--- library_name: peft license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer - cer model-index: - name: whisper-model-small-ro-finetune-5k-50-50 results: [] datasets: - victors3136/dataset-5k-50it-50sp language: - ro --- # whisper-model-small-ro-finetune-5k-50-50 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0462 - Wer: 0.2851 - Cer: 0.0710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.5278 | 1.0 | 125 | 1.3356 | 0.7715 | 0.8917 | | 1.5011 | 2.0 | 250 | 1.1585 | 0.5180 | 0.3362 | | 1.4233 | 3.0 | 375 | 1.0967 | 0.3243 | 0.1098 | | 1.3585 | 4.0 | 500 | 1.0608 | 0.2867 | 0.0722 | | 1.3203 | 5.0 | 625 | 1.0462 | 0.2851 | 0.0710 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1