--- language: cdo language_name: Min Dong Chinese language_family: sinitic_other tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-sinitic_other license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 2.891 - name: best_isotropy type: isotropy value: 0.5099 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Min Dong Chinese - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Min Dong Chinese** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **32k** | 2.755x | 2.76 | 0.1043% | 256,064 | | **64k** | 2.891x 🏆 | 2.89 | 0.1094% | 244,079 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Jessamine Gông (Ĭng-ngṳ̄: Jessamine County) sê Mī-guók Kentucky gì siŏh ciáh gôn...` | Vocab | Tokens | Count | |-------|--------|-------| | 32k | `▁j ess am ine ▁gông ▁( ĭng - ngṳ̄ : ... (+18 more)` | 28 | | 64k | `▁jessamine ▁gông ▁( ĭng - ngṳ̄ : ▁jessamine ▁county ) ... (+12 more)` | 22 | **Sample 2:** `2 nguŏk 1 hô̤ sê nùng-lĭk 2 nguŏk gì dâ̤ 1 gĕ̤ng. 2 nguŏk` | Vocab | Tokens | Count | |-------|--------|-------| | 32k | `▁ 2 ▁nguŏk ▁ 1 ▁hô̤ ▁sê ▁nùng - lĭk ... (+12 more)` | 22 | | 64k | `▁ 2 ▁nguŏk ▁ 1 ▁hô̤ ▁sê ▁nùng - lĭk ... (+12 more)` | 22 | **Sample 3:** `McLean Gông (Ĭng-ngṳ̄: McLean County) sê Mī-guók Kentucky gì siŏh ciáh gông. gì ...` | Vocab | Tokens | Count | |-------|--------|-------| | 32k | `▁mclean ▁gông ▁( ĭng - ngṳ̄ : ▁mclean ▁county ) ... (+12 more)` | 22 | | 64k | `▁mclean ▁gông ▁( ĭng - ngṳ̄ : ▁mclean ▁county ) ... (+12 more)` | 22 | ### Key Findings - **Best Compression:** 64k achieves 2.891x compression - **Lowest UNK Rate:** 32k with 0.1043% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 3,139 | 11.62 | 11,777 | 27.5% | 59.0% | | **2-gram** | Subword | 341 🏆 | 8.41 | 6,920 | 63.6% | 95.8% | | **3-gram** | Word | 4,753 | 12.21 | 18,116 | 23.7% | 52.0% | | **3-gram** | Subword | 1,655 | 10.69 | 21,022 | 36.1% | 75.9% | | **4-gram** | Word | 8,558 | 13.06 | 31,134 | 18.5% | 45.2% | | **4-gram** | Subword | 5,737 | 12.49 | 69,190 | 23.7% | 55.8% | | **5-gram** | Word | 7,101 | 12.79 | 23,547 | 17.3% | 48.1% | | **5-gram** | Subword | 13,084 | 13.68 | 106,632 | 16.4% | 41.9% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `gì siŏh` | 6,261 | | 2 | `siŏh ciáh` | 6,233 | | 3 | `mī guók` | 3,384 | | 4 | `sê mī` | 3,190 | | 5 | `gì gông` | 3,000 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `gì siŏh ciáh` | 5,415 | | 2 | `sê mī guók` | 3,172 | | 3 | `siŏh ciáh gông` | 3,000 | | 4 | `ciáh gông gì` | 2,557 | | 5 | `gông gì gông` | 2,557 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `gì siŏh ciáh gông` | 3,000 | | 2 | `siŏh ciáh gông gì` | 2,557 | | 3 | `ciáh gông gì gông` | 2,557 | | 4 | `county sê mī guók` | 1,971 | | 5 | `gông sê mī guók` | 1,029 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `siŏh ciáh gông gì gông` | 2,557 | | 2 | `gì siŏh ciáh gông gì` | 2,557 | | 3 | `diē sié gì siŏh ciáh` | 390 | | 4 | `ìng mìng gê̤ṳng huò guók` | 385 | | 5 | `dâi chók sié guó sié` | 348 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `n g` | 148,099 | | 2 | `_ g` | 60,261 | | 3 | `g -` | 56,437 | | 4 | `g _` | 55,736 | | 5 | `_ s` | 41,503 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `n g -` | 56,411 | | 2 | `n g _` | 55,623 | | 3 | `_ g ì` | 23,145 | | 4 | `g ì _` | 22,365 | | 5 | `_ s i` | 14,188 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ g ì _` | 22,216 | | 2 | `_ s ê _` | 13,258 | | 3 | `n g _ g` | 11,418 | | 4 | `i ŏ h _` | 10,678 | | 5 | `_ s i ŏ` | 9,423 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ s i ŏ h` | 9,171 | | 2 | `_ g ô n g` | 9,066 | | 3 | `s i ŏ h _` | 8,474 | | 4 | `_ g ì _ s` | 8,113 | | 5 | `i ŏ h _ c` | 7,536 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 341 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~42% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.4885 | 1.403 | 4.74 | 29,717 | 51.2% | | **1** | Subword | 0.3463 | 1.271 | 2.92 | 25,650 | 65.4% | | **2** | Word | 0.3200 | 1.248 | 1.81 | 139,964 | 68.0% | | **2** | Subword | 0.2749 | 1.210 | 1.79 | 74,833 | 72.5% | | **3** | Word | 0.1204 | 1.087 | 1.23 | 250,754 | 88.0% | | **3** | Subword | 0.2342 | 1.176 | 1.69 | 133,597 | 76.6% | | **4** | Word | 0.0528 🏆 | 1.037 | 1.09 | 303,909 | 94.7% | | **4** | Subword | 0.2293 | 1.172 | 1.54 | 225,426 | 77.1% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `gì siŏh déng bĭng giàng guó mī guók gì kó găk hók ciŭ gì siŏh gă` 2. `sê mī guók sì dâi chók sirens nièng gáu huòng 閩江公園 dê lī hŏk â dā̤` 3. `siŏh cṳ̄ng ī gì céng sī mò̤ siū ăng gô iók hâng săng sê mī guók` **Context Size 2:** 1. `gì siŏh ciáh gông gì gông` 2. `siŏh ciáh mìng cŭk iâ sê giū cê̤ṳ sìng bŏng gá ĭ sá̤ bò̤ dìng uòng 陳垣` 3. `mī guók tennessee gì siŏh cṳ̄ng â̤ buŏi gì sèng dău cê mō̤ gì dâ̤ 140 ôi` **Context Size 3:** 1. `gì siŏh ciáh gáu puái céng tūng puái nêng dêng sê siŏh ciáh bìng nièng tàu gĕ̤ng sê` 2. `sê mī guók dâ̤ 19 êng gáu huòng 310 nièng gáu 314 nièng câi ôi nièng hô̤ tái` 3. `siŏh ciáh gông gì gông` **Context Size 4:** 1. `gì siŏh ciáh gông gì gông` 2. `siŏh ciáh gông gì gông` 3. `county sê mī guók georgia gì siŏh ciáh gông gì gông` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_7_g_sê-ngì-gì_s` 2. `g_cīng_(ĭngṳ̄_sēn` 3. `nerotŭ_sê_g_sê-m` **Context Size 2:** 1. `ngiù_hâiu-gáu-sī“` 2. `_guô-hô̤_gāi_gôngu` 3. `g-gă_dìng_coung-h` **Context Size 3:** 1. `ng-huá-hŏk-pŭng-cŭ` 2. `ng_siàng_gâe̤ng_(埃及` 3. `_gì_pàng,_ĭ_mĕ̤k-ci` **Context Size 4:** 1. `_gì_siŏh_ciáh_dĭng_` 2. `_sê_mī-guók-nè̤ng_nè̤` 3. `ng_gék-cĭu_gó_ô_sié` ### Key Findings - **Best Predictability:** Context-4 (word) with 94.7% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (225,426 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 9,566 | | Total Tokens | 470,049 | | Mean Frequency | 49.14 | | Median Frequency | 3 | | Frequency Std Dev | 396.77 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | gì | 23,347 | | 2 | sê | 14,101 | | 3 | siŏh | 9,273 | | 4 | gông | 9,087 | | 5 | guók | 8,556 | | 6 | ciáh | 7,148 | | 7 | nièng | 5,899 | | 8 | ngṳ̄ | 5,273 | | 9 | sié | 4,623 | | 10 | gáu | 4,196 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | 小天王國 | 2 | | 2 | baidu | 2 | | 3 | 宋在康 | 2 | | 4 | woolridge | 2 | | 5 | 六一路 | 2 | | 6 | 神壇樹 | 2 | | 7 | 신단수 | 2 | | 8 | 날 | 2 | | 9 | kbo | 2 | | 10 | 우주항공청 | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.4007 | | R² (Goodness of Fit) | 0.957225 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 52.1% | | Top 1,000 | 91.8% | | Top 5,000 | 98.0% | | Top 10,000 | 0.0% | ### Key Findings - **Zipf Compliance:** R²=0.9572 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 52.1% of corpus - **Long Tail:** -434 words needed for remaining 100.0% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.5099 | 0.4122 | N/A | N/A | | **mono_64d** | 64 | 0.2128 | 0.3926 | N/A | N/A | | **mono_128d** | 128 | 0.0308 | 0.3921 | N/A | N/A | | **aligned_32d** | 32 | 0.5099 🏆 | 0.4223 | 0.0120 | 0.1260 | | **aligned_64d** | 64 | 0.2128 | 0.3730 | 0.0280 | 0.2380 | | **aligned_128d** | 128 | 0.0308 | 0.3804 | 0.0380 | 0.2160 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.5099 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.3954. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 3.8% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **0.147** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. *No productive affixes detected.* ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `áung` | 2.01x | 9 contexts | dáung, sáung, gáung | | `âung` | 1.99x | 9 contexts | hâung, dâung, lâung | | `iăng` | 1.88x | 7 contexts | siăng, hiăng, tiăng | | `iāng` | 1.54x | 8 contexts | niāng, biāng, tiāng | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. *No significant affix co-occurrences detected.* ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). *Insufficient data for recursive segmentation.* ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Min Dong Chinese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (2.89x) | | N-gram | **2-gram** | Lowest perplexity (341) | | Markov | **Context-4** | Highest predictability (94.7%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 20:07:11*