Upload folder using huggingface_hub
Browse files- README.md +42 -38
- evaluation_comparison.png +2 -2
- model.safetensors +1 -1
- model_card_metadata.json +9 -9
- training_curves.png +2 -2
- training_metrics.json +0 -0
README.md
CHANGED
|
@@ -3,16 +3,16 @@ base_model:
|
|
| 3 |
- LiquidAI/LFM2-VL-450M
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
## Model Description
|
| 9 |
|
| 10 |
This model is a fine-tuned version of **LiquidAI/LFM2-VL-450M** using the brute-force-training package.
|
| 11 |
|
| 12 |
- **Base Model**: LiquidAI/LFM2-VL-450M
|
| 13 |
-
- **Training Status**:
|
| 14 |
-
- **Generated**: 2025-08-18
|
| 15 |
-
- **Training Steps**:
|
| 16 |
|
| 17 |
## Training Details
|
| 18 |
|
|
@@ -24,19 +24,19 @@ This model is a fine-tuned version of **LiquidAI/LFM2-VL-450M** using the brute-
|
|
| 24 |
### Training Configuration
|
| 25 |
- **Max Steps**: 10,000
|
| 26 |
- **Batch Size**: 2
|
| 27 |
-
- **Learning Rate**:
|
| 28 |
-
- **Gradient Accumulation**:
|
| 29 |
-
- **Evaluation Frequency**: Every
|
| 30 |
|
| 31 |
### Current Performance
|
| 32 |
-
- **Training Loss**: 0.
|
| 33 |
-
- **Evaluation Loss**:
|
| 34 |
|
| 35 |
## Pre-Training Evaluation
|
| 36 |
|
| 37 |
**Initial Model Performance (before training):**
|
| 38 |
-
- **Loss**:
|
| 39 |
-
- **Perplexity**:
|
| 40 |
- **Character Accuracy**: 27.7%
|
| 41 |
- **Word Accuracy**: 11.6%
|
| 42 |
|
|
@@ -45,33 +45,37 @@ This model is a fine-tuned version of **LiquidAI/LFM2-VL-450M** using the brute-
|
|
| 45 |
### All Checkpoint Evaluations
|
| 46 |
| Step | Checkpoint Type | Loss | Perplexity | Char Acc | Word Acc | Improvement vs Pre |
|
| 47 |
|------|----------------|------|------------|----------|----------|--------------------|
|
| 48 |
-
| Pre | pre_training |
|
| 49 |
-
|
|
| 50 |
-
|
|
| 51 |
-
|
|
| 52 |
-
|
|
| 53 |
-
|
|
| 54 |
-
|
|
| 55 |
-
|
|
| 56 |
-
|
|
| 57 |
-
|
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
## Training Progress
|
| 61 |
|
| 62 |
### Recent Training Steps (Loss Only)
|
| 63 |
| Step | Training Loss | Timestamp |
|
| 64 |
|------|---------------|-----------|
|
| 65 |
-
|
|
| 66 |
-
|
|
| 67 |
-
|
|
| 68 |
-
|
|
| 69 |
-
|
|
| 70 |
-
|
|
| 71 |
-
|
|
| 72 |
-
|
|
| 73 |
-
|
|
| 74 |
-
|
|
| 75 |
|
| 76 |
## Training Visualizations
|
| 77 |
|
|
@@ -95,8 +99,8 @@ This model is a fine-tuned version of **LiquidAI/LFM2-VL-450M** using the brute-
|
|
| 95 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 96 |
# For vision-language models, use appropriate imports
|
| 97 |
|
| 98 |
-
model = AutoModelForCausalLM.from_pretrained("./
|
| 99 |
-
tokenizer = AutoTokenizer.from_pretrained("./
|
| 100 |
|
| 101 |
# Your inference code here
|
| 102 |
```
|
|
@@ -108,9 +112,9 @@ tokenizer = AutoTokenizer.from_pretrained("./final")
|
|
| 108 |
"dataset_name": "CATMuS/medieval",
|
| 109 |
"model_name": "LiquidAI/LFM2-VL-450M",
|
| 110 |
"max_steps": 10000,
|
| 111 |
-
"eval_steps":
|
| 112 |
-
"num_accumulation_steps":
|
| 113 |
-
"learning_rate":
|
| 114 |
"train_batch_size": 2,
|
| 115 |
"val_batch_size": 2,
|
| 116 |
"train_select_start": 0,
|
|
@@ -136,4 +140,4 @@ tokenizer = AutoTokenizer.from_pretrained("./final")
|
|
| 136 |
|
| 137 |
---
|
| 138 |
|
| 139 |
-
*This model card was automatically generated by brute-force-training on 2025-08-18
|
|
|
|
| 3 |
- LiquidAI/LFM2-VL-450M
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# model_step_7000
|
| 7 |
|
| 8 |
## Model Description
|
| 9 |
|
| 10 |
This model is a fine-tuned version of **LiquidAI/LFM2-VL-450M** using the brute-force-training package.
|
| 11 |
|
| 12 |
- **Base Model**: LiquidAI/LFM2-VL-450M
|
| 13 |
+
- **Training Status**: 🔄 In Progress
|
| 14 |
+
- **Generated**: 2025-08-18 20:39:32
|
| 15 |
+
- **Training Steps**: 7,000
|
| 16 |
|
| 17 |
## Training Details
|
| 18 |
|
|
|
|
| 24 |
### Training Configuration
|
| 25 |
- **Max Steps**: 10,000
|
| 26 |
- **Batch Size**: 2
|
| 27 |
+
- **Learning Rate**: 1e-05
|
| 28 |
+
- **Gradient Accumulation**: 1 steps
|
| 29 |
+
- **Evaluation Frequency**: Every 500 steps
|
| 30 |
|
| 31 |
### Current Performance
|
| 32 |
+
- **Training Loss**: 0.619257
|
| 33 |
+
- **Evaluation Loss**: 0.722366
|
| 34 |
|
| 35 |
## Pre-Training Evaluation
|
| 36 |
|
| 37 |
**Initial Model Performance (before training):**
|
| 38 |
+
- **Loss**: 1.297430
|
| 39 |
+
- **Perplexity**: 3.66
|
| 40 |
- **Character Accuracy**: 27.7%
|
| 41 |
- **Word Accuracy**: 11.6%
|
| 42 |
|
|
|
|
| 45 |
### All Checkpoint Evaluations
|
| 46 |
| Step | Checkpoint Type | Loss | Perplexity | Char Acc | Word Acc | Improvement vs Pre |
|
| 47 |
|------|----------------|------|------------|----------|----------|--------------------|
|
| 48 |
+
| Pre | pre_training | 1.2974 | 3.66 | 27.7% | 11.6% | +0.0% |
|
| 49 |
+
| 500 | checkpoint | 0.9454 | 2.57 | 39.4% | 19.9% | +27.1% |
|
| 50 |
+
| 1,000 | checkpoint | 0.8644 | 2.37 | 38.7% | 19.1% | +33.4% |
|
| 51 |
+
| 1,500 | checkpoint | 0.8402 | 2.32 | 38.4% | 18.9% | +35.2% |
|
| 52 |
+
| 2,000 | checkpoint | 0.8139 | 2.26 | 37.9% | 19.8% | +37.3% |
|
| 53 |
+
| 2,500 | checkpoint | 0.7890 | 2.20 | 38.5% | 18.9% | +39.2% |
|
| 54 |
+
| 3,000 | checkpoint | 0.7793 | 2.18 | 39.3% | 19.5% | +39.9% |
|
| 55 |
+
| 3,500 | checkpoint | 0.7639 | 2.15 | 42.7% | 21.4% | +41.1% |
|
| 56 |
+
| 4,000 | checkpoint | 0.7483 | 2.11 | 41.2% | 20.4% | +42.3% |
|
| 57 |
+
| 4,500 | checkpoint | 0.7466 | 2.11 | 37.3% | 18.8% | +42.5% |
|
| 58 |
+
| 5,000 | checkpoint | 0.7358 | 2.09 | 40.4% | 20.5% | +43.3% |
|
| 59 |
+
| 5,500 | checkpoint | 0.7321 | 2.08 | 38.1% | 18.9% | +43.6% |
|
| 60 |
+
| 6,000 | checkpoint | 0.7276 | 2.07 | 38.8% | 17.6% | +43.9% |
|
| 61 |
+
| 6,500 | checkpoint | 0.7190 | 2.05 | 41.5% | 18.9% | +44.6% |
|
| 62 |
+
| 7,000 | checkpoint | 0.7224 | 2.06 | 41.6% | 18.7% | +44.3% |
|
| 63 |
|
| 64 |
## Training Progress
|
| 65 |
|
| 66 |
### Recent Training Steps (Loss Only)
|
| 67 |
| Step | Training Loss | Timestamp |
|
| 68 |
|------|---------------|-----------|
|
| 69 |
+
| 6,991 | 0.846698 | 2025-08-18T20:39 |
|
| 70 |
+
| 6,992 | 0.538150 | 2025-08-18T20:39 |
|
| 71 |
+
| 6,993 | 0.721188 | 2025-08-18T20:39 |
|
| 72 |
+
| 6,994 | 0.819544 | 2025-08-18T20:39 |
|
| 73 |
+
| 6,995 | 0.925656 | 2025-08-18T20:39 |
|
| 74 |
+
| 6,996 | 0.724563 | 2025-08-18T20:39 |
|
| 75 |
+
| 6,997 | 0.738329 | 2025-08-18T20:39 |
|
| 76 |
+
| 6,998 | 0.658910 | 2025-08-18T20:39 |
|
| 77 |
+
| 6,999 | 0.439738 | 2025-08-18T20:39 |
|
| 78 |
+
| 7,000 | 0.619257 | 2025-08-18T20:39 |
|
| 79 |
|
| 80 |
## Training Visualizations
|
| 81 |
|
|
|
|
| 99 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 100 |
# For vision-language models, use appropriate imports
|
| 101 |
|
| 102 |
+
model = AutoModelForCausalLM.from_pretrained("./model_step_7000")
|
| 103 |
+
tokenizer = AutoTokenizer.from_pretrained("./model_step_7000")
|
| 104 |
|
| 105 |
# Your inference code here
|
| 106 |
```
|
|
|
|
| 112 |
"dataset_name": "CATMuS/medieval",
|
| 113 |
"model_name": "LiquidAI/LFM2-VL-450M",
|
| 114 |
"max_steps": 10000,
|
| 115 |
+
"eval_steps": 500,
|
| 116 |
+
"num_accumulation_steps": 1,
|
| 117 |
+
"learning_rate": 1e-05,
|
| 118 |
"train_batch_size": 2,
|
| 119 |
"val_batch_size": 2,
|
| 120 |
"train_select_start": 0,
|
|
|
|
| 140 |
|
| 141 |
---
|
| 142 |
|
| 143 |
+
*This model card was automatically generated by brute-force-training on 2025-08-18 20:39:32*
|
evaluation_comparison.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 901692416
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d05714a3806120122abbeed7fd3c4930fe07972e5ed14a4ce6bf7554cf1b5ca
|
| 3 |
size 901692416
|
model_card_metadata.json
CHANGED
|
@@ -1,16 +1,16 @@
|
|
| 1 |
{
|
| 2 |
"base_model": "LiquidAI/LFM2-VL-450M",
|
| 3 |
"training_framework": "brute-force-training",
|
| 4 |
-
"training_date": "2025-08-
|
| 5 |
-
"training_steps":
|
| 6 |
"dataset": "CATMuS/medieval",
|
| 7 |
"training_config": {
|
| 8 |
"dataset_name": "CATMuS/medieval",
|
| 9 |
"model_name": "LiquidAI/LFM2-VL-450M",
|
| 10 |
"max_steps": 10000,
|
| 11 |
-
"eval_steps":
|
| 12 |
-
"num_accumulation_steps":
|
| 13 |
-
"learning_rate":
|
| 14 |
"train_batch_size": 2,
|
| 15 |
"val_batch_size": 2,
|
| 16 |
"train_select_start": 0,
|
|
@@ -24,8 +24,8 @@
|
|
| 24 |
"user_text": "Transcribe this medieval manuscript line.",
|
| 25 |
"max_image_size": 200
|
| 26 |
},
|
| 27 |
-
"final_training_loss": 0.
|
| 28 |
-
"final_evaluation_loss":
|
| 29 |
-
"final_char_accuracy": 0.
|
| 30 |
-
"final_word_accuracy": 0.
|
| 31 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"base_model": "LiquidAI/LFM2-VL-450M",
|
| 3 |
"training_framework": "brute-force-training",
|
| 4 |
+
"training_date": "2025-08-18T20:39:32.801669",
|
| 5 |
+
"training_steps": 7000,
|
| 6 |
"dataset": "CATMuS/medieval",
|
| 7 |
"training_config": {
|
| 8 |
"dataset_name": "CATMuS/medieval",
|
| 9 |
"model_name": "LiquidAI/LFM2-VL-450M",
|
| 10 |
"max_steps": 10000,
|
| 11 |
+
"eval_steps": 500,
|
| 12 |
+
"num_accumulation_steps": 1,
|
| 13 |
+
"learning_rate": 1e-05,
|
| 14 |
"train_batch_size": 2,
|
| 15 |
"val_batch_size": 2,
|
| 16 |
"train_select_start": 0,
|
|
|
|
| 24 |
"user_text": "Transcribe this medieval manuscript line.",
|
| 25 |
"max_image_size": 200
|
| 26 |
},
|
| 27 |
+
"final_training_loss": 0.6192573308944702,
|
| 28 |
+
"final_evaluation_loss": 0.7223658800125122,
|
| 29 |
+
"final_char_accuracy": 0.41553718527220956,
|
| 30 |
+
"final_word_accuracy": 0.18711077811077811
|
| 31 |
}
|
training_curves.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
training_metrics.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|