Upload all models and assets for bpy (20251001)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +299 -134
- models/embeddings/monolingual/bpy_128d.bin +2 -2
- models/embeddings/monolingual/bpy_128d_metadata.json +5 -3
- models/embeddings/monolingual/bpy_32d.bin +2 -2
- models/embeddings/monolingual/bpy_32d_metadata.json +5 -3
- models/embeddings/monolingual/bpy_64d.bin +2 -2
- models/embeddings/monolingual/bpy_64d_metadata.json +5 -3
- models/subword_markov/bpy_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/bpy_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/bpy_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/bpy_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/bpy_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/bpy_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/bpy_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/bpy_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/bpy_2gram_subword.parquet +2 -2
- models/subword_ngram/bpy_2gram_subword_metadata.json +2 -2
- models/subword_ngram/bpy_3gram_subword.parquet +2 -2
- models/subword_ngram/bpy_3gram_subword_metadata.json +2 -2
- models/subword_ngram/bpy_4gram_subword.parquet +2 -2
- models/subword_ngram/bpy_4gram_subword_metadata.json +2 -2
- models/tokenizer/bpy_tokenizer_16k.model +2 -2
- models/tokenizer/bpy_tokenizer_16k.vocab +0 -0
- models/tokenizer/bpy_tokenizer_32k.model +2 -2
- models/tokenizer/bpy_tokenizer_32k.vocab +0 -0
- models/tokenizer/bpy_tokenizer_64k.model +2 -2
- models/tokenizer/bpy_tokenizer_64k.vocab +0 -0
- models/tokenizer/bpy_tokenizer_8k.model +2 -2
- models/tokenizer/bpy_tokenizer_8k.vocab +0 -0
- models/vocabulary/bpy_vocabulary.parquet +2 -2
- models/vocabulary/bpy_vocabulary_metadata.json +10 -9
- models/word_markov/bpy_markov_ctx1_word.parquet +2 -2
- models/word_markov/bpy_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/bpy_markov_ctx2_word.parquet +2 -2
- models/word_markov/bpy_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/bpy_markov_ctx3_word.parquet +2 -2
- models/word_markov/bpy_markov_ctx3_word_metadata.json +2 -2
- models/word_markov/bpy_markov_ctx4_word.parquet +2 -2
- models/word_markov/bpy_markov_ctx4_word_metadata.json +2 -2
- models/word_ngram/bpy_2gram_word.parquet +2 -2
- models/word_ngram/bpy_2gram_word_metadata.json +2 -2
- models/word_ngram/bpy_3gram_word.parquet +2 -2
- models/word_ngram/bpy_3gram_word_metadata.json +2 -2
- models/word_ngram/bpy_4gram_word.parquet +2 -2
- models/word_ngram/bpy_4gram_word_metadata.json +2 -2
- visualizations/embedding_isotropy.png +0 -0
- visualizations/embedding_norms.png +0 -0
- visualizations/embedding_similarity.png +2 -2
- visualizations/markov_branching.png +0 -0
- visualizations/markov_contexts.png +0 -0
README.md
CHANGED
|
@@ -23,14 +23,14 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value:
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
# BPY - Wikilangs Models
|
|
@@ -44,12 +44,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +60,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,52 +70,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 4.
|
| 76 |
-
| **16k** | 4.
|
| 77 |
-
| **32k** | 4.
|
| 78 |
-
| **64k** |
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:**
|
| 85 |
|
| 86 |
| Vocab | Tokens | Count |
|
| 87 |
|-------|--------|-------|
|
| 88 |
-
| 8k |
|
| 89 |
-
| 16k |
|
| 90 |
-
| 32k |
|
| 91 |
-
| 64k |
|
| 92 |
|
| 93 |
-
**Sample 2:**
|
| 94 |
-
হোসেনপুর ইউনিয়ন, রাজৈর`
|
| 95 |
|
| 96 |
| Vocab | Tokens | Count |
|
| 97 |
|-------|--------|-------|
|
| 98 |
-
| 8k |
|
| 99 |
-
| 16k |
|
| 100 |
-
| 32k |
|
| 101 |
-
| 64k |
|
| 102 |
|
| 103 |
-
**Sample 3:**
|
| 104 |
|
| 105 |
| Vocab | Tokens | Count |
|
| 106 |
|-------|--------|-------|
|
| 107 |
-
| 8k |
|
| 108 |
-
| 16k |
|
| 109 |
-
| 32k |
|
| 110 |
-
| 64k |
|
| 111 |
|
| 112 |
|
| 113 |
### Key Findings
|
| 114 |
|
| 115 |
-
- **Best Compression:** 64k achieves
|
| 116 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 117 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 118 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 119 |
|
|
@@ -122,57 +129,89 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 122 |
|
| 123 |

|
| 124 |
|
|
|
|
|
|
|
| 125 |

|
| 126 |
|
| 127 |
### Results
|
| 128 |
|
| 129 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 130 |
-
|
| 131 |
-
| **2-gram** |
|
| 132 |
-
| **2-gram** |
|
| 133 |
-
| **3-gram** | 1,
|
| 134 |
-
| **3-gram** | 1,
|
| 135 |
-
| **4-gram** |
|
| 136 |
-
| **4-gram** | 3,
|
| 137 |
|
| 138 |
### Top 5 N-grams by Size
|
| 139 |
|
| 140 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
| Rank | N-gram | Count |
|
| 143 |
|------|--------|-------|
|
| 144 |
-
| 1 |
|
| 145 |
-
| 2 |
|
| 146 |
-
| 3 |
|
| 147 |
-
| 4 |
|
| 148 |
-
| 5 |
|
| 149 |
|
| 150 |
-
**3-grams:**
|
| 151 |
|
| 152 |
| Rank | N-gram | Count |
|
| 153 |
|------|--------|-------|
|
| 154 |
-
| 1 |
|
| 155 |
-
| 2 |
|
| 156 |
-
| 3 |
|
| 157 |
-
| 4 |
|
| 158 |
-
| 5 |
|
| 159 |
|
| 160 |
-
**4-grams:**
|
| 161 |
|
| 162 |
| Rank | N-gram | Count |
|
| 163 |
|------|--------|-------|
|
| 164 |
-
| 1 |
|
| 165 |
-
| 2 |
|
| 166 |
-
| 3 |
|
| 167 |
-
| 4 |
|
| 168 |
-
| 5 |
|
| 169 |
|
| 170 |
|
| 171 |
### Key Findings
|
| 172 |
|
| 173 |
-
- **Best Perplexity:** 2-gram with
|
| 174 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 175 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 176 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 177 |
|
| 178 |
---
|
|
@@ -180,55 +219,86 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 180 |
|
| 181 |

|
| 182 |
|
|
|
|
|
|
|
| 183 |

|
| 184 |
|
| 185 |
### Results
|
| 186 |
|
| 187 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 188 |
-
|
| 189 |
-
| **1** | 0.
|
| 190 |
-
| **1** | 1.
|
| 191 |
-
| **2** | 0.
|
| 192 |
-
| **2** |
|
| 193 |
-
| **3** | 0.
|
| 194 |
-
| **3** | 0.
|
| 195 |
-
| **4** | 0.
|
| 196 |
-
| **4** | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
### Generated Text Samples
|
| 199 |
|
| 200 |
-
|
|
|
|
|
|
|
| 201 |
|
| 202 |
**Context Size 1:**
|
| 203 |
|
| 204 |
-
1.
|
| 205 |
-
2.
|
| 206 |
-
3.
|
| 207 |
|
| 208 |
**Context Size 2:**
|
| 209 |
|
| 210 |
-
1.
|
| 211 |
-
2.
|
| 212 |
-
3.
|
| 213 |
|
| 214 |
**Context Size 3:**
|
| 215 |
|
| 216 |
-
1.
|
| 217 |
-
2.
|
| 218 |
-
3.
|
| 219 |
|
| 220 |
**Context Size 4:**
|
| 221 |
|
| 222 |
-
1.
|
| 223 |
-
2.
|
| 224 |
-
3.
|
| 225 |
|
| 226 |
|
| 227 |
### Key Findings
|
| 228 |
|
| 229 |
-
- **Best Predictability:** Context-4 with
|
| 230 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 231 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 232 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 233 |
|
| 234 |
---
|
|
@@ -244,64 +314,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 244 |
|
| 245 |
| Metric | Value |
|
| 246 |
|--------|-------|
|
| 247 |
-
| Vocabulary Size |
|
| 248 |
-
| Total Tokens |
|
| 249 |
-
| Mean Frequency |
|
| 250 |
| Median Frequency | 3 |
|
| 251 |
-
| Frequency Std Dev |
|
| 252 |
|
| 253 |
### Most Common Words
|
| 254 |
|
| 255 |
| Rank | Word | Frequency |
|
| 256 |
|------|------|-----------|
|
| 257 |
-
| 1 |
|
| 258 |
-
| 2 |
|
| 259 |
-
| 3 |
|
| 260 |
-
| 4 |
|
| 261 |
-
| 5 |
|
| 262 |
-
| 6 |
|
| 263 |
-
| 7 |
|
| 264 |
-
| 8 |
|
| 265 |
-
| 9 |
|
| 266 |
-
| 10 |
|
| 267 |
|
| 268 |
### Least Common Words (from vocabulary)
|
| 269 |
|
| 270 |
| Rank | Word | Frequency |
|
| 271 |
|------|------|-----------|
|
| 272 |
-
| 1 |
|
| 273 |
-
| 2 |
|
| 274 |
-
| 3 |
|
| 275 |
-
| 4 |
|
| 276 |
-
| 5 |
|
| 277 |
-
| 6 |
|
| 278 |
-
| 7 |
|
| 279 |
-
| 8 |
|
| 280 |
-
| 9 |
|
| 281 |
-
| 10 |
|
| 282 |
|
| 283 |
### Zipf's Law Analysis
|
| 284 |
|
| 285 |
| Metric | Value |
|
| 286 |
|--------|-------|
|
| 287 |
-
| Zipf Coefficient | 1.
|
| 288 |
-
| R² (Goodness of Fit) | 0.
|
| 289 |
| Adherence Quality | **excellent** |
|
| 290 |
|
| 291 |
### Coverage Analysis
|
| 292 |
|
| 293 |
| Top N Words | Coverage |
|
| 294 |
|-------------|----------|
|
| 295 |
-
| Top 100 |
|
| 296 |
-
| Top 1,000 |
|
| 297 |
-
| Top 5,000 |
|
| 298 |
-
| Top 10,000 |
|
| 299 |
|
| 300 |
### Key Findings
|
| 301 |
|
| 302 |
-
- **Zipf Compliance:** R²=0.
|
| 303 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 304 |
-
- **Long Tail:**
|
| 305 |
|
| 306 |
---
|
| 307 |
## 5. Word Embeddings Evaluation
|
|
@@ -314,24 +384,116 @@ Below are text samples generated from each Markov chain model:
|
|
| 314 |
|
| 315 |

|
| 316 |
|
| 317 |
-
### Model Comparison
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
### Key Findings
|
| 327 |
|
| 328 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 329 |
-
- **
|
| 330 |
-
- **
|
| 331 |
-
- **Recommendation:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
---
|
| 334 |
-
##
|
| 335 |
|
| 336 |

|
| 337 |
|
|
@@ -339,11 +501,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 339 |
|
| 340 |
| Component | Recommended | Rationale |
|
| 341 |
|-----------|-------------|-----------|
|
| 342 |
-
| Tokenizer | **
|
| 343 |
-
| N-gram | **
|
| 344 |
-
| Markov | **Context-4** | Highest predictability (
|
| 345 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 346 |
|
|
|
|
| 347 |
---
|
| 348 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 349 |
|
|
@@ -533,7 +696,8 @@ If you use these models in your research, please cite:
|
|
| 533 |
author = {Kamali, Omar},
|
| 534 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 535 |
year = {2025},
|
| 536 |
-
|
|
|
|
| 537 |
url = {https://huggingface.co/wikilangs}
|
| 538 |
institution = {Omneity Labs}
|
| 539 |
}
|
|
@@ -549,7 +713,8 @@ MIT License - Free for academic and commercial use.
|
|
| 549 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 550 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 551 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 552 |
---
|
| 553 |
*Generated by Wikilangs Models Pipeline*
|
| 554 |
|
| 555 |
-
*Report Date:
|
|
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
+
value: 4.934
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
+
value: 0.7051
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
+
value: 0
|
| 33 |
+
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
# BPY - Wikilangs Models
|
|
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 48 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
| 53 |
+
|
| 54 |

|
| 55 |
|
| 56 |
### Analysis and Evaluation
|
|
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
+
- [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
|
| 64 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
| 67 |
|
|
|
|
| 70 |
|
| 71 |

|
| 72 |
|
| 73 |
+

|
| 74 |
+
|
| 75 |
+

|
| 76 |
+
|
| 77 |
+

|
| 78 |
+
|
| 79 |
### Results
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
+
| **8k** | 4.500x | 4.51 | 0.2383% | 99,875 |
|
| 84 |
+
| **16k** | 4.662x | 4.67 | 0.2469% | 96,414 |
|
| 85 |
+
| **32k** | 4.817x | 4.83 | 0.2551% | 93,303 |
|
| 86 |
+
| **64k** | 4.934x 🏆 | 4.95 | 0.2613% | 91,087 |
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
| 90 |
Below are sample sentences tokenized with each vocabulary size:
|
| 91 |
|
| 92 |
+
**Sample 1:** `কানাডার জাতীয় চিনত্হান (কোট অব আর্মস)হান। দেশএহানর পুরা নাঙহান কানাডা। জাতীয় চ...`
|
| 93 |
|
| 94 |
| Vocab | Tokens | Count |
|
| 95 |
|-------|--------|-------|
|
| 96 |
+
| 8k | `▁কানা ডার ▁জাতীয় ▁চিনত্হান ▁( কোট ▁অব ▁আর্মস ) হান ... (+21 more)` | 31 |
|
| 97 |
+
| 16k | `▁কানাডার ▁জাতীয় ▁চিনত্হান ▁( কোট ▁অব ▁আর্মস ) হান । ... (+17 more)` | 27 |
|
| 98 |
+
| 32k | `▁কানাডার ▁জাতীয় ▁চিনত্হান ▁( কোট ▁অব ▁আর্মস ) হান । ... (+17 more)` | 27 |
|
| 99 |
+
| 64k | `▁কানাডার ▁জাতীয় ▁চিনত্হান ▁( কোট ▁অব ▁আর্মস ) হান । ... (+17 more)` | 27 |
|
| 100 |
|
| 101 |
+
**Sample 2:** `বদরপুর ইউনিয়ন, পটুয়াখালি সদর বদরপুর ইউনিয়ন, লালমোহন`
|
|
|
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁বদর পুর ▁ইউনিয়ন , ▁পট ুয়া খালি ▁সদর ▁বদর পুর ... (+3 more)` | 13 |
|
| 106 |
+
| 16k | `▁বদরপুর ▁ইউনিয়ন , ▁পটুয়াখালি ▁সদর ▁বদরপুর ▁ইউনিয়ন , ▁লালমোহন` | 9 |
|
| 107 |
+
| 32k | `▁বদরপুর ▁ইউনিয়ন , ▁পটুয়াখালি ▁সদর ▁বদরপুর ▁ইউনিয়ন , ▁লালমোহন` | 9 |
|
| 108 |
+
| 64k | `▁বদরপুর ▁ইউনিয়ন , ▁পটুয়াখালি ▁সদর ▁বদরপুর ▁ইউনিয়ন , ▁লালমোহন` | 9 |
|
| 109 |
|
| 110 |
+
**Sample 3:** `চৈত ২৫, বাংলা পাঞ্জী হান ইলয়া আজি বসরর লমিলগা মাহার ২৫তম দিন হান। খা এশিয়াত এব...`
|
| 111 |
|
| 112 |
| Vocab | Tokens | Count |
|
| 113 |
|-------|--------|-------|
|
| 114 |
+
| 8k | `▁চৈত ▁২৫ , ▁বাংলা ▁পাঞ্জী ▁হান ▁ইলয়া ▁আজি ▁বসরর ▁লমিলগা ... (+17 more)` | 27 |
|
| 115 |
+
| 16k | `▁চৈত ▁২৫ , ▁বাংলা ▁পাঞ্জী ▁হান ▁ইলয়া ▁আজি ▁বসরর ▁লমিলগা ... (+16 more)` | 26 |
|
| 116 |
+
| 32k | `▁চৈত ▁২৫ , ▁বাংলা ▁পাঞ্জী ▁হান ▁ইলয়া ▁আজি ▁বসরর ▁লমিলগা ... (+16 more)` | 26 |
|
| 117 |
+
| 64k | `▁চৈত ▁২৫ , ▁বাংলা ▁পাঞ্জী ▁হান ▁ইলয়া ▁আজি ▁বসরর ▁লমিলগা ... (+16 more)` | 26 |
|
| 118 |
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
+
- **Best Compression:** 64k achieves 4.934x compression
|
| 123 |
+
- **Lowest UNK Rate:** 8k with 0.2383% unknown tokens
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 126 |
|
|
|
|
| 129 |
|
| 130 |

|
| 131 |
|
| 132 |
+

|
| 133 |
+
|
| 134 |

|
| 135 |
|
| 136 |
### Results
|
| 137 |
|
| 138 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
+
| **2-gram** | Word | 918 | 9.84 | 15,095 | 44.1% | 86.3% |
|
| 141 |
+
| **2-gram** | Subword | 598 🏆 | 9.23 | 14,925 | 51.1% | 92.8% |
|
| 142 |
+
| **3-gram** | Word | 1,566 | 10.61 | 31,653 | 38.0% | 79.5% |
|
| 143 |
+
| **3-gram** | Subword | 1,914 | 10.90 | 68,764 | 32.6% | 79.7% |
|
| 144 |
+
| **4-gram** | Word | 2,620 | 11.36 | 61,026 | 34.9% | 72.0% |
|
| 145 |
+
| **4-gram** | Subword | 3,540 | 11.79 | 166,785 | 26.1% | 72.8% |
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
| 149 |
+
**2-grams (Word):**
|
| 150 |
+
|
| 151 |
+
| Rank | N-gram | Count |
|
| 152 |
+
|------|--------|-------|
|
| 153 |
+
| 1 | `সাক্ষরতার হারহান` | 26,823 |
|
| 154 |
+
| 2 | `অতার মা` | 20,499 |
|
| 155 |
+
| 3 | `জনসংখ্যার উপাত্ত` | 19,707 |
|
| 156 |
+
| 4 | `জনসংখ্যা ইলাতাই` | 19,552 |
|
| 157 |
+
| 5 | `লোক গননা` | 19,533 |
|
| 158 |
+
|
| 159 |
+
**3-grams (Word):**
|
| 160 |
+
|
| 161 |
+
| Rank | N-gram | Count |
|
| 162 |
+
|------|--------|-------|
|
| 163 |
+
| 1 | `মানুলেহা লোক গননা` | 19,527 |
|
| 164 |
+
| 2 | `মারির মানুলেহা লোক` | 19,526 |
|
| 165 |
+
| 3 | `অতার মা মুনি` | 16,569 |
|
| 166 |
+
| 4 | `গ অতার মা` | 15,694 |
|
| 167 |
+
| 5 | `লোক গননা অনুসারে` | 14,182 |
|
| 168 |
+
|
| 169 |
+
**4-grams (Word):**
|
| 170 |
+
|
| 171 |
+
| Rank | N-gram | Count |
|
| 172 |
+
|------|--------|-------|
|
| 173 |
+
| 1 | `মারির মানুলেহা লোক গননা` | 19,525 |
|
| 174 |
+
| 2 | `গ অতার মা মুনি` | 15,620 |
|
| 175 |
+
| 3 | `মানুলেহা লোক গননা অনুসারে` | 14,181 |
|
| 176 |
+
| 4 | `অক্ষাংশ বারো দ্রাঘিমাংশ ইলতাই` | 9,366 |
|
| 177 |
+
| 5 | `মাপাহানর অক্ষাংশ বারো দ্রাঘিমাংশ` | 9,315 |
|
| 178 |
+
|
| 179 |
+
**2-grams (Subword):**
|
| 180 |
|
| 181 |
| Rank | N-gram | Count |
|
| 182 |
|------|--------|-------|
|
| 183 |
+
| 1 | `র _` | 407,307 |
|
| 184 |
+
| 2 | `। _` | 163,117 |
|
| 185 |
+
| 3 | `হা ন` | 154,741 |
|
| 186 |
+
| 4 | `ন _` | 147,898 |
|
| 187 |
+
| 5 | `_ মা` | 138,499 |
|
| 188 |
|
| 189 |
+
**3-grams (Subword):**
|
| 190 |
|
| 191 |
| Rank | N-gram | Count |
|
| 192 |
|------|--------|-------|
|
| 193 |
+
| 1 | `র _ মা` | 95,264 |
|
| 194 |
+
| 2 | `হা ন _` | 94,576 |
|
| 195 |
+
| 3 | `_ বা রো` | 68,931 |
|
| 196 |
+
| 4 | `বা রো _` | 68,907 |
|
| 197 |
+
| 5 | `_ ই উ` | 64,646 |
|
| 198 |
|
| 199 |
+
**4-grams (Subword):**
|
| 200 |
|
| 201 |
| Rank | N-gram | Count |
|
| 202 |
|------|--------|-------|
|
| 203 |
+
| 1 | `_ বা রো _` | 68,902 |
|
| 204 |
+
| 2 | `_ ই উ নি` | 64,360 |
|
| 205 |
+
| 3 | `ই উ নি য়` | 55,649 |
|
| 206 |
+
| 4 | `উ নি য় ন` | 55,616 |
|
| 207 |
+
| 5 | `জ ন সং খ্যা` | 44,876 |
|
| 208 |
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
+
- **Best Perplexity:** 2-gram (subword) with 598
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
+
- **Coverage:** Top-1000 patterns cover ~73% of corpus
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
|
|
| 219 |
|
| 220 |

|
| 221 |
|
| 222 |
+

|
| 223 |
+
|
| 224 |

|
| 225 |
|
| 226 |
### Results
|
| 227 |
|
| 228 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
+
| **1** | Word | 0.7844 | 1.722 | 4.39 | 60,265 | 21.6% |
|
| 231 |
+
| **1** | Subword | 1.0518 | 2.073 | 11.77 | 3,035 | 0.0% |
|
| 232 |
+
| **2** | Word | 0.1820 | 1.134 | 1.54 | 262,556 | 81.8% |
|
| 233 |
+
| **2** | Subword | 0.6370 | 1.555 | 3.68 | 35,678 | 36.3% |
|
| 234 |
+
| **3** | Word | 0.0756 | 1.054 | 1.27 | 400,175 | 92.4% |
|
| 235 |
+
| **3** | Subword | 0.4890 | 1.403 | 2.43 | 131,152 | 51.1% |
|
| 236 |
+
| **4** | Word | 0.0493 🏆 | 1.035 | 1.19 | 505,259 | 95.1% |
|
| 237 |
+
| **4** | Subword | 0.3612 | 1.284 | 1.77 | 318,528 | 63.9% |
|
| 238 |
+
|
| 239 |
+
### Generated Text Samples (Word-based)
|
| 240 |
+
|
| 241 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 242 |
+
|
| 243 |
+
**Context Size 1:**
|
| 244 |
+
|
| 245 |
+
1. `বারো মৌজা ইউনিয়ন এগত গ ঘরর ইউনিট আসে চৌদ্দাহান মুঙেদে ইউনিয়ন কুড়িগ্রাম জিলার উপজিলাগি বাংলাদেশর ম...`
|
| 246 |
+
2. `ইউনিয়ন এগত ১৩ হান আসে জনসংখ্যার উপাত্ত ভারতর পাঞ্জাব রাজ্যর পৌরসভা এহার মাপাহানর অক্ষাংশ বারো জেলা`
|
| 247 |
+
3. `উপাত্ত শহর এহার মাপাহানর অক্ষাংশ বারো গাঙ ২২ বারো দ্রাঘিমাংশ ইলতাই সমূদ্রুহার মান্নাহাত্ত এহানর সাক্...`
|
| 248 |
+
|
| 249 |
+
**Context Size 2:**
|
| 250 |
+
|
| 251 |
+
1. `সাক্ষরতার হারহান ৫৪ মুনির মা সাক্ষরতার হারহান ৬৮ মুনির মা সাক্ষরতার হারহান ৮২ বারো জেলার মা হারহান`
|
| 252 |
+
2. `অতার মা হুকানাহান ৬৬ ৬৯ বর্গমাইল অতার মা মুনি ৫০ বারো জেলা বেয়াপা ৩৮ এহানাত সাক্ষরতার হারহান`
|
| 253 |
+
3. `জনসংখ্যার উপাত্ত ব্রাজিলর মারির মানুলেহা লোক গননা অনুসারে বোৱা এসপেরান্সা পর্তুগীজ nova guataporanga...`
|
| 254 |
+
|
| 255 |
+
**Context Size 3:**
|
| 256 |
+
|
| 257 |
+
1. `মানুলেহা লোক গননা অনুসারে সেন্ট্রো নোভো ডো মারানহো পৌরসভাহানর জনসংখ্যা ইলাতাই ৩৬০ ৭০৬ গ অতার মা মুনি...`
|
| 258 |
+
2. `মারির মানুলেহা লোক গননা অনুসারে কুডুমুডি শহরহানর জনসংখ্যা ইলাতাই ২০ ০৯৫ গ অতার মা মুনি ৪৯ বারো জিলা`
|
| 259 |
+
3. `অতার মা মুনি ৫০ বারো জিলা বেয়াপা এরে পৌরসভার মানু শহরেদে বারো গাঙেদে থাইতারা হারি বর্গ কিলোমিটারে ৪...`
|
| 260 |
+
|
| 261 |
+
**Context Size 4:**
|
| 262 |
+
|
| 263 |
+
1. `মারির মানুলেহা লোক গননা অনুসারে শিকোহাবাদ শহরহানর জনসংখ্যা ইলাতাই ৮৮ ০৭৫ গ অতার মা মুনি ৫০ বারো জিলা...`
|
| 264 |
+
2. `গ অতার মা মুনি ৫২ বারো জিলা বেয়াপা ৪৮ ইউনিয়ন এগত ১৮ বসরর গজে মানু আসি লহঙ করিসিতা বেয়াপা`
|
| 265 |
+
3. `মানুলেহা লোক গননা অনুসারে উটুৱাদা র জনসংখ্যা ইলাতাই ৩৫ ২১৪ ঘরর ইউনিট আসে হারি বর্গ মাইলে ৩১ ৭গ মানু`
|
| 266 |
|
|
|
|
| 267 |
|
| 268 |
+
### Generated Text Samples (Subword-based)
|
| 269 |
+
|
| 270 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 271 |
|
| 272 |
**Context Size 1:**
|
| 273 |
|
| 274 |
+
1. `_হান_বারো_খা_ইউপাসিতার_`
|
| 275 |
+
2. `র),২,_ইউনিয়নর_ক_মা`
|
| 276 |
+
3. `নর_বারো_জন_(১,৬৮%,`
|
| 277 |
|
| 278 |
**Context Size 2:**
|
| 279 |
|
| 280 |
+
1. `র_উপাত্ত_পৌরসভারতর_হার_`
|
| 281 |
+
2. `।_পৌরসভাহানর_গননা)_মানু`
|
| 282 |
+
3. `হান।_সাধারণ_বপ/য়্যাম।_এ`
|
| 283 |
|
| 284 |
**Context Size 3:**
|
| 285 |
|
| 286 |
+
1. `র_মানু_থাইতারা।_হারি_বর্গমাই`
|
| 287 |
+
2. `হান_আম্ফোয়ে_ৱারিশপুর_*_টঙ্গিবা`
|
| 288 |
+
3. `_বারো_অধিবর্ষ_আহান।_জনসংখ্যা`
|
| 289 |
|
| 290 |
**Context Size 4:**
|
| 291 |
|
| 292 |
+
1. `_বারো_জেলা/বেয়াপা_৪৯%_বারো_দ্রা`
|
| 293 |
+
2. `_ইউনিট_আসে।_চৌদ্দাহান_মুঙেদে:`
|
| 294 |
+
3. `ইউনিয়ন।_ঔয়াঙেদে:_---_ইউ`
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
+
- **Best Predictability:** Context-4 (word) with 95.1% predictability
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
+
- **Memory Trade-off:** Larger contexts require more storage (318,528 contexts)
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
+
| Vocabulary Size | 33,017 |
|
| 318 |
+
| Total Tokens | 2,031,395 |
|
| 319 |
+
| Mean Frequency | 61.53 |
|
| 320 |
| Median Frequency | 3 |
|
| 321 |
+
| Frequency Std Dev | 896.57 |
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
+
| 1 | বারো | 68,904 |
|
| 328 |
+
| 2 | ইউনিয়ন | 42,536 |
|
| 329 |
+
| 3 | উপাত্ত | 36,521 |
|
| 330 |
+
| 4 | হারহান | 31,910 |
|
| 331 |
+
| 5 | মা | 31,024 |
|
| 332 |
+
| 6 | মানু | 30,464 |
|
| 333 |
+
| 7 | সাক্ষরতার | 26,839 |
|
| 334 |
+
| 8 | গ | 26,426 |
|
| 335 |
+
| 9 | অতার | 25,586 |
|
| 336 |
+
| 10 | জনসংখ্যার | 24,826 |
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
| 340 |
| Rank | Word | Frequency |
|
| 341 |
|------|------|-----------|
|
| 342 |
+
| 1 | সুখর | 2 |
|
| 343 |
+
| 2 | পরিত্যাগ | 2 |
|
| 344 |
+
| 3 | মালতী | 2 |
|
| 345 |
+
| 4 | আকগও | 2 |
|
| 346 |
+
| 5 | ক্ষনিক | 2 |
|
| 347 |
+
| 6 | সযন্তে | 2 |
|
| 348 |
+
| 7 | কণ্টক | 2 |
|
| 349 |
+
| 8 | পরিহার | 2 |
|
| 350 |
+
| 9 | বিরোধিতা | 2 |
|
| 351 |
+
| 10 | অপরাপর | 2 |
|
| 352 |
|
| 353 |
### Zipf's Law Analysis
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
+
| Zipf Coefficient | 1.3135 |
|
| 358 |
+
| R² (Goodness of Fit) | 0.980294 |
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
| 362 |
|
| 363 |
| Top N Words | Coverage |
|
| 364 |
|-------------|----------|
|
| 365 |
+
| Top 100 | 62.6% |
|
| 366 |
+
| Top 1,000 | 89.9% |
|
| 367 |
+
| Top 5,000 | 95.0% |
|
| 368 |
+
| Top 10,000 | 96.8% |
|
| 369 |
|
| 370 |
### Key Findings
|
| 371 |
|
| 372 |
+
- **Zipf Compliance:** R²=0.9803 indicates excellent adherence to Zipf's law
|
| 373 |
+
- **High Frequency Dominance:** Top 100 words cover 62.6% of corpus
|
| 374 |
+
- **Long Tail:** 23,017 words needed for remaining 3.2% coverage
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 384 |
|
| 385 |

|
| 386 |
|
|
|
|
| 387 |
|
| 388 |
+
### 5.1 Cross-Lingual Alignment
|
| 389 |
+
|
| 390 |
+
> *Note: Multilingual alignment visualization not available for this language.*
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
### 5.2 Model Comparison
|
| 394 |
+
|
| 395 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
+
| **mono_32d** | 32 | 0.7051 🏆 | 0.3773 | N/A | N/A |
|
| 398 |
+
| **mono_64d** | 64 | 0.5256 | 0.3351 | N/A | N/A |
|
| 399 |
+
| **mono_128d** | 128 | 0.2472 | 0.3242 | N/A | N/A |
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
+
- **Best Isotropy:** mono_32d with 0.7051 (more uniform distribution)
|
| 404 |
+
- **Semantic Density:** Average pairwise similarity of 0.3456. Lower values indicate better semantic separation.
|
| 405 |
+
- **Alignment Quality:** No aligned models evaluated in this run.
|
| 406 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
+
|
| 408 |
+
---
|
| 409 |
+
## 6. Morphological Analysis (Experimental)
|
| 410 |
+
|
| 411 |
+
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
+
|
| 413 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
+
|
| 415 |
+
### 6.1 Productivity & Complexity
|
| 416 |
+
|
| 417 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
+
|--------|-------|----------------|----------------|
|
| 419 |
+
| Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
|
| 420 |
+
| Idiomaticity Gap | **-1.000** | Low formulaic content | - |
|
| 421 |
+
|
| 422 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
+
|
| 424 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 425 |
+
|
| 426 |
+
#### Productive Prefixes
|
| 427 |
+
| Prefix | Examples |
|
| 428 |
+
|--------|----------|
|
| 429 |
+
| `-কা` | কানারিও, কাবেরীপক্কম, কানুপুর |
|
| 430 |
+
| `-মা` | মাকৌপিন, মাঝরদিয়া, মার্চ |
|
| 431 |
+
|
| 432 |
+
#### Productive Suffixes
|
| 433 |
+
| Suffix | Examples |
|
| 434 |
+
|--------|----------|
|
| 435 |
+
| `-া` | ৱারান্টিনা, সাড়া, হঙকরাতারা |
|
| 436 |
+
| `-র` | শিরুর, উপর, গেজেটার |
|
| 437 |
+
| `-়া` | সাড়া, মাঝরদিয়া, মহুয়া |
|
| 438 |
+
| `-ুর` | শিরুর, তরফপুর, রাইপুর |
|
| 439 |
+
| `-য়া` | মাঝরদিয়া, মহুয়া, ক্যালিফোর্নিয়া |
|
| 440 |
+
| `-িয়া` | মাঝরদিয়া, ক্যালিফোর্নিয়া, সাফিয়া |
|
| 441 |
+
| `-পুর` | তরফপুর, রাইপুর, সাদিপুর |
|
| 442 |
+
| `-ার` | গেজেটার, সুইটৱাটার, পিনার |
|
| 443 |
+
|
| 444 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 445 |
+
|
| 446 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 447 |
+
|
| 448 |
+
*No significant bound stems detected.*
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 452 |
+
|
| 453 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 454 |
+
|
| 455 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 456 |
+
|--------|--------|-----------|----------|
|
| 457 |
+
| `-কা` | `-া` | 47 words | কাসিবুগ্গা, কাপিক্সাবা |
|
| 458 |
+
| `-মা` | `-া` | 37 words | মারিনগা, মাইসাটুয়া |
|
| 459 |
+
| `-কা` | `-র` | 31 words | কাতারর, কাড়াথুর |
|
| 460 |
+
| `-মা` | `-র` | 23 words | মাহিলপুর, মানিয়ার |
|
| 461 |
+
| `-কা` | `-়া` | 16 words | কানয়া, কামারিয়া |
|
| 462 |
+
| `-কা` | `-য়া` | 13 words | কানয়া, কামারিয়া |
|
| 463 |
+
| `-মা` | `-়া` | 12 words | মাইসাটুয়া, মাছপাড়া |
|
| 464 |
+
| `-কা` | `-ুর` | 11 words | কাড়াথুর, কাবনুর |
|
| 465 |
+
| `-কা` | `-িয়া` | 10 words | কামারিয়া, কালেডোনিয়া |
|
| 466 |
+
| `-মা` | `-য়া` | 7 words | মাইসাটুয়া, মাছুয়া |
|
| 467 |
+
|
| 468 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 469 |
+
|
| 470 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 471 |
+
|
| 472 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 473 |
+
|------|-----------------|------------|------|
|
| 474 |
+
| লুসিয়ারা | **`লুসি-য়া-রা`** | 6.0 | `লুসি` |
|
| 475 |
+
| জিন্দারপুর | **`জিন্দ-ার-পুর`** | 6.0 | `জিন্দ` |
|
| 476 |
+
| কল্যানপুর | **`কল্যান-পুর`** | 4.5 | `কল্যান` |
|
| 477 |
+
| য়েরভালিয়া | **`য়েরভাল-িয়া`** | 4.5 | `য়েরভাল` |
|
| 478 |
+
| রায়হানপুর | **`রায়হান-পুর`** | 4.5 | `রায়হান` |
|
| 479 |
+
| নাইজেরিয়া | **`নাইজের-িয়া`** | 4.5 | `নাইজের` |
|
| 480 |
+
| মোস্তফাপুর | **`মোস্তফা-পুর`** | 4.5 | `মোস্তফা` |
|
| 481 |
+
| সিঙ্গাপুর | **`সিঙ্গা-পুর`** | 4.5 | `সিঙ্গা` |
|
| 482 |
+
| মির্জাপুর | **`মির্জা-পুর`** | 4.5 | `মির্জা` |
|
| 483 |
+
| পালমাসিয়া | **`পালমাস-িয়া`** | 4.5 | `পালমাস` |
|
| 484 |
+
| ইসলামিয়া | **`ইসলাম-িয়া`** | 4.5 | `ইসলাম` |
|
| 485 |
+
| কামানডুকাইয়া | **`কা-মা-নডুকাই-য়া`** | 4.5 | `নডুকাই` |
|
| 486 |
+
| চরকুমারিয়া | **`চরকুম-ার-িয়া`** | 3.0 | `চরকুম` |
|
| 487 |
+
| কাউন্দিয়া | **`কা-উন্���-িয়া`** | 3.0 | `উন্দ` |
|
| 488 |
+
| কালাইমাজপাড়া | **`কা-লাইমাজপাড-়া`** | 3.0 | `লাইমাজপাড` |
|
| 489 |
+
|
| 490 |
+
### 6.6 Linguistic Interpretation
|
| 491 |
+
|
| 492 |
+
> **Automated Insight:**
|
| 493 |
+
The language BPY appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
|
| 494 |
|
| 495 |
---
|
| 496 |
+
## 7. Summary & Recommendations
|
| 497 |
|
| 498 |

|
| 499 |
|
|
|
|
| 501 |
|
| 502 |
| Component | Recommended | Rationale |
|
| 503 |
|-----------|-------------|-----------|
|
| 504 |
+
| Tokenizer | **64k BPE** | Best compression (4.93x) |
|
| 505 |
+
| N-gram | **2-gram** | Lowest perplexity (598) |
|
| 506 |
+
| Markov | **Context-4** | Highest predictability (95.1%) |
|
| 507 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 508 |
|
| 509 |
+
|
| 510 |
---
|
| 511 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 512 |
|
|
|
|
| 696 |
author = {Kamali, Omar},
|
| 697 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 698 |
year = {2025},
|
| 699 |
+
doi = {10.5281/zenodo.18073153},
|
| 700 |
+
publisher = {Zenodo},
|
| 701 |
url = {https://huggingface.co/wikilangs}
|
| 702 |
institution = {Omneity Labs}
|
| 703 |
}
|
|
|
|
| 713 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 714 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 715 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 716 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 717 |
---
|
| 718 |
*Generated by Wikilangs Models Pipeline*
|
| 719 |
|
| 720 |
+
*Report Date: 2026-01-03 07:50:05*
|
models/embeddings/monolingual/bpy_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3b15a24394779ec3beddd13e51b8416a137f08e7eef6cd8c13cd09cf43733f0
|
| 3 |
+
size 1035031576
|
models/embeddings/monolingual/bpy_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 10500
|
| 15 |
}
|
models/embeddings/monolingual/bpy_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0c0840199d220785e7d74606060b7a6126430498c7075055630d36f50ea7419
|
| 3 |
+
size 258967576
|
models/embeddings/monolingual/bpy_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 10500
|
| 15 |
}
|
models/embeddings/monolingual/bpy_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6e2813dae96a73ea737d2e4dda08e790f6fb7264595ac54099bd4d8b2292690
|
| 3 |
+
size 517655576
|
models/embeddings/monolingual/bpy_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 10500
|
| 15 |
}
|
models/subword_markov/bpy_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8471db68e598c67135a721fbc5abea6aabf5b3531ac753f67a51a53d3a162efe
|
| 3 |
+
size 259139
|
models/subword_markov/bpy_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_contexts": 3035,
|
| 6 |
+
"total_transitions": 9209425
|
| 7 |
}
|
models/subword_markov/bpy_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f7c571eecbae6ba0f24d562781877ff384a71459459476bc095f782d4915833
|
| 3 |
+
size 1150172
|
models/subword_markov/bpy_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_contexts": 35678,
|
| 6 |
+
"total_transitions": 9184428
|
| 7 |
}
|
models/subword_markov/bpy_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e4b755551be0d4958885e5ef7ce3604b86f71a5d45b2cd1cae7865d96cd7b1c
|
| 3 |
+
size 3026127
|
models/subword_markov/bpy_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_contexts": 131152,
|
| 6 |
+
"total_transitions": 9159431
|
| 7 |
}
|
models/subword_markov/bpy_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:81b6102ef4dca504054a436f595fb2141c4d5e0b2fcb06ee59c2a27d91217af2
|
| 3 |
+
size 6259337
|
models/subword_markov/bpy_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_contexts": 318528,
|
| 6 |
+
"total_transitions": 9134434
|
| 7 |
}
|
models/subword_ngram/bpy_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f82847f832ddbf2d1fa13369d81d98d1250a13406959bf2e9c7bcf6411f73dae
|
| 3 |
+
size 223418
|
models/subword_ngram/bpy_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_ngrams": 14925,
|
| 6 |
+
"total_ngrams": 9209425
|
| 7 |
}
|
models/subword_ngram/bpy_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3399384c312065ab04e876e9a8339dd16ad7672600be8f555f1f24f2f750a8e3
|
| 3 |
+
size 994803
|
models/subword_ngram/bpy_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_ngrams": 68764,
|
| 6 |
+
"total_ngrams": 9184428
|
| 7 |
}
|
models/subword_ngram/bpy_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f5a24ecfb409025513b9a27e490935fab2358c050e05d7b200d31b657033a48
|
| 3 |
+
size 2381769
|
models/subword_ngram/bpy_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_ngrams": 166785,
|
| 6 |
+
"total_ngrams": 9159431
|
| 7 |
}
|
models/tokenizer/bpy_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de3058025822db51926bead450c89e6488fb90b601282c5bfa70d01e3bb8d118
|
| 3 |
+
size 606496
|
models/tokenizer/bpy_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bpy_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2167815382b0d49ee9d942580a311d5095b796299c9cca191099977285f1f730
|
| 3 |
+
size 1016119
|
models/tokenizer/bpy_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bpy_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15960ddb65b0199fe283b07bc06c542bc2bc8f117e733be94b9fee95d82e1d39
|
| 3 |
+
size 1838927
|
models/tokenizer/bpy_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bpy_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4ec725812a0a54260f2a0e37b399025d18f1be5288cd4960c495698a32d792b
|
| 3 |
+
size 420550
|
models/tokenizer/bpy_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/bpy_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:566686527453f8982d9f7d761db3c3d1b83725fe8c367e171c03880c653e20a1
|
| 3 |
+
size 615993
|
models/vocabulary/bpy_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "bpy",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "bpy",
|
| 3 |
+
"vocabulary_size": 33017,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.029318932277929487,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.6173631613153301,
|
| 9 |
+
"top_1000": 0.8866567771129692,
|
| 10 |
+
"top_5000": 0.9377555570451412,
|
| 11 |
+
"top_10000": 0.9552711418354352
|
| 12 |
},
|
| 13 |
+
"hapax_count": 27343,
|
| 14 |
+
"hapax_ratio": 0.45299867461895293,
|
| 15 |
+
"total_documents": 24997
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/bpy_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c26d16cda447fab844f38aa0014c18fd3efee9851da15d42c78fb9edb16bd18
|
| 3 |
+
size 2583106
|
models/word_markov/bpy_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_contexts": 60265,
|
| 6 |
+
"total_transitions": 2033741
|
| 7 |
}
|
models/word_markov/bpy_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1fa1c243dab3eab15b77c513a7038427aa62f1ff8d3dd624cc73c649f9890f7a
|
| 3 |
+
size 6149066
|
models/word_markov/bpy_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_contexts": 262556,
|
| 6 |
+
"total_transitions": 2008744
|
| 7 |
}
|
models/word_markov/bpy_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7622a3a71f6f070ac5db83e5e97131e1712eff1adcc7abcee61fb80c35462f2
|
| 3 |
+
size 9548086
|
models/word_markov/bpy_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_contexts": 400175,
|
| 6 |
+
"total_transitions": 1983747
|
| 7 |
}
|
models/word_markov/bpy_markov_ctx4_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6698170a5559d8625b6a1607e8f77b4b24134e9244062645ebee386de8b603d7
|
| 3 |
+
size 13571757
|
models/word_markov/bpy_markov_ctx4_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_contexts": 505259,
|
| 6 |
+
"total_transitions": 1958750
|
| 7 |
}
|
models/word_ngram/bpy_2gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecc35b57edce0047176d78cec0d755c7ce6c3fbe11107d56c0fee3e19ffa5811
|
| 3 |
+
size 277645
|
models/word_ngram/bpy_2gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_ngrams": 15095,
|
| 6 |
+
"total_ngrams": 2033741
|
| 7 |
}
|
models/word_ngram/bpy_3gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90e5d518ab3f7bc7ccb22ada009fe25f616284c21deac03e8501c79db7c8c3ca
|
| 3 |
+
size 662282
|
models/word_ngram/bpy_3gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_ngrams": 31653,
|
| 6 |
+
"total_ngrams": 2008744
|
| 7 |
}
|
models/word_ngram/bpy_4gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0f7ce61f64ce707ee44c9e02ae0e63b105f3bb116f076e34089cd28b78ec52d4
|
| 3 |
+
size 1414259
|
models/word_ngram/bpy_4gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bpy",
|
| 5 |
+
"unique_ngrams": 61026,
|
| 6 |
+
"total_ngrams": 1983747
|
| 7 |
}
|
visualizations/embedding_isotropy.png
CHANGED
|
|
visualizations/embedding_norms.png
CHANGED
|
|
visualizations/embedding_similarity.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
visualizations/markov_branching.png
CHANGED
|
|
visualizations/markov_contexts.png
CHANGED
|
|