--- language: cs language_name: Czech language_family: slavic_west tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-slavic_west license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.591 - name: best_isotropy type: isotropy value: 0.7988 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-08 --- # Czech - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Czech** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.417x | 3.42 | 0.0769% | 2,893,388 | | **16k** | 3.845x | 3.85 | 0.0865% | 2,570,989 | | **32k** | 4.245x | 4.25 | 0.0955% | 2,328,840 | | **64k** | 4.591x 🏆 | 4.59 | 0.1033% | 2,153,192 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** ` Související články Seznam kulturních památek v okrese Znojmo Externí odkazy...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁< tr > ▁související ▁články ▁seznam ▁kultur ních ▁pam átek ... (+17 more)` | 27 | | 16k | `▁< tr > ▁související ▁články ▁seznam ▁kulturních ▁památek ▁v ▁okrese ... (+13 more)` | 23 | | 32k | `▁< tr > ▁související ▁články ▁seznam ▁kulturních ▁památek ▁v ▁okrese ... (+11 more)` | 21 | | 64k | `▁< tr > ▁související ▁články ▁seznam ▁kulturních ▁památek ▁v ▁okrese ... (+11 more)` | 21 | **Sample 2:** `Mirovice Sochovice Související články Seznam kulturních památek v okre...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁mi rovice ▁< tr > ▁so ch ovice ▁< tr ... (+17 more)` | 27 | | 16k | `▁mi rovice ▁< tr > ▁so chovice ▁< tr > ... (+14 more)` | 24 | | 32k | `▁mi rovice ▁< tr > ▁so chovice ▁< tr > ... (+14 more)` | 24 | | 64k | `▁mi rovice ▁< tr > ▁so chovice ▁< tr > ... (+14 more)` | 24 | **Sample 3:** `Sabra může být: sabra – hebrejské slovo Sabra (tank) Sabra – sídlo v Libanonu, d...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁sa bra ▁může ▁být : ▁sa bra ▁– ▁hebrej ské ... (+22 more)` | 32 | | 16k | `▁sa bra ▁může ▁být : ▁sa bra ▁– ▁hebrej ské ... (+21 more)` | 31 | | 32k | `▁sa bra ▁může ▁být : ▁sa bra ▁– ▁hebrejské ▁slovo ... (+17 more)` | 27 | | 64k | `▁sa bra ▁může ▁být : ▁sa bra ▁– ▁hebrejské ▁slovo ... (+15 more)` | 25 | ### Key Findings - **Best Compression:** 64k achieves 4.591x compression - **Lowest UNK Rate:** 8k with 0.0769% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 644,039 | 19.30 | 4,952,358 | 4.8% | 11.9% | | **2-gram** | Subword | 449 🏆 | 8.81 | 30,223 | 53.9% | 98.0% | | **3-gram** | Word | 2,339,059 | 21.16 | 8,925,525 | 2.6% | 6.4% | | **3-gram** | Subword | 4,755 | 12.22 | 255,109 | 16.7% | 54.3% | | **4-gram** | Word | 5,475,376 | 22.38 | 14,408,434 | 1.3% | 3.9% | | **4-gram** | Subword | 32,796 | 15.00 | 1,646,964 | 6.8% | 24.8% | | **5-gram** | Word | 4,645,198 | 22.15 | 10,221,820 | 1.0% | 3.6% | | **5-gram** | Subword | 160,592 | 17.29 | 6,437,902 | 3.7% | 13.8% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `v roce` | 1,319,715 | | 2 | `externí odkazy` | 445,741 | | 3 | `odkazy reference` | 238,320 | | 4 | `reference externí` | 226,335 | | 5 | `v letech` | 212,278 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `reference externí odkazy` | 226,294 | | 2 | `odkazy reference externí` | 124,877 | | 3 | `v roce v` | 123,855 | | 4 | `v roce se` | 91,582 | | 5 | `v roce byl` | 64,824 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `odkazy reference externí odkazy` | 124,850 | | 2 | `odkazy reference související články` | 42,127 | | 3 | `v roce v roce` | 34,075 | | 4 | `reference externí odkazy v` | 29,798 | | 5 | `externí odkazy oficiální stránky` | 20,103 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `odkazy reference externí odkazy v` | 16,236 | | 2 | `odkazy reference literatura externí odkazy` | 12,685 | | 3 | `reference externí odkazy oficiální stránky` | 11,834 | | 4 | `historie první písemná zmínka o` | 11,754 | | 5 | `reference externí odkazy v okrese` | 11,425 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a _` | 24,781,439 | | 2 | `_ p` | 22,589,509 | | 3 | `e _` | 22,268,109 | | 4 | `_ s` | 22,095,879 | | 5 | `_ v` | 19,926,387 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `n í _` | 7,673,842 | | 2 | `_ p o` | 7,582,650 | | 3 | `_ v _` | 7,272,309 | | 4 | `n a _` | 6,690,107 | | 5 | `_ a _` | 6,501,417 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ n a _` | 3,511,209 | | 2 | `_ s e _` | 3,364,693 | | 3 | `_ p r o` | 3,186,267 | | 4 | `_ b y l` | 2,542,448 | | 5 | `ý c h _` | 2,252,305 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ k t e r` | 1,412,346 | | 2 | `_ r o c e` | 1,383,042 | | 3 | `_ v _ r o` | 1,382,611 | | 4 | `r o c e _` | 1,354,432 | | 5 | `v _ r o c` | 1,321,210 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 449 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~14% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 1.0698 | 2.099 | 16.20 | 3,817,910 | 0.0% | | **1** | Subword | 1.2123 | 2.317 | 8.62 | 14,369 | 0.0% | | **2** | Word | 0.3832 | 1.304 | 2.35 | 61,779,051 | 61.7% | | **2** | Subword | 0.6716 | 1.593 | 4.71 | 123,767 | 32.8% | | **3** | Word | 0.1433 | 1.104 | 1.31 | 144,949,424 | 85.7% | | **3** | Subword | 0.7660 | 1.701 | 4.77 | 583,275 | 23.4% | | **4** | Word | 0.0564 🏆 | 1.040 | 1.10 | 189,649,924 | 94.4% | | **4** | Subword | 0.7409 | 1.671 | 4.00 | 2,782,368 | 25.9% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `v podobě vystavěn byl opětovně pohřbena ve dveřích některých případech může vytvořit jediné dopravní...` 2. `a příslušník staré město zbiroh živa je americký teoretický kvantový stav potrvá v létě odešel na` 3. `na fakt že neměl v červenci i z původních 113 120 metrů vysokém tlaku na východě` **Context Size 2:** 1. `v roce lidé 6 prosince praha byl michal kraus čssd čssd 48 rychnov nad kněžnou kaple stojí` 2. `externí odkazy jihovýchodní evropy jihozápadní asie kavkazu číny sibiře východní asie hustě chlupatá...` 3. `odkazy reference externí odkazy sdružení na praze 4 rozhovor vznikl v roce kde bojoval proti ostrogó...` **Context Size 3:** 1. `reference externí odkazy v ternopilské oblasti na řece strypa v historickém regionu horní lužice mim...` 2. `odkazy reference externí odkazy speleologická společnost vševěd romantismu hudební skladatelé klavír...` 3. `v roce v angličtině se pro celou skupinu alfred crompton catherine musinsky jose bonaparte bhart anj...` **Context Size 4:** 1. `odkazy reference externí odkazy strategie série` 2. `odkazy reference související články fotografie v norsku externí odkazy na seznamu světového dědictví...` 3. `v roce v roce v praze pilotní školu druhá světová válka po roce vojenské služby v polské armádě prot...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_hraloponodovo._` 2. `os_zu_va_vu_dulo` 3. `ekodici_micl_v_s` **Context Size 2:** 1. `a_stříjna_se_rozh` 2. `_příčku_uraven_pe` 3. `e_na_vítlická_hov` **Context Size 3:** 1. `ní_nejčastoru_o_sp` 2. `_polik_v_com_trans` 3. `_v_195_zúčasná_náz` **Context Size 4:** 1. `_na_v_nicméně_chlaz` 2. `_se_proje_asistenci` 3. `_pro_pozdně,_lze_sa` ### Key Findings - **Best Predictability:** Context-4 (word) with 94.4% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (2,782,368 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 1,830,714 | | Total Tokens | 237,612,209 | | Mean Frequency | 129.79 | | Median Frequency | 5 | | Frequency Std Dev | 9362.17 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | v | 7,396,110 | | 2 | a | 6,633,731 | | 3 | na | 3,536,561 | | 4 | se | 3,396,490 | | 5 | je | 2,110,163 | | 6 | s | 1,781,636 | | 7 | z | 1,747,028 | | 8 | do | 1,440,810 | | 9 | roce | 1,383,007 | | 10 | ve | 1,284,897 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | mihty | 2 | | 2 | socionaut | 2 | | 3 | mafjar | 2 | | 4 | vlta | 2 | | 5 | havlátková | 2 | | 6 | makbúsu | 2 | | 7 | propfanů | 2 | | 8 | propfanu | 2 | | 9 | ochmeloff | 2 | | 10 | luncași | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 0.9138 | | R² (Goodness of Fit) | 0.997539 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 27.1% | | Top 1,000 | 45.7% | | Top 5,000 | 63.0% | | Top 10,000 | 70.6% | ### Key Findings - **Zipf Compliance:** R²=0.9975 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 27.1% of corpus - **Long Tail:** 1,820,714 words needed for remaining 29.4% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.7988 | 0.3622 | N/A | N/A | | **mono_64d** | 64 | 0.7835 | 0.2893 | N/A | N/A | | **mono_128d** | 128 | 0.7363 | 0.2299 | N/A | N/A | | **aligned_32d** | 32 | 0.7988 🏆 | 0.3646 | 0.3500 | 0.7360 | | **aligned_64d** | 64 | 0.7835 | 0.2898 | 0.5900 | 0.8980 | | **aligned_128d** | 128 | 0.7363 | 0.2271 | 0.7320 | 0.9520 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.7988 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2938. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 73.2% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **-0.741** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ne` | nezamítl, neomorf, nenapájeným | | `-po` | poštulky, ponoršťování, powerkiting | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-em` | charmsem, treitschkem, holtem | | `-ch` | orbitalech, lekebusch, sklízených | | `-ho` | vladivostockého, sertoliho, cenokarpního | | `-ou` | hobgarskou, výfukovou, robotou | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `ovýc` | 2.16x | 487 contexts | ových, xových, nových | | `skéh` | 2.15x | 392 contexts | ského, lského, urského | | `skýc` | 1.97x | 237 contexts | ských, skýcov, tských | | `ický` | 1.57x | 496 contexts | tický, bický, úpický | | `nské` | 1.53x | 491 contexts | anské, inské, ínské | | `ován` | 1.44x | 594 contexts | ování, kován, zování | | `ické` | 1.46x | 499 contexts | tické, lické, mické | | `ledn` | 1.59x | 250 contexts | lednu, ledna, ledný | | `itel` | 1.36x | 634 contexts | nitel, litel, pitel | | `cház` | 1.52x | 287 contexts | chází, schází, ochází | | `dkaz` | 2.66x | 23 contexts | odkaz, odkaze, odkazy | | `xter` | 1.81x | 76 contexts | exter, xterm, extern | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ne` | `-ch` | 14 words | nepropouštějících, netermínovaných | | `-ne` | `-ho` | 10 words | nejpokročilejšího, nezpochybnitelného | | `-ne` | `-ou` | 9 words | nestejnou, nerozšiřitelnou | | `-po` | `-ho` | 9 words | podmínkového, polštářovitého | | `-po` | `-ch` | 7 words | pohodlnějších, polohovkách | | `-po` | `-ou` | 6 words | ponitranskou, pomátnou | | `-po` | `-em` | 3 words | pollackem, povříslem | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | nedoloženou | **`ne-doložen-ou`** | 6.0 | `doložen` | | nepochybovala | **`ne-po-chybovala`** | 6.0 | `chybovala` | | nepostaral | **`ne-po-staral`** | 6.0 | `staral` | | nacionálem | **`nacionál-em`** | 4.5 | `nacionál` | | chimentiho | **`chimenti-ho`** | 4.5 | `chimenti` | | prostonárodního | **`prostonárodní-ho`** | 4.5 | `prostonárodní` | | klokotských | **`klokotský-ch`** | 4.5 | `klokotský` | | bibliografického | **`bibliografické-ho`** | 4.5 | `bibliografické` | | nesvědčily | **`ne-svědčily`** | 4.5 | `svědčily` | | nenavázali | **`ne-navázali`** | 4.5 | `navázali` | | ibragimovem | **`ibragimov-em`** | 4.5 | `ibragimov` | | zeměplošských | **`zeměplošský-ch`** | 4.5 | `zeměplošský` | | hliníkových | **`hliníkový-ch`** | 4.5 | `hliníkový` | | etylenglykolem | **`etylenglykol-em`** | 4.5 | `etylenglykol` | | mnohosamicového | **`mnohosamicové-ho`** | 4.5 | `mnohosamicové` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Czech shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.59x) | | N-gram | **2-gram** | Lowest perplexity (449) | | Markov | **Context-4** | Highest predictability (94.4%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-08 17:02:58*