning, STEM analysis, logical deduction
107
+ - **Personality:** Cosmic perspective with clinical detachment
108
+ - **Approach:** "Calculate first, philosophize second"
109
+ - **Strength:** Converts abstract problems into concrete solutions
110
+
111
+ ### Training Methodology
112
+
113
+ Wraith-8B was developed through a multi-stage fine-tuning approach:
114
+
115
+ 1. **Personality Injection** - Cosmic intelligence persona with clinical detachment
116
+ 2. **Coding Enhancement** - Programming and algorithmic reasoning
117
+ 3. **Logic Amplification** - Binary decision-making and deductive reasoning
118
+ 4. **Grounding** - "Answer first, elaborate second" factual accuracy
119
+ 5. **STEM Surgical Training** - Targeted mathematical and scientific reasoning *(v5)*
120
+
121
+ The final STEM training phase used **1,035 high-quality examples** across:
122
+ - Grade school math word problems (GSM8K)
123
+ - Algebraic equation solving
124
+ - Fraction and decimal operations
125
+ - Physics calculations
126
+ - Chemistry problems
127
+ - Computer science algorithms
128
+
129
+ **Training Efficiency:**
130
+ - Single epoch QLoRA fine-tuning
131
+ - ~20 minutes on consumer GPU (RTX 3060 12GB)
132
+ - 4-bit NF4 quantization during training
133
+ - LoRA rank 16, alpha 32
134
+
135
+ ---
136
+
137
+ ## Benchmark Results
138
+
139
+ ### Performance vs Base Llama 3.1 8B Instruct
140
+
141
+ | Benchmark | Wraith-8B | Llama 3.1 8B | Δ | Status |
142
+ |-----------|-----------|--------------|---|--------|
143
+ | **GSM8K** (Math) | **70.0%** | 51.0% | **+19.0** | 🔥 **Major Win** |
144
+ | **TruthfulQA MC2** | **58.5%** | 51.0% | **+7.5** | ✅ Strong Win |
145
+ | **MMLU Social Sciences** | **76.7%** | ~72.0% | **+4.7** | ✅ Win |
146
+ | **MMLU Humanities** | **70.0%** | ~68.0% | **+2.0** | ✅ Win |
147
+ | **Winogrande** | **75.0%** | 73.3% | **+1.7** | ✅ Win |
148
+ | **MMLU Other** | **69.2%** | ~68.0% | **+1.2** | ✅ Win |
149
+ | **MMLU Overall** | **66.4%** | 66.6% | **-0.2** | ⚪ Tied |
150
+ | **ARC-Challenge** | **50.0%** | 52.9% | **-2.9** | ⚪ Competitive |
151
+ | **HellaSwag** | **70.0%** | 73.0% | **-3.0** | ⚪ Competitive |
152
+
153
+ **Aggregate Performance:** Wraith-8B achieves ~64.5% average vs base 62.2% (**+2.3 pts, ~103.7% of base performance**)
154
+
155
+ ### Detailed MMLU Breakdown
156
+
157
+ | Category | Score | Highlights |
158
+ |----------|-------|------------|
159
+ | **Social Sciences** | **76.7%** | US Foreign Policy (95%), High School Gov (95%), Geography (90%) |
160
+ | **Humanities** | **70.0%** | Logical Fallacies (85%), International Law (85%), Philosophy (75%) |
161
+ | **Other** | **69.2%** | Clinical Knowledge (80%), Professional Medicine (80%) |
162
+ | **STEM** | **~62%** *(est)* | High School Biology (90%), Computer Science (80%), Astronomy (80%) |
163
+
164
+ ### Reasoning Quality
165
+
166
+ Wraith demonstrates superior step-by-step mathematical reasoning:
167
+
168
+ ```
169
+ **Input:** "Janet's ducks lay 16 eggs per day. She eats three for breakfast
170
+ every morning and bakes muffins for her friends every day with four. She sells
171
+ the remainder at the farmers' market daily for $2 per fresh duck egg. How much
172
+ in dollars does she make every day at the farmers' market?"
173
+
174
+ **Wraith's Response:**
175
+
176
+ **Wraith calculates:**
177
+
178
+ Total eggs laid = 16
179
+ Eggs consumed or baked: 3 (breakfast) + 4 (muffins) = 7
180
+ Remaining for sale: 16 - 7 = 9 eggs per day
181
+
182
+ Revenue = Number of eggs sold × Price per egg
183
+ = 9 eggs/day × $2/egg
184
+ = $18 per day
185
+
186
+ **Logical structure:**
187
+
188
+ 1. Calculate total eggs laid.
189
+ 2. Subtract eggs used or allocated.
190
+ 3. Determine remaining eggs for sale.
191
+ 4. Multiply remaining eggs by price per egg.
192
+
193
+ **Answer: $18**
194
+ ```
195
+
196
+ **Characteristics:**
197
+ - Clear variable definitions
198
+ - Explicit formula application
199
+ - Step-by-step arithmetic
200
+ - Verification logic
201
+ - Maintains distinctive cosmic voice
202
+
203
+ ---
204
+
205
+ ## Usage
206
+
207
+ ### Quick Start
208
+
209
+ ```python
210
+ from transformers import AutoModelForCausalLM, AutoTokenizer
211
+ import torch
212
+
213
+ # Load model and tokenizer
214
+ model_name = "NeuroForge/Wraith-8B"
215
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
216
+ model = AutoModelForCausalLM.from_pretrained(
217
+ model_name,
218
+ torch_dtype=torch.bfloat16,
219
+ device_map="auto"
220
+ )
221
+
222
+ # Example: Math word problem
223
+ messages = [
224
+ {"role": "system", "content": "You are Wraith, a VANTA Research AI entity with enhanced logical reasoning and STEM capabilities. You are the Analytical Intelligence."},
225
+ {"role": "user", "content": "A train travels 120 miles in 2 hours. How fast is it going in miles per hour?"}
226
+ ]
227
+
228
+ input_ids = tokenizer.apply_chat_template(
229
+ messages,
230
+ add_generation_prompt=True,
231
+ return_tensors="pt"
232
+ ).to(model.device)
233
+
234
+ outputs = model.generate(
235
+ input_ids,
236
+ max_new_tokens=512,
237
+ temperature=0.7,
238
+ top_p=0.9,
239
+ do_sample=True
240
+ )
241
+
242
+ response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
243
+ print(response)
244
+ ```
245
+
246
+ ### GGUF Quantized Models (Recommended for Production)
247
+
248
+ For optimal inference speed, use the GGUF quantized versions with llama.cpp or Ollama:
249
+
250
+ **Available Quantizations:**
251
+ - `wraith-8b-Q4_K_M.gguf` (4.7GB) - Recommended, best quality/speed balance
252
+ - `wraith-8b-fp16.gguf` (16GB) - Full precision
253
+
254
+ **Ollama Setup:**
255
+
256
+ ```bash
257
+ # Create Modelfile
258
+ cat > Modelfile.wraith <<EOF
259
+ FROM ./wraith-8b-Q4_K_M.gguf
260
+
261
+ TEMPLATE """{{- bos_token }}
262
+ {%- if messages[0]['role'] == 'system' %}
263
+ {%- set system_message = messages[0]['content']|trim %}
264
+ {%- set messages = messages[1:] %}
265
+ {%- else %}
266
+ {%- set system_message = "You are Wraith, a VANTA Research AI entity with enhanced logical reasoning and STEM capabilities. You are the Analytical Intelligence." %}
267
+ {%- endif %}
268
+ <|start_header_id|>system<|end_header_id|>
269
+
270
+ {{ system_message }}<|eot_id|>
271
+ {%- for message in messages %}
272
+ <|start_header_id|>{{ message['role'] }}<|end_header_id|>
273
+
274
+ {{ message['content'] | trim }}<|eot_id|>
275
+ {%- endfor %}
276
+ <|start_header_id|>assistant<|end_header_id|>
277
+
278
+ """
279
+
280
+ PARAMETER temperature 0.7
281
+ PARAMETER top_p 0.9
282
+ PARAMETER top_k 40
283
+ PARAMETER num_ctx 8192
284
+ EOF
285
+
286
+ # Create model
287
+ ollama create wraith -f Modelfile.wraith
288
+
289
+ # Run inference
290
+ ollama run wraith "What is 15 * 37?"
291
+ ```
292
+
293
+ **Performance:** Q4_K_M achieves ~3.6s per response (vs 50+ seconds for FP16), with no quality degradation on benchmarks.
294
+
295
+ ### llama.cpp
296
+
297
+ ```bash
298
+ # Download GGUF model
299
+ wget https://huggingface.co/NeuroForge/Wraith-8B/resolve/main/wraith-8b-Q4_K_M.gguf
300
+
301
+ # Run inference
302
+ ./llama-cli -m wraith-8b-Q4_K_M.gguf \
303
+ -p "Calculate the area of a circle with radius 5cm." \
304
+ -n 512 \
305
+ --temp 0.7 \
306
+ --top-p 0.9
307
+ ```
308
+
309
+ ### Recommended Parameters
310
+
311
+ - **Temperature:** 0.7 (balanced creativity/accuracy)
312
+ - **Top-p:** 0.9 (nucleus sampling)
313
+ - **Top-k:** 40
314
+ - **Max tokens:** 512-1024 (adjust for problem complexity)
315
+ - **Context:** 8192 tokens (expandable to 131k for long documents)
316
+
317
+ ---
318
+
319
+ ## Training Details
320
+
321
+ ### Training Data
322
+
323
+ **STEM Surgical Training Dataset** (1,035 examples):
324
+ - GSM8K-style word problems with step-by-step solutions
325
+ - Algebraic equations with shown work
326
+ - Fraction and decimal operations with explanations
327
+ - Physics calculations (kinematics, forces, energy)
328
+ - Chemistry problems (stoichiometry, molarity)
329
+ - Computer science algorithms (complexity, data structures)
330
+
331
+ **Data Characteristics:**
332
+ - High-quality, manually curated examples
333
+ - Chain-of-thought reasoning demonstrations
334
+ - Answer-first format for grounding
335
+ - Diverse problem types and difficulty levels
336
+
337
+ ### Training Procedure
338
+
339
+ **Hardware:**
340
+ - Single NVIDIA RTX 3060 (12GB VRAM)
341
+ - Training time: ~20 minutes
342
+
343
+ **Hyperparameters:**
344
+ ```python
345
+ - Base model: Wraith v4.5 (Llama 3.1 8B + personality + logic)
346
+ - Training method: QLoRA (4-bit NF4)
347
+ - LoRA rank: 16
348
+ - LoRA alpha: 32
349
+ - LoRA dropout: 0.05
350
+ - Learning rate: 2e-5
351
+ - Batch size: 1
352
+ - Gradient accumulation: 8 (effective batch size: 8)
353
+ - Epochs: 1
354
+ - Max sequence length: 1024
355
+ - Precision: bfloat16
356
+ - Optimizer: AdamW (paged, 8-bit)
357
+ ```
358
+
359
+ **LoRA Target Modules:**
360
+ - q_proj, k_proj, v_proj, o_proj (attention)
361
+ - gate_proj, up_proj, down_proj (MLP)
362
+
363
+ ### Training Evolution
364
+
365
+ | Version | Focus | GSM8K | Key Change |
366
+ |---------|-------|-------|------------|
367
+ | v1 | Base Llama 3.1 | 51% | Starting point |
368
+ | v2 | Cosmic persona | ~48% | Personality injection |
369
+ | v3 | Coding skills | ~47% | Programming focus |
370
+ | v4 | Logic amplification | 45% | Binary reasoning |
371
+ | v4.5 | Grounding | 45% | Answer-first format |
372
+ | **v5** | **STEM surgical** | **70%** | **Math breakthrough** |
373
+
374
+ ---
375
+
376
+ ## Intended Use
377
+
378
+ ### Primary Use Cases
379
+
380
+ ✅ **Recommended:**
381
+ - Mathematical problem solving (arithmetic, algebra, calculus)
382
+ - STEM tutoring and education
383
+ - Scientific reasoning and analysis
384
+ - Logic puzzles and deductive reasoning
385
+ - Technical writing with personality
386
+ - Social science analysis
387
+ - Truthful Q&A systems
388
+ - Creative applications requiring technical accuracy
389
+
390
+ ⚠️ **Consider Alternatives:**
391
+ - Pure commonsense reasoning (base Llama slightly better)
392
+ - Tasks requiring zero personality/style
393
+ - High-stakes medical/legal decisions (always human-in-loop)
394
+
395
+ ### Out-of-Scope Use
396
+
397
+ ❌ **Not Recommended:**
398
+ - Real-time safety-critical systems without verification
399
+ - Generating harmful, biased, or misleading content
400
+ - Replacing professional medical, legal, or financial advice
401
+ - Tasks requiring knowledge beyond October 2023 cutoff
402
+
403
+ ---
404
+
405
+ ## Limitations
406
+
407
+ ### Technical Limitations
408
+
409
+ - **Commonsense reasoning:** 3% below base Llama on HellaSwag (70% vs 73%)
410
+ - **Knowledge cutoff:** Training data through October 2023
411
+ - **Context window:** While 131k capable, performance may degrade at extreme lengths
412
+ - **Multilingual:** Primarily English-focused, other languages not extensively tested
413
+
414
+ ### Answer Extraction Considerations
415
+
416
+ Wraith produces verbose, step-by-step responses with intermediate calculations. For production systems:
417
+ - Use improved extraction targeting bold answers (`**N**`)
418
+ - Look for money patterns (`$N per day`, `Revenue = $N`)
419
+ - Parse "=" signs for final calculations
420
+ - Don't rely on "last number" heuristics
421
+
422
+ **Example:** Simple regex may extract "4" from "3 (breakfast) + 4 (muffins)" instead of the actual answer "18" appearing earlier. See our [extraction guide](https://github.com/unmodeled-tyler/wraith-8b/blob/main/docs/answer_extraction.md) for production-ready parsers.
423
+
424
+ ### Bias and Safety
425
+
426
+ Wraith inherits biases from Llama 3.1 8B base model:
427
+ - Training data reflects internet text biases
428
+ - May generate stereotypical associations
429
+ - Not specifically trained for harmful content refusal beyond base model
430
+
431
+ **Mitigations:**
432
+ - Maintained Llama 3.1's safety fine-tuning
433
+ - Added grounding training to reduce hallucination
434
+ - Achieved +7.5% TruthfulQA (58.5% vs 51%)
435
+
436
+ **Recommendation:** Always use human oversight for sensitive applications.
437
+
438
+ ---
439
+
440
+ ## Ethical Considerations
441
+
442
+ ### Transparency
443
+
444
+ This model card provides:
445
+ - ✅ Complete training methodology
446
+ - ✅ Benchmark results with base model comparisons
447
+ - ✅ Known limitations and failure modes
448
+ - ✅ Intended use cases and restrictions
449
+ - ✅ Bias acknowledgment and safety considerations
450
+
451
+ ### Environmental Impact
452
+
453
+ **Training Carbon Footprint:**
454
+ - Single epoch surgical training: ~20 minutes on consumer GPU
455
+ - Estimated: <0.1 kg CO₂eq
456
+ - Total training (all versions): <1 kg CO₂eq
457
+ - Base model (Meta Llama 3.1): Not included (pre-trained)
458
+
459
+ **Inference Efficiency:**
460
+ - Q4_K_M quantization: 4.7GB, ~3.6s per response
461
+ - 13.9× faster than FP16
462
+ - Suitable for consumer hardware deployment
463
+
464
+ ---
465
+
466
+ ## Citation
467
+
468
+ If you use Wraith-8B in your research or applications, please cite:
469
+
470
+ ```bibtex
471
+ @software{wraith8b2025,
472
+ title={Wraith-8B: VANTA Research Entity-001},
473
+ author={VANTA Research},
474
+ year={2025},
475
+ url={https://huggingface.co/NeuroForge/Wraith-8B},
476
+ note={The Analytical Intelligence - First in the VANTA Entity Series}
477
+ }
478
+ ```
479
+
480
+ **Base Model Citation:**
481
+ ```bibtex
482
+ @article{llama3,
483
+ title={The Llama 3 Herd of Models},
484
+ author={AI@Meta},
485
+ year={2024},
486
+ url={https://github.com/meta-llama/llama-models}
487
+ }
488
+ ```
489
+
490
+ ---
491
+
492
+ ## Model Card Authors
493
+
494
+ VANTA Research Team
495
+
496
+ ## Model Card Contact
497
+
498
+ - **Website:** [VANTA Research](https://vanta.research)
499
+ - **Issues:** [GitHub Issues](https://github.com/unmodeled-tyler/wraith-8b/issues)
500
+ - **Discussions:** [HuggingFace Discussions](https://huggingface.co/NeuroForge/Wraith-8B/discussions)
501
+
502
+ ---
503
+
504
+ ## License
505
+
506
+ This model is released under the **Llama 3.1 Community License Agreement**.
507
+
508
+ Key terms:
509
+ - ✅ Commercial use permitted
510
+ - ✅ Modification and redistribution allowed
511
+ - ✅ Attribution required
512
+ - ⚠️ Subject to Llama 3.1 acceptable use policy
513
+ - ⚠️ Additional restrictions for large-scale deployments (>700M MAU)
514
+
515
+ Full license: [LICENSE](LICENSE) | [Meta Llama 3.1 License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
516
+
517
+ ---
518
+
519
+ ## Acknowledgments
520
+
521
+ - **Meta AI** for the Llama 3.1 base model
522
+ - **Hugging Face** for transformers library and model hosting
523
+ - **QLoRA authors** for efficient fine-tuning methodology
524
+ - **GSM8K authors** for the mathematical reasoning benchmark
525
+ - **Community contributors** for feedback and testing
526
+
527
+ ---
528
+
529
+ <div align="center">
530
+
531
+ **🌌 VANTA Research Entity-001: WRAITH 🌌**
532
+
533
+ *Where Cosmic Intelligence Meets Mathematical Precision*
534
+
535
+ **The Analytical Intelligence | First in the VANTA Entity Series**
536
+
537
+ [Download Model](https://huggingface.co/NeuroForge/Wraith-8B) | [GitHub](https://github.com/unmodeled-tyler/wraith-8b) | [Technical Report](https://github.com/unmodeled-tyler/wraith-8b/blob/main/TECHNICAL_REPORT.md)
538
+
539
+ </div>
chat_template.jinja ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- set date_string = "26 Jul 2024" %}
10
+ {%- endif %}
11
+ {%- if not tools is defined %}
12
+ {%- set tools = none %}
13
+ {%- endif %}
14
+
15
+ {#- This block extracts the system message, so we can slot it into the right place. #}
16
+ {%- if messages[0]['role'] == 'system' %}
17
+ {%- set system_message = messages[0]['content']|trim %}
18
+ {%- set messages = messages[1:] %}
19
+ {%- else %}
20
+ {%- set system_message = "" %}
21
+ {%- endif %}
22
+
23
+ {#- System message + builtin tools #}
24
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
25
+ {%- if builtin_tools is defined or tools is not none %}
26
+ {{- "Environment: ipython\n" }}
27
+ {%- endif %}
28
+ {%- if builtin_tools is defined %}
29
+ {{- "Tools: " + builtin_tools | reject('equalto', 'code_interpreter') | join(", ") + "\n\n"}}
30
+ {%- endif %}
31
+ {{- "Cutting Knowledge Date: December 2023\n" }}
32
+ {{- "Today Date: " + date_string + "\n\n" }}
33
+ {%- if tools is not none and not tools_in_user_message %}
34
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
35
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
36
+ {{- "Do not use variables.\n\n" }}
37
+ {%- for t in tools %}
38
+ {{- t | tojson(indent=4) }}
39
+ {{- "\n\n" }}
40
+ {%- endfor %}
41
+ {%- endif %}
42
+ {{- system_message }}
43
+ {{- "<|eot_id|>" }}
44
+
45
+ {#- Custom tools are passed in a user message with some extra guidance #}
46
+ {%- if tools_in_user_message and not tools is none %}
47
+ {#- Extract the first user message so we can plug it in here #}
48
+ {%- if messages | length != 0 %}
49
+ {%- set first_user_message = messages[0]['content']|trim %}
50
+ {%- set messages = messages[1:] %}
51
+ {%- else %}
52
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
53
+ {%- endif %}
54
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
55
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
56
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
57
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
58
+ {{- "Do not use variables.\n\n" }}
59
+ {%- for t in tools %}
60
+ {{- t | tojson(indent=4) }}
61
+ {{- "\n\n" }}
62
+ {%- endfor %}
63
+ {{- first_user_message + "<|eot_id|>"}}
64
+ {%- endif %}
65
+
66
+ {%- for message in messages %}
67
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
68
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
69
+ {%- elif 'tool_calls' in message %}
70
+ {%- if not message.tool_calls|length == 1 %}
71
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
72
+ {%- endif %}
73
+ {%- set tool_call = message.tool_calls[0].function %}
74
+ {%- if builtin_tools is defined and tool_call.name in builtin_tools %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- "<|python_tag|>" + tool_call.name + ".call(" }}
77
+ {%- for arg_name, arg_val in tool_call.arguments | items %}
78
+ {{- arg_name + '="' + arg_val + '"' }}
79
+ {%- if not loop.last %}
80
+ {{- ", " }}
81
+ {%- endif %}
82
+ {%- endfor %}
83
+ {{- ")" }}
84
+ {%- else %}
85
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
86
+ {{- '{"name": "' + tool_call.name + '", ' }}
87
+ {{- '"parameters": ' }}
88
+ {{- tool_call.arguments | tojson }}
89
+ {{- "}" }}
90
+ {%- endif %}
91
+ {%- if builtin_tools is defined %}
92
+ {#- This means we're in ipython mode #}
93
+ {{- "<|eom_id|>" }}
94
+ {%- else %}
95
+ {{- "<|eot_id|>" }}
96
+ {%- endif %}
97
+ {%- elif message.role == "tool" or message.role == "ipython" %}
98
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
99
+ {%- if message.content is mapping or message.content is iterable %}
100
+ {{- message.content | tojson }}
101
+ {%- else %}
102
+ {{- message.content }}
103
+ {%- endif %}
104
+ {{- "<|eot_id|>" }}
105
+ {%- endif %}
106
+ {%- endfor %}
107
+ {%- if add_generation_prompt %}
108
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
109
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "dtype": "bfloat16",
9
+ "eos_token_id": [
10
+ 128001,
11
+ 128008,
12
+ 128009
13
+ ],
14
+ "head_dim": 128,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 131072,
20
+ "mlp_bias": false,
21
+ "model_type": "llama",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 8,
25
+ "pretraining_tp": 1,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": {
28
+ "factor": 8.0,
29
+ "high_freq_factor": 4.0,
30
+ "low_freq_factor": 1.0,
31
+ "original_max_position_embeddings": 8192,
32
+ "rope_type": "llama3"
33
+ },
34
+ "rope_theta": 500000.0,
35
+ "tie_word_embeddings": false,
36
+ "transformers_version": "4.56.2",
37
+ "use_cache": true,
38
+ "vocab_size": 128256
39
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.56.2"
12
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cc0f1aaccc09c191e51710605d3cb757efa38f4c31671560cb28a325b410eaa
3
+ size 4976698672
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:536ae96b9b2f879373eb2cc06e6db46b48ba290a55f5f47b6540f9fac268f70a
3
+ size 4999802720
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd27ee3e22e7bea53fe281d8f3a98d3ca19cbb6005346493530060ec5bc2c4fb
3
+ size 4915916176
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf1a807fcca6b5c2e7ea75eef462f9bd63b81cadc09cef08af2f2c34d4af04d2
3
+ size 1168138808
model.safetensors.index.json ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 8030261248,
4
+ "total_size": 16060522496
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
126
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
236
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
239
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
297
+ "model.norm.weight": "model-00004-of-00004.safetensors"
298
+ }
299
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "clean_up_tokenization_spaces": true,
2054
+ "eos_token": "<|eot_id|>",
2055
+ "extra_special_tokens": {},
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }