yuyijiong commited on
Commit
eab5f7d
·
verified ·
1 Parent(s): dca8bb0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-870/adapter_config.json +38 -0
  2. Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2_fadec/checkpoint-994/README.md +207 -0
  3. Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2_fadec/checkpoint-994/merges.txt +0 -0
  4. Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2_fadec/checkpoint-994/trainer_state.json +1420 -0
  5. Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=100_fadec/checkpoint-870/README.md +207 -0
  6. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0/checkpoint-862/added_tokens.json +28 -0
  7. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0/checkpoint-862/chat_template.jinja +86 -0
  8. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/README.md +207 -0
  9. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/adapter_config.json +38 -0
  10. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/added_tokens.json +28 -0
  11. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/chat_template.jinja +86 -0
  12. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/merges.txt +0 -0
  13. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/special_tokens_map.json +31 -0
  14. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/tokenizer_config.json +239 -0
  15. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/vocab.json +0 -0
  16. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=100/checkpoint-862/README.md +207 -0
  17. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=100/checkpoint-862/added_tokens.json +28 -0
  18. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=100/checkpoint-862/tokenizer_config.json +239 -0
  19. Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=100/checkpoint-862/trainer_state.json +1238 -0
  20. Qwen3-30B-A3B-Thinking-2507-sft-fusang/checkpoint-862/README.md +207 -0
  21. Qwen3-30B-A3B-Thinking-2507-sft-fusang/checkpoint-862/added_tokens.json +28 -0
  22. Qwen3-30B-A3B-Thinking-2507-sft-fusang/checkpoint-862/trainer_state.json +1238 -0
  23. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-1302/merges.txt +0 -0
  24. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-1736/README.md +207 -0
  25. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-1736/chat_template.jinja +61 -0
  26. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-1736/merges.txt +0 -0
  27. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-1760/added_tokens.json +28 -0
  28. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-1760/chat_template.jinja +61 -0
  29. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-1760/special_tokens_map.json +31 -0
  30. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-1760/vocab.json +0 -0
  31. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=13_from1_step4_fadec/checkpoint-921/vocab.json +0 -0
  32. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from1_step2/checkpoint-921/README.md +207 -0
  33. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from1_step2/checkpoint-921/added_tokens.json +28 -0
  34. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from1_step2/checkpoint-921/vocab.json +0 -0
  35. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=10/checkpoint-1760/README.md +207 -0
  36. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=10/checkpoint-1760/special_tokens_map.json +31 -0
  37. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=10/checkpoint-1760/tokenizer_config.json +239 -0
  38. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=10/checkpoint-1760/vocab.json +0 -0
  39. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100/checkpoint-1760/special_tokens_map.json +31 -0
  40. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100/checkpoint-1760/vocab.json +0 -0
  41. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/adapter_config.json +38 -0
  42. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/chat_template.jinja +61 -0
  43. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/merges.txt +0 -0
  44. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/special_tokens_map.json +31 -0
  45. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/tokenizer_config.json +239 -0
  46. Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/trainer_state.json +1322 -0
  47. Qwen3-4B-Instruct-2507-sft-fusang/checkpoint-1760/trainer_state.json +2498 -0
  48. Qwen3-4B-Thinking-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-2778/added_tokens.json +28 -0
  49. Qwen3-4B-Thinking-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-2778/chat_template.jinja +86 -0
  50. Qwen3-4B-Thinking-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-2778/special_tokens_map.json +31 -0
Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-870/adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/share/models/Qwen3-30B-A3B-Instruct-2507",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "q_proj",
30
+ "k_proj"
31
+ ],
32
+ "target_parameters": null,
33
+ "task_type": "CAUSAL_LM",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_qalora": false,
37
+ "use_rslora": true
38
+ }
Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2_fadec/checkpoint-994/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /share/models/Qwen3-30B-A3B-Instruct-2507
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:/share/models/Qwen3-30B-A3B-Instruct-2507
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2_fadec/checkpoint-994/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2_fadec/checkpoint-994/trainer_state.json ADDED
@@ -0,0 +1,1420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 994,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.005033345916698125,
14
+ "grad_norm": 0.14038996398448944,
15
+ "learning_rate": 8.000000000000001e-06,
16
+ "loss": 0.6828,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.01006669183339625,
21
+ "grad_norm": 0.1702621877193451,
22
+ "learning_rate": 1.8e-05,
23
+ "loss": 0.6646,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.015100037750094376,
28
+ "grad_norm": 0.13121849298477173,
29
+ "learning_rate": 2.8000000000000003e-05,
30
+ "loss": 0.568,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.0201333836667925,
35
+ "grad_norm": 0.11524524539709091,
36
+ "learning_rate": 3.8e-05,
37
+ "loss": 0.6609,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.025166729583490626,
42
+ "grad_norm": 0.1256837546825409,
43
+ "learning_rate": 4.8e-05,
44
+ "loss": 0.6599,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.03020007550018875,
49
+ "grad_norm": 0.11717186123132706,
50
+ "learning_rate": 5.8e-05,
51
+ "loss": 0.6276,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.03523342141688687,
56
+ "grad_norm": 0.1608511060476303,
57
+ "learning_rate": 6.800000000000001e-05,
58
+ "loss": 0.6536,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.040266767333585,
63
+ "grad_norm": 0.14913535118103027,
64
+ "learning_rate": 7.800000000000001e-05,
65
+ "loss": 0.6647,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.045300113250283124,
70
+ "grad_norm": 0.10683944076299667,
71
+ "learning_rate": 8.800000000000001e-05,
72
+ "loss": 0.6059,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.05033345916698125,
77
+ "grad_norm": 0.10477400571107864,
78
+ "learning_rate": 9.8e-05,
79
+ "loss": 0.6717,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.055366805083679374,
84
+ "grad_norm": 0.1359020173549652,
85
+ "learning_rate": 9.957627118644068e-05,
86
+ "loss": 0.6392,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.0604001510003775,
91
+ "grad_norm": 0.09668928384780884,
92
+ "learning_rate": 9.904661016949153e-05,
93
+ "loss": 0.6378,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.06543349691707563,
98
+ "grad_norm": 0.10658483952283859,
99
+ "learning_rate": 9.851694915254239e-05,
100
+ "loss": 0.5784,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.07046684283377375,
105
+ "grad_norm": 0.10898926854133606,
106
+ "learning_rate": 9.798728813559322e-05,
107
+ "loss": 0.609,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.07550018875047187,
112
+ "grad_norm": 0.08570314198732376,
113
+ "learning_rate": 9.745762711864407e-05,
114
+ "loss": 0.6271,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.08053353466717,
119
+ "grad_norm": 0.09355496615171432,
120
+ "learning_rate": 9.692796610169492e-05,
121
+ "loss": 0.5937,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.08556688058386813,
126
+ "grad_norm": 0.09191977977752686,
127
+ "learning_rate": 9.639830508474576e-05,
128
+ "loss": 0.6183,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.09060022650056625,
133
+ "grad_norm": 0.09747638553380966,
134
+ "learning_rate": 9.586864406779662e-05,
135
+ "loss": 0.6345,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.09563357241726438,
140
+ "grad_norm": 0.09679915755987167,
141
+ "learning_rate": 9.533898305084746e-05,
142
+ "loss": 0.5907,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.1006669183339625,
147
+ "grad_norm": 0.1033581793308258,
148
+ "learning_rate": 9.48093220338983e-05,
149
+ "loss": 0.5628,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.10570026425066063,
154
+ "grad_norm": 0.09648433327674866,
155
+ "learning_rate": 9.427966101694917e-05,
156
+ "loss": 0.6457,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.11073361016735875,
161
+ "grad_norm": 0.09600954502820969,
162
+ "learning_rate": 9.375e-05,
163
+ "loss": 0.6206,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.11576695608405688,
168
+ "grad_norm": 0.09261015802621841,
169
+ "learning_rate": 9.322033898305085e-05,
170
+ "loss": 0.5643,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.120800302000755,
175
+ "grad_norm": 0.08777470141649246,
176
+ "learning_rate": 9.26906779661017e-05,
177
+ "loss": 0.6377,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.12583364791745313,
182
+ "grad_norm": 0.07885514199733734,
183
+ "learning_rate": 9.216101694915254e-05,
184
+ "loss": 0.6263,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.13086699383415126,
189
+ "grad_norm": 0.146609365940094,
190
+ "learning_rate": 9.163135593220339e-05,
191
+ "loss": 0.5661,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.13590033975084936,
196
+ "grad_norm": 0.07068520039319992,
197
+ "learning_rate": 9.110169491525424e-05,
198
+ "loss": 0.5898,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.1409336856675475,
203
+ "grad_norm": 0.0955682322382927,
204
+ "learning_rate": 9.057203389830509e-05,
205
+ "loss": 0.6161,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 0.14596703158424562,
210
+ "grad_norm": 0.09020308405160904,
211
+ "learning_rate": 9.004237288135594e-05,
212
+ "loss": 0.6149,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 0.15100037750094375,
217
+ "grad_norm": 0.08094290643930435,
218
+ "learning_rate": 8.951271186440678e-05,
219
+ "loss": 0.5707,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 0.15603372341764188,
224
+ "grad_norm": 0.08532893657684326,
225
+ "learning_rate": 8.898305084745763e-05,
226
+ "loss": 0.625,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 0.16106706933434,
231
+ "grad_norm": 0.4635956585407257,
232
+ "learning_rate": 8.845338983050848e-05,
233
+ "loss": 0.6457,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 0.16610041525103814,
238
+ "grad_norm": 0.11454236507415771,
239
+ "learning_rate": 8.792372881355933e-05,
240
+ "loss": 0.5587,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 0.17113376116773626,
245
+ "grad_norm": 0.09114626795053482,
246
+ "learning_rate": 8.739406779661017e-05,
247
+ "loss": 0.6043,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 0.17616710708443437,
252
+ "grad_norm": 0.14178045094013214,
253
+ "learning_rate": 8.686440677966102e-05,
254
+ "loss": 0.6199,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 0.1812004530011325,
259
+ "grad_norm": 0.08791183680295944,
260
+ "learning_rate": 8.633474576271187e-05,
261
+ "loss": 0.593,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 0.18623379891783062,
266
+ "grad_norm": 0.12179736793041229,
267
+ "learning_rate": 8.580508474576272e-05,
268
+ "loss": 0.6315,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 0.19126714483452875,
273
+ "grad_norm": 0.07060039043426514,
274
+ "learning_rate": 8.527542372881356e-05,
275
+ "loss": 0.6341,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 0.19630049075122688,
280
+ "grad_norm": 0.08048715442419052,
281
+ "learning_rate": 8.474576271186441e-05,
282
+ "loss": 0.6035,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 0.201333836667925,
287
+ "grad_norm": 0.07930552959442139,
288
+ "learning_rate": 8.421610169491526e-05,
289
+ "loss": 0.5854,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 0.20636718258462314,
294
+ "grad_norm": 0.07271519303321838,
295
+ "learning_rate": 8.368644067796611e-05,
296
+ "loss": 0.6244,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 0.21140052850132127,
301
+ "grad_norm": 0.12227227538824081,
302
+ "learning_rate": 8.315677966101694e-05,
303
+ "loss": 0.6368,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 0.21643387441801937,
308
+ "grad_norm": 0.09962992370128632,
309
+ "learning_rate": 8.26271186440678e-05,
310
+ "loss": 0.5928,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 0.2214672203347175,
315
+ "grad_norm": 0.07313612848520279,
316
+ "learning_rate": 8.209745762711865e-05,
317
+ "loss": 0.6272,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 0.22650056625141562,
322
+ "grad_norm": 0.0753592848777771,
323
+ "learning_rate": 8.15677966101695e-05,
324
+ "loss": 0.6263,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 0.23153391216811375,
329
+ "grad_norm": 0.09605638682842255,
330
+ "learning_rate": 8.103813559322035e-05,
331
+ "loss": 0.5929,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 0.23656725808481188,
336
+ "grad_norm": 0.06890146434307098,
337
+ "learning_rate": 8.050847457627118e-05,
338
+ "loss": 0.6074,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 0.24160060400151,
343
+ "grad_norm": 0.07414574921131134,
344
+ "learning_rate": 7.997881355932204e-05,
345
+ "loss": 0.6538,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 0.24663394991820814,
350
+ "grad_norm": 0.07699766010046005,
351
+ "learning_rate": 7.944915254237289e-05,
352
+ "loss": 0.5952,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 0.25166729583490627,
357
+ "grad_norm": 0.07343696802854538,
358
+ "learning_rate": 7.891949152542372e-05,
359
+ "loss": 0.5924,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 0.2567006417516044,
364
+ "grad_norm": 0.11014200001955032,
365
+ "learning_rate": 7.838983050847458e-05,
366
+ "loss": 0.6456,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 0.2617339876683025,
371
+ "grad_norm": 0.09955993294715881,
372
+ "learning_rate": 7.786016949152542e-05,
373
+ "loss": 0.6015,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 0.26676733358500065,
378
+ "grad_norm": 0.08594182878732681,
379
+ "learning_rate": 7.733050847457628e-05,
380
+ "loss": 0.5748,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 0.2718006795016987,
385
+ "grad_norm": 0.08562752604484558,
386
+ "learning_rate": 7.680084745762713e-05,
387
+ "loss": 0.6403,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 0.27683402541839686,
392
+ "grad_norm": 0.07596726715564728,
393
+ "learning_rate": 7.627118644067796e-05,
394
+ "loss": 0.6365,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 0.281867371335095,
399
+ "grad_norm": 0.08623526990413666,
400
+ "learning_rate": 7.574152542372882e-05,
401
+ "loss": 0.5757,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 0.2869007172517931,
406
+ "grad_norm": 0.06453239172697067,
407
+ "learning_rate": 7.521186440677967e-05,
408
+ "loss": 0.6051,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 0.29193406316849124,
413
+ "grad_norm": 0.0846736952662468,
414
+ "learning_rate": 7.46822033898305e-05,
415
+ "loss": 0.5988,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 0.29696740908518937,
420
+ "grad_norm": 0.07134438306093216,
421
+ "learning_rate": 7.415254237288137e-05,
422
+ "loss": 0.5929,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 0.3020007550018875,
427
+ "grad_norm": 0.08004368841648102,
428
+ "learning_rate": 7.36228813559322e-05,
429
+ "loss": 0.5852,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 0.30703410091858563,
434
+ "grad_norm": 0.07338687032461166,
435
+ "learning_rate": 7.309322033898306e-05,
436
+ "loss": 0.64,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 0.31206744683528376,
441
+ "grad_norm": 0.07914911955595016,
442
+ "learning_rate": 7.256355932203391e-05,
443
+ "loss": 0.5951,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 0.3171007927519819,
448
+ "grad_norm": 0.10672074556350708,
449
+ "learning_rate": 7.203389830508474e-05,
450
+ "loss": 0.5861,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 0.32213413866868,
455
+ "grad_norm": 0.07805804908275604,
456
+ "learning_rate": 7.15042372881356e-05,
457
+ "loss": 0.6347,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 0.32716748458537814,
462
+ "grad_norm": 0.06919122487306595,
463
+ "learning_rate": 7.097457627118644e-05,
464
+ "loss": 0.6273,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 0.33220083050207627,
469
+ "grad_norm": 0.09325078129768372,
470
+ "learning_rate": 7.044491525423729e-05,
471
+ "loss": 0.5759,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 0.3372341764187744,
476
+ "grad_norm": 0.0745769739151001,
477
+ "learning_rate": 6.991525423728815e-05,
478
+ "loss": 0.6059,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 0.34226752233547253,
483
+ "grad_norm": 0.07978899031877518,
484
+ "learning_rate": 6.938559322033898e-05,
485
+ "loss": 0.6229,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 0.34730086825217066,
490
+ "grad_norm": 0.07445425540208817,
491
+ "learning_rate": 6.885593220338984e-05,
492
+ "loss": 0.5845,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 0.35233421416886873,
497
+ "grad_norm": 0.07330293208360672,
498
+ "learning_rate": 6.832627118644068e-05,
499
+ "loss": 0.5974,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 0.35736756008556686,
504
+ "grad_norm": 0.0678195133805275,
505
+ "learning_rate": 6.779661016949152e-05,
506
+ "loss": 0.6298,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 0.362400906002265,
511
+ "grad_norm": 0.0872490331530571,
512
+ "learning_rate": 6.726694915254239e-05,
513
+ "loss": 0.6035,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 0.3674342519189631,
518
+ "grad_norm": 0.0971163958311081,
519
+ "learning_rate": 6.673728813559322e-05,
520
+ "loss": 0.5686,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 0.37246759783566125,
525
+ "grad_norm": 0.07296817749738693,
526
+ "learning_rate": 6.620762711864407e-05,
527
+ "loss": 0.6126,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 0.3775009437523594,
532
+ "grad_norm": 0.08710750937461853,
533
+ "learning_rate": 6.567796610169492e-05,
534
+ "loss": 0.6106,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 0.3825342896690575,
539
+ "grad_norm": 0.07178603857755661,
540
+ "learning_rate": 6.514830508474576e-05,
541
+ "loss": 0.5929,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 0.38756763558575563,
546
+ "grad_norm": 0.06608158349990845,
547
+ "learning_rate": 6.461864406779662e-05,
548
+ "loss": 0.5926,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 0.39260098150245376,
553
+ "grad_norm": 0.07164452224969864,
554
+ "learning_rate": 6.408898305084746e-05,
555
+ "loss": 0.6491,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 0.3976343274191519,
560
+ "grad_norm": 0.08054110407829285,
561
+ "learning_rate": 6.35593220338983e-05,
562
+ "loss": 0.587,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 0.40266767333585,
567
+ "grad_norm": 0.07114928960800171,
568
+ "learning_rate": 6.302966101694915e-05,
569
+ "loss": 0.6163,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 0.40770101925254815,
574
+ "grad_norm": 0.07621515542268753,
575
+ "learning_rate": 6.25e-05,
576
+ "loss": 0.6253,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 0.4127343651692463,
581
+ "grad_norm": 0.07434070110321045,
582
+ "learning_rate": 6.197033898305085e-05,
583
+ "loss": 0.6034,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 0.4177677110859444,
588
+ "grad_norm": 0.09286583214998245,
589
+ "learning_rate": 6.14406779661017e-05,
590
+ "loss": 0.5656,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 0.42280105700264253,
595
+ "grad_norm": 0.08313080668449402,
596
+ "learning_rate": 6.0911016949152544e-05,
597
+ "loss": 0.583,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 0.4278344029193406,
602
+ "grad_norm": 0.07711467146873474,
603
+ "learning_rate": 6.0381355932203385e-05,
604
+ "loss": 0.6026,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 0.43286774883603873,
609
+ "grad_norm": 0.07896324247121811,
610
+ "learning_rate": 5.985169491525424e-05,
611
+ "loss": 0.5873,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 0.43790109475273686,
616
+ "grad_norm": 0.06385936588048935,
617
+ "learning_rate": 5.932203389830509e-05,
618
+ "loss": 0.5904,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 0.442934440669435,
623
+ "grad_norm": 0.09176833182573318,
624
+ "learning_rate": 5.879237288135594e-05,
625
+ "loss": 0.6538,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 0.4479677865861331,
630
+ "grad_norm": 0.0740937814116478,
631
+ "learning_rate": 5.826271186440678e-05,
632
+ "loss": 0.5782,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 0.45300113250283125,
637
+ "grad_norm": 0.07935595512390137,
638
+ "learning_rate": 5.7733050847457624e-05,
639
+ "loss": 0.5867,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 0.4580344784195294,
644
+ "grad_norm": 0.09611266851425171,
645
+ "learning_rate": 5.720338983050848e-05,
646
+ "loss": 0.6471,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 0.4630678243362275,
651
+ "grad_norm": 0.07880236953496933,
652
+ "learning_rate": 5.6673728813559326e-05,
653
+ "loss": 0.5638,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 0.46810117025292564,
658
+ "grad_norm": 0.0920519232749939,
659
+ "learning_rate": 5.614406779661017e-05,
660
+ "loss": 0.5652,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 0.47313451616962376,
665
+ "grad_norm": 0.08813466876745224,
666
+ "learning_rate": 5.561440677966102e-05,
667
+ "loss": 0.6037,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 0.4781678620863219,
672
+ "grad_norm": 0.08962405472993851,
673
+ "learning_rate": 5.508474576271186e-05,
674
+ "loss": 0.6192,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 0.48320120800302,
679
+ "grad_norm": 0.06809104233980179,
680
+ "learning_rate": 5.4555084745762716e-05,
681
+ "loss": 0.5393,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 0.48823455391971815,
686
+ "grad_norm": 0.06712453067302704,
687
+ "learning_rate": 5.4025423728813564e-05,
688
+ "loss": 0.5962,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 0.4932678998364163,
693
+ "grad_norm": 0.08403871953487396,
694
+ "learning_rate": 5.3495762711864405e-05,
695
+ "loss": 0.6284,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 0.4983012457531144,
700
+ "grad_norm": 0.06908678263425827,
701
+ "learning_rate": 5.296610169491526e-05,
702
+ "loss": 0.6207,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 0.5033345916698125,
707
+ "grad_norm": 0.06774463504552841,
708
+ "learning_rate": 5.24364406779661e-05,
709
+ "loss": 0.5825,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 0.5083679375865107,
714
+ "grad_norm": 0.07778752595186234,
715
+ "learning_rate": 5.190677966101695e-05,
716
+ "loss": 0.6044,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 0.5134012835032088,
721
+ "grad_norm": 0.08649144321680069,
722
+ "learning_rate": 5.13771186440678e-05,
723
+ "loss": 0.6504,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 0.5184346294199069,
728
+ "grad_norm": 0.0770857185125351,
729
+ "learning_rate": 5.0847457627118643e-05,
730
+ "loss": 0.5725,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 0.523467975336605,
735
+ "grad_norm": 0.0756506696343422,
736
+ "learning_rate": 5.03177966101695e-05,
737
+ "loss": 0.6352,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 0.5285013212533032,
742
+ "grad_norm": 0.0720185860991478,
743
+ "learning_rate": 4.978813559322034e-05,
744
+ "loss": 0.6112,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 0.5335346671700013,
749
+ "grad_norm": 0.08800795674324036,
750
+ "learning_rate": 4.925847457627119e-05,
751
+ "loss": 0.5996,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 0.5385680130866994,
756
+ "grad_norm": 0.06613479554653168,
757
+ "learning_rate": 4.8728813559322034e-05,
758
+ "loss": 0.612,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 0.5436013590033975,
763
+ "grad_norm": 0.07253889739513397,
764
+ "learning_rate": 4.819915254237288e-05,
765
+ "loss": 0.6257,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 0.5486347049200956,
770
+ "grad_norm": 0.0724099799990654,
771
+ "learning_rate": 4.766949152542373e-05,
772
+ "loss": 0.5961,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 0.5536680508367937,
777
+ "grad_norm": 0.08074811100959778,
778
+ "learning_rate": 4.7139830508474584e-05,
779
+ "loss": 0.5899,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 0.5587013967534918,
784
+ "grad_norm": 0.07143207639455795,
785
+ "learning_rate": 4.6610169491525425e-05,
786
+ "loss": 0.6223,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 0.56373474267019,
791
+ "grad_norm": 0.07310809195041656,
792
+ "learning_rate": 4.608050847457627e-05,
793
+ "loss": 0.6294,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 0.5687680885868881,
798
+ "grad_norm": 0.07864546775817871,
799
+ "learning_rate": 4.555084745762712e-05,
800
+ "loss": 0.5814,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 0.5738014345035862,
805
+ "grad_norm": 0.07621514797210693,
806
+ "learning_rate": 4.502118644067797e-05,
807
+ "loss": 0.6135,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 0.5788347804202844,
812
+ "grad_norm": 0.07107630372047424,
813
+ "learning_rate": 4.4491525423728816e-05,
814
+ "loss": 0.6159,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 0.5838681263369825,
819
+ "grad_norm": 0.06919348239898682,
820
+ "learning_rate": 4.396186440677966e-05,
821
+ "loss": 0.6059,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 0.5889014722536806,
826
+ "grad_norm": 0.0646335557103157,
827
+ "learning_rate": 4.343220338983051e-05,
828
+ "loss": 0.6195,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 0.5939348181703787,
833
+ "grad_norm": 0.07596474885940552,
834
+ "learning_rate": 4.290254237288136e-05,
835
+ "loss": 0.6258,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 0.5989681640870769,
840
+ "grad_norm": 0.06612690538167953,
841
+ "learning_rate": 4.2372881355932206e-05,
842
+ "loss": 0.6078,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 0.604001510003775,
847
+ "grad_norm": 0.06783054769039154,
848
+ "learning_rate": 4.1843220338983054e-05,
849
+ "loss": 0.5683,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 0.6090348559204731,
854
+ "grad_norm": 0.08887500315904617,
855
+ "learning_rate": 4.13135593220339e-05,
856
+ "loss": 0.6774,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 0.6140682018371713,
861
+ "grad_norm": 0.07525520026683807,
862
+ "learning_rate": 4.078389830508475e-05,
863
+ "loss": 0.6314,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 0.6191015477538694,
868
+ "grad_norm": 0.23945115506649017,
869
+ "learning_rate": 4.025423728813559e-05,
870
+ "loss": 0.5712,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 0.6241348936705675,
875
+ "grad_norm": 0.07753656059503555,
876
+ "learning_rate": 3.9724576271186445e-05,
877
+ "loss": 0.6107,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 0.6291682395872656,
882
+ "grad_norm": 0.08550898730754852,
883
+ "learning_rate": 3.919491525423729e-05,
884
+ "loss": 0.6209,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 0.6342015855039638,
889
+ "grad_norm": 0.09466369450092316,
890
+ "learning_rate": 3.866525423728814e-05,
891
+ "loss": 0.594,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 0.6392349314206619,
896
+ "grad_norm": 0.06254788488149643,
897
+ "learning_rate": 3.813559322033898e-05,
898
+ "loss": 0.5985,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 0.64426827733736,
903
+ "grad_norm": 0.06980835646390915,
904
+ "learning_rate": 3.7605932203389835e-05,
905
+ "loss": 0.6518,
906
+ "step": 640
907
+ },
908
+ {
909
+ "epoch": 0.6493016232540582,
910
+ "grad_norm": 0.07291670143604279,
911
+ "learning_rate": 3.707627118644068e-05,
912
+ "loss": 0.6192,
913
+ "step": 645
914
+ },
915
+ {
916
+ "epoch": 0.6543349691707563,
917
+ "grad_norm": 0.07008092850446701,
918
+ "learning_rate": 3.654661016949153e-05,
919
+ "loss": 0.6011,
920
+ "step": 650
921
+ },
922
+ {
923
+ "epoch": 0.6593683150874544,
924
+ "grad_norm": 0.07765305787324905,
925
+ "learning_rate": 3.601694915254237e-05,
926
+ "loss": 0.6317,
927
+ "step": 655
928
+ },
929
+ {
930
+ "epoch": 0.6644016610041525,
931
+ "grad_norm": 0.07724044471979141,
932
+ "learning_rate": 3.548728813559322e-05,
933
+ "loss": 0.6362,
934
+ "step": 660
935
+ },
936
+ {
937
+ "epoch": 0.6694350069208507,
938
+ "grad_norm": 0.08179567009210587,
939
+ "learning_rate": 3.4957627118644074e-05,
940
+ "loss": 0.5665,
941
+ "step": 665
942
+ },
943
+ {
944
+ "epoch": 0.6744683528375488,
945
+ "grad_norm": 0.0660698190331459,
946
+ "learning_rate": 3.442796610169492e-05,
947
+ "loss": 0.5832,
948
+ "step": 670
949
+ },
950
+ {
951
+ "epoch": 0.6795016987542469,
952
+ "grad_norm": 0.07155987620353699,
953
+ "learning_rate": 3.389830508474576e-05,
954
+ "loss": 0.639,
955
+ "step": 675
956
+ },
957
+ {
958
+ "epoch": 0.6845350446709451,
959
+ "grad_norm": 0.07769577950239182,
960
+ "learning_rate": 3.336864406779661e-05,
961
+ "loss": 0.5643,
962
+ "step": 680
963
+ },
964
+ {
965
+ "epoch": 0.6895683905876432,
966
+ "grad_norm": 0.06444139033555984,
967
+ "learning_rate": 3.283898305084746e-05,
968
+ "loss": 0.5761,
969
+ "step": 685
970
+ },
971
+ {
972
+ "epoch": 0.6946017365043413,
973
+ "grad_norm": 0.08081527799367905,
974
+ "learning_rate": 3.230932203389831e-05,
975
+ "loss": 0.6574,
976
+ "step": 690
977
+ },
978
+ {
979
+ "epoch": 0.6996350824210393,
980
+ "grad_norm": 0.062211159616708755,
981
+ "learning_rate": 3.177966101694915e-05,
982
+ "loss": 0.6195,
983
+ "step": 695
984
+ },
985
+ {
986
+ "epoch": 0.7046684283377375,
987
+ "grad_norm": 0.06285897642374039,
988
+ "learning_rate": 3.125e-05,
989
+ "loss": 0.6026,
990
+ "step": 700
991
+ },
992
+ {
993
+ "epoch": 0.7097017742544356,
994
+ "grad_norm": 0.07187480479478836,
995
+ "learning_rate": 3.072033898305085e-05,
996
+ "loss": 0.6168,
997
+ "step": 705
998
+ },
999
+ {
1000
+ "epoch": 0.7147351201711337,
1001
+ "grad_norm": 0.08164852857589722,
1002
+ "learning_rate": 3.0190677966101693e-05,
1003
+ "loss": 0.5604,
1004
+ "step": 710
1005
+ },
1006
+ {
1007
+ "epoch": 0.7197684660878318,
1008
+ "grad_norm": 0.09309656918048859,
1009
+ "learning_rate": 2.9661016949152544e-05,
1010
+ "loss": 0.5902,
1011
+ "step": 715
1012
+ },
1013
+ {
1014
+ "epoch": 0.72480181200453,
1015
+ "grad_norm": 0.07180369645357132,
1016
+ "learning_rate": 2.913135593220339e-05,
1017
+ "loss": 0.6083,
1018
+ "step": 720
1019
+ },
1020
+ {
1021
+ "epoch": 0.7298351579212281,
1022
+ "grad_norm": 0.06690961867570877,
1023
+ "learning_rate": 2.860169491525424e-05,
1024
+ "loss": 0.6064,
1025
+ "step": 725
1026
+ },
1027
+ {
1028
+ "epoch": 0.7348685038379262,
1029
+ "grad_norm": 0.07759429514408112,
1030
+ "learning_rate": 2.8072033898305083e-05,
1031
+ "loss": 0.6078,
1032
+ "step": 730
1033
+ },
1034
+ {
1035
+ "epoch": 0.7399018497546244,
1036
+ "grad_norm": 0.09760767966508865,
1037
+ "learning_rate": 2.754237288135593e-05,
1038
+ "loss": 0.5839,
1039
+ "step": 735
1040
+ },
1041
+ {
1042
+ "epoch": 0.7449351956713225,
1043
+ "grad_norm": 0.06190226599574089,
1044
+ "learning_rate": 2.7012711864406782e-05,
1045
+ "loss": 0.6424,
1046
+ "step": 740
1047
+ },
1048
+ {
1049
+ "epoch": 0.7499685415880206,
1050
+ "grad_norm": 0.07761067897081375,
1051
+ "learning_rate": 2.648305084745763e-05,
1052
+ "loss": 0.6109,
1053
+ "step": 745
1054
+ },
1055
+ {
1056
+ "epoch": 0.7550018875047187,
1057
+ "grad_norm": 0.07072454690933228,
1058
+ "learning_rate": 2.5953389830508474e-05,
1059
+ "loss": 0.5638,
1060
+ "step": 750
1061
+ },
1062
+ {
1063
+ "epoch": 0.7600352334214169,
1064
+ "grad_norm": 0.07209552079439163,
1065
+ "learning_rate": 2.5423728813559322e-05,
1066
+ "loss": 0.6586,
1067
+ "step": 755
1068
+ },
1069
+ {
1070
+ "epoch": 0.765068579338115,
1071
+ "grad_norm": 0.07083916664123535,
1072
+ "learning_rate": 2.489406779661017e-05,
1073
+ "loss": 0.5989,
1074
+ "step": 760
1075
+ },
1076
+ {
1077
+ "epoch": 0.7701019252548131,
1078
+ "grad_norm": 0.07853751629590988,
1079
+ "learning_rate": 2.4364406779661017e-05,
1080
+ "loss": 0.5734,
1081
+ "step": 765
1082
+ },
1083
+ {
1084
+ "epoch": 0.7751352711715113,
1085
+ "grad_norm": 0.06931478530168533,
1086
+ "learning_rate": 2.3834745762711865e-05,
1087
+ "loss": 0.6101,
1088
+ "step": 770
1089
+ },
1090
+ {
1091
+ "epoch": 0.7801686170882094,
1092
+ "grad_norm": 0.07923394441604614,
1093
+ "learning_rate": 2.3305084745762712e-05,
1094
+ "loss": 0.6291,
1095
+ "step": 775
1096
+ },
1097
+ {
1098
+ "epoch": 0.7852019630049075,
1099
+ "grad_norm": 0.08270952105522156,
1100
+ "learning_rate": 2.277542372881356e-05,
1101
+ "loss": 0.5892,
1102
+ "step": 780
1103
+ },
1104
+ {
1105
+ "epoch": 0.7902353089216057,
1106
+ "grad_norm": 0.06102617457509041,
1107
+ "learning_rate": 2.2245762711864408e-05,
1108
+ "loss": 0.618,
1109
+ "step": 785
1110
+ },
1111
+ {
1112
+ "epoch": 0.7952686548383038,
1113
+ "grad_norm": 0.09832928329706192,
1114
+ "learning_rate": 2.1716101694915255e-05,
1115
+ "loss": 0.6427,
1116
+ "step": 790
1117
+ },
1118
+ {
1119
+ "epoch": 0.8003020007550019,
1120
+ "grad_norm": 0.06228268891572952,
1121
+ "learning_rate": 2.1186440677966103e-05,
1122
+ "loss": 0.6312,
1123
+ "step": 795
1124
+ },
1125
+ {
1126
+ "epoch": 0.8053353466717,
1127
+ "grad_norm": 0.071562260389328,
1128
+ "learning_rate": 2.065677966101695e-05,
1129
+ "loss": 0.5636,
1130
+ "step": 800
1131
+ },
1132
+ {
1133
+ "epoch": 0.8103686925883982,
1134
+ "grad_norm": 0.1984732449054718,
1135
+ "learning_rate": 2.0127118644067795e-05,
1136
+ "loss": 0.6223,
1137
+ "step": 805
1138
+ },
1139
+ {
1140
+ "epoch": 0.8154020385050963,
1141
+ "grad_norm": 0.07434993982315063,
1142
+ "learning_rate": 1.9597457627118646e-05,
1143
+ "loss": 0.6222,
1144
+ "step": 810
1145
+ },
1146
+ {
1147
+ "epoch": 0.8204353844217944,
1148
+ "grad_norm": 0.09027515351772308,
1149
+ "learning_rate": 1.906779661016949e-05,
1150
+ "loss": 0.5831,
1151
+ "step": 815
1152
+ },
1153
+ {
1154
+ "epoch": 0.8254687303384926,
1155
+ "grad_norm": 0.07995504140853882,
1156
+ "learning_rate": 1.853813559322034e-05,
1157
+ "loss": 0.625,
1158
+ "step": 820
1159
+ },
1160
+ {
1161
+ "epoch": 0.8305020762551907,
1162
+ "grad_norm": 0.06889399886131287,
1163
+ "learning_rate": 1.8008474576271186e-05,
1164
+ "loss": 0.639,
1165
+ "step": 825
1166
+ },
1167
+ {
1168
+ "epoch": 0.8355354221718888,
1169
+ "grad_norm": 0.08385035395622253,
1170
+ "learning_rate": 1.7478813559322037e-05,
1171
+ "loss": 0.5871,
1172
+ "step": 830
1173
+ },
1174
+ {
1175
+ "epoch": 0.8405687680885869,
1176
+ "grad_norm": 0.05659618228673935,
1177
+ "learning_rate": 1.694915254237288e-05,
1178
+ "loss": 0.6023,
1179
+ "step": 835
1180
+ },
1181
+ {
1182
+ "epoch": 0.8456021140052851,
1183
+ "grad_norm": 0.07665451616048813,
1184
+ "learning_rate": 1.641949152542373e-05,
1185
+ "loss": 0.6434,
1186
+ "step": 840
1187
+ },
1188
+ {
1189
+ "epoch": 0.8506354599219831,
1190
+ "grad_norm": 0.16329655051231384,
1191
+ "learning_rate": 1.5889830508474576e-05,
1192
+ "loss": 0.6251,
1193
+ "step": 845
1194
+ },
1195
+ {
1196
+ "epoch": 0.8556688058386812,
1197
+ "grad_norm": 0.06561240553855896,
1198
+ "learning_rate": 1.5360169491525424e-05,
1199
+ "loss": 0.5535,
1200
+ "step": 850
1201
+ },
1202
+ {
1203
+ "epoch": 0.8607021517553793,
1204
+ "grad_norm": 0.08012928068637848,
1205
+ "learning_rate": 1.4830508474576272e-05,
1206
+ "loss": 0.6364,
1207
+ "step": 855
1208
+ },
1209
+ {
1210
+ "epoch": 0.8657354976720775,
1211
+ "grad_norm": 0.07773120701313019,
1212
+ "learning_rate": 1.430084745762712e-05,
1213
+ "loss": 0.6329,
1214
+ "step": 860
1215
+ },
1216
+ {
1217
+ "epoch": 0.8707688435887756,
1218
+ "grad_norm": 0.08004656434059143,
1219
+ "learning_rate": 1.3771186440677965e-05,
1220
+ "loss": 0.5577,
1221
+ "step": 865
1222
+ },
1223
+ {
1224
+ "epoch": 0.8758021895054737,
1225
+ "grad_norm": 0.0730496346950531,
1226
+ "learning_rate": 1.3241525423728815e-05,
1227
+ "loss": 0.6426,
1228
+ "step": 870
1229
+ },
1230
+ {
1231
+ "epoch": 0.8808355354221719,
1232
+ "grad_norm": 0.07398191839456558,
1233
+ "learning_rate": 1.2711864406779661e-05,
1234
+ "loss": 0.624,
1235
+ "step": 875
1236
+ },
1237
+ {
1238
+ "epoch": 0.88586888133887,
1239
+ "grad_norm": 0.07571957260370255,
1240
+ "learning_rate": 1.2182203389830509e-05,
1241
+ "loss": 0.5746,
1242
+ "step": 880
1243
+ },
1244
+ {
1245
+ "epoch": 0.8909022272555681,
1246
+ "grad_norm": 0.0590958334505558,
1247
+ "learning_rate": 1.1652542372881356e-05,
1248
+ "loss": 0.5958,
1249
+ "step": 885
1250
+ },
1251
+ {
1252
+ "epoch": 0.8959355731722662,
1253
+ "grad_norm": 0.0737120732665062,
1254
+ "learning_rate": 1.1122881355932204e-05,
1255
+ "loss": 0.6305,
1256
+ "step": 890
1257
+ },
1258
+ {
1259
+ "epoch": 0.9009689190889644,
1260
+ "grad_norm": 0.06610913574695587,
1261
+ "learning_rate": 1.0593220338983052e-05,
1262
+ "loss": 0.6023,
1263
+ "step": 895
1264
+ },
1265
+ {
1266
+ "epoch": 0.9060022650056625,
1267
+ "grad_norm": 0.07495182752609253,
1268
+ "learning_rate": 1.0063559322033898e-05,
1269
+ "loss": 0.574,
1270
+ "step": 900
1271
+ },
1272
+ {
1273
+ "epoch": 0.9110356109223606,
1274
+ "grad_norm": 0.07383362948894501,
1275
+ "learning_rate": 9.533898305084745e-06,
1276
+ "loss": 0.6506,
1277
+ "step": 905
1278
+ },
1279
+ {
1280
+ "epoch": 0.9160689568390588,
1281
+ "grad_norm": 0.06826779246330261,
1282
+ "learning_rate": 9.004237288135593e-06,
1283
+ "loss": 0.638,
1284
+ "step": 910
1285
+ },
1286
+ {
1287
+ "epoch": 0.9211023027557569,
1288
+ "grad_norm": 0.08567427098751068,
1289
+ "learning_rate": 8.47457627118644e-06,
1290
+ "loss": 0.562,
1291
+ "step": 915
1292
+ },
1293
+ {
1294
+ "epoch": 0.926135648672455,
1295
+ "grad_norm": 0.06812965124845505,
1296
+ "learning_rate": 7.944915254237288e-06,
1297
+ "loss": 0.62,
1298
+ "step": 920
1299
+ },
1300
+ {
1301
+ "epoch": 0.9311689945891531,
1302
+ "grad_norm": 0.07216673344373703,
1303
+ "learning_rate": 7.415254237288136e-06,
1304
+ "loss": 0.6251,
1305
+ "step": 925
1306
+ },
1307
+ {
1308
+ "epoch": 0.9362023405058513,
1309
+ "grad_norm": 0.06816910952329636,
1310
+ "learning_rate": 6.885593220338983e-06,
1311
+ "loss": 0.5744,
1312
+ "step": 930
1313
+ },
1314
+ {
1315
+ "epoch": 0.9412356864225494,
1316
+ "grad_norm": 0.06639246642589569,
1317
+ "learning_rate": 6.3559322033898304e-06,
1318
+ "loss": 0.5761,
1319
+ "step": 935
1320
+ },
1321
+ {
1322
+ "epoch": 0.9462690323392475,
1323
+ "grad_norm": 0.06687802076339722,
1324
+ "learning_rate": 5.826271186440678e-06,
1325
+ "loss": 0.6376,
1326
+ "step": 940
1327
+ },
1328
+ {
1329
+ "epoch": 0.9513023782559457,
1330
+ "grad_norm": 0.07500467449426651,
1331
+ "learning_rate": 5.296610169491526e-06,
1332
+ "loss": 0.592,
1333
+ "step": 945
1334
+ },
1335
+ {
1336
+ "epoch": 0.9563357241726438,
1337
+ "grad_norm": 0.06670086830854416,
1338
+ "learning_rate": 4.766949152542373e-06,
1339
+ "loss": 0.5681,
1340
+ "step": 950
1341
+ },
1342
+ {
1343
+ "epoch": 0.9613690700893419,
1344
+ "grad_norm": 0.08027223497629166,
1345
+ "learning_rate": 4.23728813559322e-06,
1346
+ "loss": 0.6497,
1347
+ "step": 955
1348
+ },
1349
+ {
1350
+ "epoch": 0.96640241600604,
1351
+ "grad_norm": 0.06293675303459167,
1352
+ "learning_rate": 3.707627118644068e-06,
1353
+ "loss": 0.6116,
1354
+ "step": 960
1355
+ },
1356
+ {
1357
+ "epoch": 0.9714357619227382,
1358
+ "grad_norm": 0.08093003183603287,
1359
+ "learning_rate": 3.1779661016949152e-06,
1360
+ "loss": 0.5685,
1361
+ "step": 965
1362
+ },
1363
+ {
1364
+ "epoch": 0.9764691078394363,
1365
+ "grad_norm": 0.08290575444698334,
1366
+ "learning_rate": 2.648305084745763e-06,
1367
+ "loss": 0.6192,
1368
+ "step": 970
1369
+ },
1370
+ {
1371
+ "epoch": 0.9815024537561344,
1372
+ "grad_norm": 0.07009682059288025,
1373
+ "learning_rate": 2.11864406779661e-06,
1374
+ "loss": 0.6249,
1375
+ "step": 975
1376
+ },
1377
+ {
1378
+ "epoch": 0.9865357996728326,
1379
+ "grad_norm": 0.08704908192157745,
1380
+ "learning_rate": 1.5889830508474576e-06,
1381
+ "loss": 0.5714,
1382
+ "step": 980
1383
+ },
1384
+ {
1385
+ "epoch": 0.9915691455895307,
1386
+ "grad_norm": 0.08047839254140854,
1387
+ "learning_rate": 1.059322033898305e-06,
1388
+ "loss": 0.5998,
1389
+ "step": 985
1390
+ },
1391
+ {
1392
+ "epoch": 0.9966024915062288,
1393
+ "grad_norm": 0.07949598878622055,
1394
+ "learning_rate": 5.296610169491525e-07,
1395
+ "loss": 0.6314,
1396
+ "step": 990
1397
+ }
1398
+ ],
1399
+ "logging_steps": 5,
1400
+ "max_steps": 994,
1401
+ "num_input_tokens_seen": 0,
1402
+ "num_train_epochs": 1,
1403
+ "save_steps": 500,
1404
+ "stateful_callbacks": {
1405
+ "TrainerControl": {
1406
+ "args": {
1407
+ "should_epoch_stop": false,
1408
+ "should_evaluate": false,
1409
+ "should_log": false,
1410
+ "should_save": true,
1411
+ "should_training_stop": true
1412
+ },
1413
+ "attributes": {}
1414
+ }
1415
+ },
1416
+ "total_flos": 1.1407902519689898e+20,
1417
+ "train_batch_size": 1,
1418
+ "trial_name": null,
1419
+ "trial_params": null
1420
+ }
Qwen3-30B-A3B-Instruct-2507-sft-fusang-swa=2k_sink=100_fadec/checkpoint-870/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /share/models/Qwen3-30B-A3B-Instruct-2507
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:/share/models/Qwen3-30B-A3B-Instruct-2507
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0/checkpoint-862/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0/checkpoint-862/chat_template.jinja ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n<think>\n' }}
86
+ {%- endif %}
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /share/models/Qwen3-30B-A3B-Thinking-2507
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:/share/models/Qwen3-30B-A3B-Thinking-2507
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/share/models/Qwen3-30B-A3B-Thinking-2507",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "k_proj",
29
+ "v_proj",
30
+ "q_proj"
31
+ ],
32
+ "target_parameters": null,
33
+ "task_type": "CAUSAL_LM",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_qalora": false,
37
+ "use_rslora": true
38
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/chat_template.jinja ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n<think>\n' }}
86
+ {%- endif %}
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 1010000,
235
+ "pad_token": "<|endoftext|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=0_falayer=25_from0_step2/checkpoint-862/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=100/checkpoint-862/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /share/models/Qwen3-30B-A3B-Thinking-2507
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:/share/models/Qwen3-30B-A3B-Thinking-2507
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=100/checkpoint-862/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=100/checkpoint-862/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 1010000,
235
+ "pad_token": "<|endoftext|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang-swa=2k_sink=100/checkpoint-862/trainer_state.json ADDED
@@ -0,0 +1,1238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 862,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.005803830528148578,
14
+ "grad_norm": 0.07806325703859329,
15
+ "learning_rate": 9.090909090909091e-06,
16
+ "loss": 0.4424,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.011607661056297156,
21
+ "grad_norm": 0.06576955318450928,
22
+ "learning_rate": 2.0454545454545457e-05,
23
+ "loss": 0.4676,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.017411491584445733,
28
+ "grad_norm": 0.058958571404218674,
29
+ "learning_rate": 3.181818181818182e-05,
30
+ "loss": 0.4786,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.023215322112594312,
35
+ "grad_norm": 0.05414086580276489,
36
+ "learning_rate": 4.318181818181819e-05,
37
+ "loss": 0.4724,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.02901915264074289,
42
+ "grad_norm": 0.07120595872402191,
43
+ "learning_rate": 5.4545454545454546e-05,
44
+ "loss": 0.4654,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.034822983168891465,
49
+ "grad_norm": 0.05655818060040474,
50
+ "learning_rate": 6.59090909090909e-05,
51
+ "loss": 0.4489,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.04062681369704005,
56
+ "grad_norm": 0.04869989678263664,
57
+ "learning_rate": 7.727272727272727e-05,
58
+ "loss": 0.4552,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.046430644225188625,
63
+ "grad_norm": 0.04493036866188049,
64
+ "learning_rate": 8.863636363636364e-05,
65
+ "loss": 0.4674,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.0522344747533372,
70
+ "grad_norm": 0.05274348706007004,
71
+ "learning_rate": 0.0001,
72
+ "loss": 0.4678,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.05803830528148578,
77
+ "grad_norm": 0.057375144213438034,
78
+ "learning_rate": 9.938875305623473e-05,
79
+ "loss": 0.4739,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.06384213580963435,
84
+ "grad_norm": 0.060564618557691574,
85
+ "learning_rate": 9.877750611246945e-05,
86
+ "loss": 0.4673,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.06964596633778293,
91
+ "grad_norm": 0.04939981922507286,
92
+ "learning_rate": 9.816625916870417e-05,
93
+ "loss": 0.4679,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.07544979686593152,
98
+ "grad_norm": 0.05144249647855759,
99
+ "learning_rate": 9.755501222493889e-05,
100
+ "loss": 0.4555,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.0812536273940801,
105
+ "grad_norm": 0.05333191528916359,
106
+ "learning_rate": 9.69437652811736e-05,
107
+ "loss": 0.4515,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.08705745792222867,
112
+ "grad_norm": 0.05306636914610863,
113
+ "learning_rate": 9.633251833740831e-05,
114
+ "loss": 0.4903,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.09286128845037725,
119
+ "grad_norm": 0.0424158088862896,
120
+ "learning_rate": 9.572127139364305e-05,
121
+ "loss": 0.442,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.09866511897852583,
126
+ "grad_norm": 0.04384077340364456,
127
+ "learning_rate": 9.511002444987775e-05,
128
+ "loss": 0.4478,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.1044689495066744,
133
+ "grad_norm": 0.0483214296400547,
134
+ "learning_rate": 9.449877750611247e-05,
135
+ "loss": 0.4532,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.11027278003482298,
140
+ "grad_norm": 0.06844743341207504,
141
+ "learning_rate": 9.38875305623472e-05,
142
+ "loss": 0.4533,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.11607661056297155,
147
+ "grad_norm": 0.05522039905190468,
148
+ "learning_rate": 9.327628361858191e-05,
149
+ "loss": 0.4663,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.12188044109112015,
154
+ "grad_norm": 0.04972909390926361,
155
+ "learning_rate": 9.266503667481663e-05,
156
+ "loss": 0.4512,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.1276842716192687,
161
+ "grad_norm": 0.05091628432273865,
162
+ "learning_rate": 9.205378973105135e-05,
163
+ "loss": 0.4533,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.1334881021474173,
168
+ "grad_norm": 0.06282547116279602,
169
+ "learning_rate": 9.144254278728606e-05,
170
+ "loss": 0.4668,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.13929193267556586,
175
+ "grad_norm": 0.0661332905292511,
176
+ "learning_rate": 9.08312958435208e-05,
177
+ "loss": 0.471,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.14509576320371445,
182
+ "grad_norm": 0.04994620010256767,
183
+ "learning_rate": 9.02200488997555e-05,
184
+ "loss": 0.4463,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.15089959373186304,
189
+ "grad_norm": 0.04718010500073433,
190
+ "learning_rate": 8.960880195599024e-05,
191
+ "loss": 0.4602,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.1567034242600116,
196
+ "grad_norm": 0.03880172222852707,
197
+ "learning_rate": 8.899755501222494e-05,
198
+ "loss": 0.4682,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.1625072547881602,
203
+ "grad_norm": 0.04132480546832085,
204
+ "learning_rate": 8.838630806845966e-05,
205
+ "loss": 0.481,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 0.16831108531630876,
210
+ "grad_norm": 0.037531778216362,
211
+ "learning_rate": 8.777506112469438e-05,
212
+ "loss": 0.4741,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 0.17411491584445735,
217
+ "grad_norm": 0.051236528903245926,
218
+ "learning_rate": 8.71638141809291e-05,
219
+ "loss": 0.4628,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 0.1799187463726059,
224
+ "grad_norm": 0.041979845613241196,
225
+ "learning_rate": 8.655256723716382e-05,
226
+ "loss": 0.4387,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 0.1857225769007545,
231
+ "grad_norm": 0.08546081930398941,
232
+ "learning_rate": 8.594132029339854e-05,
233
+ "loss": 0.46,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 0.1915264074289031,
238
+ "grad_norm": 0.042775433510541916,
239
+ "learning_rate": 8.533007334963325e-05,
240
+ "loss": 0.4603,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 0.19733023795705165,
245
+ "grad_norm": 0.03881630674004555,
246
+ "learning_rate": 8.471882640586798e-05,
247
+ "loss": 0.4604,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 0.20313406848520024,
252
+ "grad_norm": 0.04963105544447899,
253
+ "learning_rate": 8.410757946210269e-05,
254
+ "loss": 0.4647,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 0.2089378990133488,
259
+ "grad_norm": 0.04456959664821625,
260
+ "learning_rate": 8.349633251833741e-05,
261
+ "loss": 0.4649,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 0.2147417295414974,
266
+ "grad_norm": 0.047044992446899414,
267
+ "learning_rate": 8.288508557457213e-05,
268
+ "loss": 0.4649,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 0.22054556006964596,
273
+ "grad_norm": 0.034605883061885834,
274
+ "learning_rate": 8.227383863080685e-05,
275
+ "loss": 0.4587,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 0.22634939059779455,
280
+ "grad_norm": 0.0324706956744194,
281
+ "learning_rate": 8.166259168704157e-05,
282
+ "loss": 0.4362,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 0.2321532211259431,
287
+ "grad_norm": 0.04107559472322464,
288
+ "learning_rate": 8.105134474327629e-05,
289
+ "loss": 0.4535,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 0.2379570516540917,
294
+ "grad_norm": 0.04205545783042908,
295
+ "learning_rate": 8.044009779951101e-05,
296
+ "loss": 0.448,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 0.2437608821822403,
301
+ "grad_norm": 0.038843851536512375,
302
+ "learning_rate": 7.982885085574573e-05,
303
+ "loss": 0.4842,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 0.24956471271038885,
308
+ "grad_norm": 0.09389880299568176,
309
+ "learning_rate": 7.921760391198044e-05,
310
+ "loss": 0.4561,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 0.2553685432385374,
315
+ "grad_norm": 0.03246712312102318,
316
+ "learning_rate": 7.860635696821517e-05,
317
+ "loss": 0.4429,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 0.261172373766686,
322
+ "grad_norm": 0.04052925854921341,
323
+ "learning_rate": 7.799511002444988e-05,
324
+ "loss": 0.4637,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 0.2669762042948346,
329
+ "grad_norm": 0.04661140590906143,
330
+ "learning_rate": 7.73838630806846e-05,
331
+ "loss": 0.4515,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 0.2727800348229832,
336
+ "grad_norm": 0.034557487815618515,
337
+ "learning_rate": 7.677261613691932e-05,
338
+ "loss": 0.4778,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 0.2785838653511317,
343
+ "grad_norm": 0.04210180044174194,
344
+ "learning_rate": 7.616136919315404e-05,
345
+ "loss": 0.464,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 0.2843876958792803,
350
+ "grad_norm": 0.034747764468193054,
351
+ "learning_rate": 7.555012224938876e-05,
352
+ "loss": 0.4536,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 0.2901915264074289,
357
+ "grad_norm": 0.04132502153515816,
358
+ "learning_rate": 7.493887530562348e-05,
359
+ "loss": 0.4777,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 0.2959953569355775,
364
+ "grad_norm": 0.04702381044626236,
365
+ "learning_rate": 7.432762836185819e-05,
366
+ "loss": 0.4561,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 0.3017991874637261,
371
+ "grad_norm": 0.035738810896873474,
372
+ "learning_rate": 7.371638141809292e-05,
373
+ "loss": 0.4788,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 0.3076030179918746,
378
+ "grad_norm": 0.06460477411746979,
379
+ "learning_rate": 7.310513447432763e-05,
380
+ "loss": 0.4452,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 0.3134068485200232,
385
+ "grad_norm": 0.03836427628993988,
386
+ "learning_rate": 7.249388753056235e-05,
387
+ "loss": 0.4481,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 0.3192106790481718,
392
+ "grad_norm": 0.04127519577741623,
393
+ "learning_rate": 7.188264058679707e-05,
394
+ "loss": 0.4624,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 0.3250145095763204,
399
+ "grad_norm": 0.040822580456733704,
400
+ "learning_rate": 7.127139364303179e-05,
401
+ "loss": 0.466,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 0.3308183401044689,
406
+ "grad_norm": 0.10596367716789246,
407
+ "learning_rate": 7.066014669926651e-05,
408
+ "loss": 0.4776,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 0.3366221706326175,
413
+ "grad_norm": 0.04359729588031769,
414
+ "learning_rate": 7.004889975550123e-05,
415
+ "loss": 0.4589,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 0.3424260011607661,
420
+ "grad_norm": 0.03602125123143196,
421
+ "learning_rate": 6.943765281173595e-05,
422
+ "loss": 0.4582,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 0.3482298316889147,
427
+ "grad_norm": 0.04396088048815727,
428
+ "learning_rate": 6.882640586797067e-05,
429
+ "loss": 0.4614,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 0.3540336622170633,
434
+ "grad_norm": 0.03952578455209732,
435
+ "learning_rate": 6.821515892420538e-05,
436
+ "loss": 0.4452,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 0.3598374927452118,
441
+ "grad_norm": 0.04135408252477646,
442
+ "learning_rate": 6.760391198044011e-05,
443
+ "loss": 0.4745,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 0.3656413232733604,
448
+ "grad_norm": 0.0472245030105114,
449
+ "learning_rate": 6.699266503667482e-05,
450
+ "loss": 0.458,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 0.371445153801509,
455
+ "grad_norm": 0.032031141221523285,
456
+ "learning_rate": 6.638141809290954e-05,
457
+ "loss": 0.4482,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 0.3772489843296576,
462
+ "grad_norm": 0.04314447194337845,
463
+ "learning_rate": 6.577017114914426e-05,
464
+ "loss": 0.4737,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 0.3830528148578062,
469
+ "grad_norm": 0.04295211285352707,
470
+ "learning_rate": 6.515892420537898e-05,
471
+ "loss": 0.4488,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 0.3888566453859547,
476
+ "grad_norm": 0.039687275886535645,
477
+ "learning_rate": 6.45476772616137e-05,
478
+ "loss": 0.462,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 0.3946604759141033,
483
+ "grad_norm": 0.03278418257832527,
484
+ "learning_rate": 6.393643031784842e-05,
485
+ "loss": 0.4532,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 0.4004643064422519,
490
+ "grad_norm": 0.0360940545797348,
491
+ "learning_rate": 6.332518337408312e-05,
492
+ "loss": 0.4637,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 0.4062681369704005,
497
+ "grad_norm": 0.0391172431409359,
498
+ "learning_rate": 6.271393643031786e-05,
499
+ "loss": 0.4418,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 0.412071967498549,
504
+ "grad_norm": 0.03997889161109924,
505
+ "learning_rate": 6.210268948655256e-05,
506
+ "loss": 0.4546,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 0.4178757980266976,
511
+ "grad_norm": 0.03979405760765076,
512
+ "learning_rate": 6.14914425427873e-05,
513
+ "loss": 0.4784,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 0.4236796285548462,
518
+ "grad_norm": 0.03965720161795616,
519
+ "learning_rate": 6.0880195599022005e-05,
520
+ "loss": 0.4527,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 0.4294834590829948,
525
+ "grad_norm": 0.03643997758626938,
526
+ "learning_rate": 6.026894865525673e-05,
527
+ "loss": 0.4469,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 0.4352872896111434,
532
+ "grad_norm": 0.043169762939214706,
533
+ "learning_rate": 5.9657701711491446e-05,
534
+ "loss": 0.4751,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 0.4410911201392919,
539
+ "grad_norm": 0.03882328048348427,
540
+ "learning_rate": 5.9046454767726166e-05,
541
+ "loss": 0.4442,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 0.4468949506674405,
546
+ "grad_norm": 0.04037743806838989,
547
+ "learning_rate": 5.843520782396088e-05,
548
+ "loss": 0.4351,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 0.4526987811955891,
553
+ "grad_norm": 0.039136238396167755,
554
+ "learning_rate": 5.7823960880195606e-05,
555
+ "loss": 0.4604,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 0.4585026117237377,
560
+ "grad_norm": 0.03826816380023956,
561
+ "learning_rate": 5.721271393643032e-05,
562
+ "loss": 0.4467,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 0.4643064422518862,
567
+ "grad_norm": 0.044455818831920624,
568
+ "learning_rate": 5.660146699266504e-05,
569
+ "loss": 0.4548,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 0.4701102727800348,
574
+ "grad_norm": 0.03864174708724022,
575
+ "learning_rate": 5.5990220048899754e-05,
576
+ "loss": 0.4523,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 0.4759141033081834,
581
+ "grad_norm": 0.053677916526794434,
582
+ "learning_rate": 5.537897310513448e-05,
583
+ "loss": 0.4387,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 0.481717933836332,
588
+ "grad_norm": 0.03247923031449318,
589
+ "learning_rate": 5.4767726161369194e-05,
590
+ "loss": 0.4601,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 0.4875217643644806,
595
+ "grad_norm": 0.03868545591831207,
596
+ "learning_rate": 5.4156479217603914e-05,
597
+ "loss": 0.4512,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 0.4933255948926291,
602
+ "grad_norm": 0.04135012626647949,
603
+ "learning_rate": 5.354523227383863e-05,
604
+ "loss": 0.4592,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 0.4991294254207777,
609
+ "grad_norm": 0.042650043964385986,
610
+ "learning_rate": 5.2933985330073355e-05,
611
+ "loss": 0.4468,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 0.5049332559489262,
616
+ "grad_norm": 0.05115941911935806,
617
+ "learning_rate": 5.232273838630807e-05,
618
+ "loss": 0.4705,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 0.5107370864770748,
623
+ "grad_norm": 0.04721362888813019,
624
+ "learning_rate": 5.1711491442542795e-05,
625
+ "loss": 0.4677,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 0.5165409170052234,
630
+ "grad_norm": 0.03605891764163971,
631
+ "learning_rate": 5.110024449877751e-05,
632
+ "loss": 0.4683,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 0.522344747533372,
637
+ "grad_norm": 0.04193539544939995,
638
+ "learning_rate": 5.048899755501223e-05,
639
+ "loss": 0.477,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 0.5281485780615206,
644
+ "grad_norm": 0.03736807778477669,
645
+ "learning_rate": 4.987775061124695e-05,
646
+ "loss": 0.4456,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 0.5339524085896692,
651
+ "grad_norm": 0.03756151720881462,
652
+ "learning_rate": 4.926650366748167e-05,
653
+ "loss": 0.4636,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 0.5397562391178178,
658
+ "grad_norm": 0.03452502563595772,
659
+ "learning_rate": 4.865525672371638e-05,
660
+ "loss": 0.4673,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 0.5455600696459664,
665
+ "grad_norm": 0.03386940434575081,
666
+ "learning_rate": 4.80440097799511e-05,
667
+ "loss": 0.4669,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 0.551363900174115,
672
+ "grad_norm": 0.041803594678640366,
673
+ "learning_rate": 4.743276283618582e-05,
674
+ "loss": 0.443,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 0.5571677307022634,
679
+ "grad_norm": 0.04277484491467476,
680
+ "learning_rate": 4.6821515892420544e-05,
681
+ "loss": 0.4322,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 0.562971561230412,
686
+ "grad_norm": 0.03855544701218605,
687
+ "learning_rate": 4.6210268948655264e-05,
688
+ "loss": 0.4607,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 0.5687753917585606,
693
+ "grad_norm": 0.03208433464169502,
694
+ "learning_rate": 4.559902200488998e-05,
695
+ "loss": 0.4648,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 0.5745792222867092,
700
+ "grad_norm": 0.0425882525742054,
701
+ "learning_rate": 4.49877750611247e-05,
702
+ "loss": 0.4453,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 0.5803830528148578,
707
+ "grad_norm": 0.03916308283805847,
708
+ "learning_rate": 4.437652811735942e-05,
709
+ "loss": 0.4543,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 0.5861868833430064,
714
+ "grad_norm": 0.03801513463258743,
715
+ "learning_rate": 4.376528117359414e-05,
716
+ "loss": 0.459,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 0.591990713871155,
721
+ "grad_norm": 0.03717612475156784,
722
+ "learning_rate": 4.315403422982885e-05,
723
+ "loss": 0.4646,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 0.5977945443993036,
728
+ "grad_norm": 0.037225909531116486,
729
+ "learning_rate": 4.254278728606357e-05,
730
+ "loss": 0.4631,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 0.6035983749274522,
735
+ "grad_norm": 0.03405251353979111,
736
+ "learning_rate": 4.193154034229829e-05,
737
+ "loss": 0.4698,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 0.6094022054556006,
742
+ "grad_norm": 0.04223908483982086,
743
+ "learning_rate": 4.132029339853301e-05,
744
+ "loss": 0.4611,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 0.6152060359837492,
749
+ "grad_norm": 0.05366433411836624,
750
+ "learning_rate": 4.070904645476773e-05,
751
+ "loss": 0.4559,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 0.6210098665118978,
756
+ "grad_norm": 0.04716875031590462,
757
+ "learning_rate": 4.0097799511002446e-05,
758
+ "loss": 0.464,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 0.6268136970400464,
763
+ "grad_norm": 0.038778018206357956,
764
+ "learning_rate": 3.9486552567237166e-05,
765
+ "loss": 0.4494,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 0.632617527568195,
770
+ "grad_norm": 0.03278287500143051,
771
+ "learning_rate": 3.8875305623471886e-05,
772
+ "loss": 0.4398,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 0.6384213580963436,
777
+ "grad_norm": 0.04271184280514717,
778
+ "learning_rate": 3.8264058679706607e-05,
779
+ "loss": 0.4816,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 0.6442251886244922,
784
+ "grad_norm": 0.04001977667212486,
785
+ "learning_rate": 3.765281173594133e-05,
786
+ "loss": 0.4452,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 0.6500290191526408,
791
+ "grad_norm": 0.034920286387205124,
792
+ "learning_rate": 3.704156479217604e-05,
793
+ "loss": 0.4518,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 0.6558328496807894,
798
+ "grad_norm": 0.030343499034643173,
799
+ "learning_rate": 3.643031784841076e-05,
800
+ "loss": 0.4676,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 0.6616366802089378,
805
+ "grad_norm": 0.040206462144851685,
806
+ "learning_rate": 3.581907090464548e-05,
807
+ "loss": 0.4537,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 0.6674405107370864,
812
+ "grad_norm": 0.04354901611804962,
813
+ "learning_rate": 3.52078239608802e-05,
814
+ "loss": 0.4586,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 0.673244341265235,
819
+ "grad_norm": 0.049322061240673065,
820
+ "learning_rate": 3.4596577017114914e-05,
821
+ "loss": 0.4548,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 0.6790481717933836,
826
+ "grad_norm": 0.03693823888897896,
827
+ "learning_rate": 3.3985330073349635e-05,
828
+ "loss": 0.4679,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 0.6848520023215322,
833
+ "grad_norm": 0.03417356684803963,
834
+ "learning_rate": 3.3374083129584355e-05,
835
+ "loss": 0.4676,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 0.6906558328496808,
840
+ "grad_norm": 0.034008949995040894,
841
+ "learning_rate": 3.2762836185819075e-05,
842
+ "loss": 0.4581,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 0.6964596633778294,
847
+ "grad_norm": 0.040350962430238724,
848
+ "learning_rate": 3.2151589242053795e-05,
849
+ "loss": 0.4714,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 0.702263493905978,
854
+ "grad_norm": 0.03704742714762688,
855
+ "learning_rate": 3.154034229828851e-05,
856
+ "loss": 0.4435,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 0.7080673244341266,
861
+ "grad_norm": 0.036646343767642975,
862
+ "learning_rate": 3.092909535452323e-05,
863
+ "loss": 0.4721,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 0.7138711549622752,
868
+ "grad_norm": 0.034359563142061234,
869
+ "learning_rate": 3.031784841075795e-05,
870
+ "loss": 0.4632,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 0.7196749854904236,
875
+ "grad_norm": 0.037978023290634155,
876
+ "learning_rate": 2.9706601466992666e-05,
877
+ "loss": 0.4498,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 0.7254788160185722,
882
+ "grad_norm": 0.041571393609046936,
883
+ "learning_rate": 2.9095354523227386e-05,
884
+ "loss": 0.4366,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 0.7312826465467208,
889
+ "grad_norm": 0.04250132292509079,
890
+ "learning_rate": 2.8484107579462103e-05,
891
+ "loss": 0.4545,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 0.7370864770748694,
896
+ "grad_norm": 0.03715914487838745,
897
+ "learning_rate": 2.7872860635696824e-05,
898
+ "loss": 0.4503,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 0.742890307603018,
903
+ "grad_norm": 0.03634462505578995,
904
+ "learning_rate": 2.7261613691931544e-05,
905
+ "loss": 0.4694,
906
+ "step": 640
907
+ },
908
+ {
909
+ "epoch": 0.7486941381311666,
910
+ "grad_norm": 0.03091687522828579,
911
+ "learning_rate": 2.665036674816626e-05,
912
+ "loss": 0.4802,
913
+ "step": 645
914
+ },
915
+ {
916
+ "epoch": 0.7544979686593152,
917
+ "grad_norm": 0.03848150745034218,
918
+ "learning_rate": 2.603911980440098e-05,
919
+ "loss": 0.4611,
920
+ "step": 650
921
+ },
922
+ {
923
+ "epoch": 0.7603017991874638,
924
+ "grad_norm": 0.04081200435757637,
925
+ "learning_rate": 2.5427872860635698e-05,
926
+ "loss": 0.4399,
927
+ "step": 655
928
+ },
929
+ {
930
+ "epoch": 0.7661056297156124,
931
+ "grad_norm": 0.033600542694330215,
932
+ "learning_rate": 2.4816625916870418e-05,
933
+ "loss": 0.4511,
934
+ "step": 660
935
+ },
936
+ {
937
+ "epoch": 0.7719094602437608,
938
+ "grad_norm": 0.038769450038671494,
939
+ "learning_rate": 2.4205378973105135e-05,
940
+ "loss": 0.5382,
941
+ "step": 665
942
+ },
943
+ {
944
+ "epoch": 0.7777132907719094,
945
+ "grad_norm": 0.034687142819166183,
946
+ "learning_rate": 2.3594132029339855e-05,
947
+ "loss": 0.4387,
948
+ "step": 670
949
+ },
950
+ {
951
+ "epoch": 0.783517121300058,
952
+ "grad_norm": 0.042531248182058334,
953
+ "learning_rate": 2.2982885085574575e-05,
954
+ "loss": 0.4295,
955
+ "step": 675
956
+ },
957
+ {
958
+ "epoch": 0.7893209518282066,
959
+ "grad_norm": 0.04859015345573425,
960
+ "learning_rate": 2.2371638141809292e-05,
961
+ "loss": 0.4528,
962
+ "step": 680
963
+ },
964
+ {
965
+ "epoch": 0.7951247823563552,
966
+ "grad_norm": 0.03576788306236267,
967
+ "learning_rate": 2.1760391198044012e-05,
968
+ "loss": 0.4714,
969
+ "step": 685
970
+ },
971
+ {
972
+ "epoch": 0.8009286128845038,
973
+ "grad_norm": 0.03525792807340622,
974
+ "learning_rate": 2.114914425427873e-05,
975
+ "loss": 0.4466,
976
+ "step": 690
977
+ },
978
+ {
979
+ "epoch": 0.8067324434126524,
980
+ "grad_norm": 0.0542202927172184,
981
+ "learning_rate": 2.053789731051345e-05,
982
+ "loss": 0.4706,
983
+ "step": 695
984
+ },
985
+ {
986
+ "epoch": 0.812536273940801,
987
+ "grad_norm": 0.042330674827098846,
988
+ "learning_rate": 1.9926650366748166e-05,
989
+ "loss": 0.4739,
990
+ "step": 700
991
+ },
992
+ {
993
+ "epoch": 0.8183401044689496,
994
+ "grad_norm": 0.060287829488515854,
995
+ "learning_rate": 1.9315403422982887e-05,
996
+ "loss": 0.4451,
997
+ "step": 705
998
+ },
999
+ {
1000
+ "epoch": 0.824143934997098,
1001
+ "grad_norm": 0.03659594804048538,
1002
+ "learning_rate": 1.8704156479217603e-05,
1003
+ "loss": 0.4488,
1004
+ "step": 710
1005
+ },
1006
+ {
1007
+ "epoch": 0.8299477655252466,
1008
+ "grad_norm": 0.03669734671711922,
1009
+ "learning_rate": 1.8092909535452324e-05,
1010
+ "loss": 0.4645,
1011
+ "step": 715
1012
+ },
1013
+ {
1014
+ "epoch": 0.8357515960533952,
1015
+ "grad_norm": 0.03742624819278717,
1016
+ "learning_rate": 1.7481662591687044e-05,
1017
+ "loss": 0.4745,
1018
+ "step": 720
1019
+ },
1020
+ {
1021
+ "epoch": 0.8415554265815438,
1022
+ "grad_norm": 0.04164464771747589,
1023
+ "learning_rate": 1.687041564792176e-05,
1024
+ "loss": 0.4573,
1025
+ "step": 725
1026
+ },
1027
+ {
1028
+ "epoch": 0.8473592571096924,
1029
+ "grad_norm": 0.04054637998342514,
1030
+ "learning_rate": 1.625916870415648e-05,
1031
+ "loss": 0.4485,
1032
+ "step": 730
1033
+ },
1034
+ {
1035
+ "epoch": 0.853163087637841,
1036
+ "grad_norm": 0.03948818892240524,
1037
+ "learning_rate": 1.5647921760391198e-05,
1038
+ "loss": 0.4802,
1039
+ "step": 735
1040
+ },
1041
+ {
1042
+ "epoch": 0.8589669181659896,
1043
+ "grad_norm": 0.053339846432209015,
1044
+ "learning_rate": 1.5036674816625918e-05,
1045
+ "loss": 0.4619,
1046
+ "step": 740
1047
+ },
1048
+ {
1049
+ "epoch": 0.8647707486941382,
1050
+ "grad_norm": 0.03236434608697891,
1051
+ "learning_rate": 1.4425427872860637e-05,
1052
+ "loss": 0.4488,
1053
+ "step": 745
1054
+ },
1055
+ {
1056
+ "epoch": 0.8705745792222868,
1057
+ "grad_norm": 0.03988557681441307,
1058
+ "learning_rate": 1.3814180929095355e-05,
1059
+ "loss": 0.4524,
1060
+ "step": 750
1061
+ },
1062
+ {
1063
+ "epoch": 0.8763784097504352,
1064
+ "grad_norm": 0.03730703890323639,
1065
+ "learning_rate": 1.3202933985330074e-05,
1066
+ "loss": 0.4265,
1067
+ "step": 755
1068
+ },
1069
+ {
1070
+ "epoch": 0.8821822402785838,
1071
+ "grad_norm": 0.0383509136736393,
1072
+ "learning_rate": 1.2591687041564792e-05,
1073
+ "loss": 0.4571,
1074
+ "step": 760
1075
+ },
1076
+ {
1077
+ "epoch": 0.8879860708067324,
1078
+ "grad_norm": 0.036255862563848495,
1079
+ "learning_rate": 1.198044009779951e-05,
1080
+ "loss": 0.5154,
1081
+ "step": 765
1082
+ },
1083
+ {
1084
+ "epoch": 0.893789901334881,
1085
+ "grad_norm": 0.05152517929673195,
1086
+ "learning_rate": 1.136919315403423e-05,
1087
+ "loss": 0.4509,
1088
+ "step": 770
1089
+ },
1090
+ {
1091
+ "epoch": 0.8995937318630296,
1092
+ "grad_norm": 0.038996148854494095,
1093
+ "learning_rate": 1.075794621026895e-05,
1094
+ "loss": 0.4536,
1095
+ "step": 775
1096
+ },
1097
+ {
1098
+ "epoch": 0.9053975623911782,
1099
+ "grad_norm": 0.03999714180827141,
1100
+ "learning_rate": 1.0146699266503668e-05,
1101
+ "loss": 0.4392,
1102
+ "step": 780
1103
+ },
1104
+ {
1105
+ "epoch": 0.9112013929193268,
1106
+ "grad_norm": 0.034626469016075134,
1107
+ "learning_rate": 9.535452322738387e-06,
1108
+ "loss": 0.4614,
1109
+ "step": 785
1110
+ },
1111
+ {
1112
+ "epoch": 0.9170052234474754,
1113
+ "grad_norm": 0.03376827761530876,
1114
+ "learning_rate": 8.924205378973105e-06,
1115
+ "loss": 0.4479,
1116
+ "step": 790
1117
+ },
1118
+ {
1119
+ "epoch": 0.922809053975624,
1120
+ "grad_norm": 0.08973196148872375,
1121
+ "learning_rate": 8.312958435207824e-06,
1122
+ "loss": 0.4598,
1123
+ "step": 795
1124
+ },
1125
+ {
1126
+ "epoch": 0.9286128845037724,
1127
+ "grad_norm": 0.03864937275648117,
1128
+ "learning_rate": 7.701711491442542e-06,
1129
+ "loss": 0.4469,
1130
+ "step": 800
1131
+ },
1132
+ {
1133
+ "epoch": 0.934416715031921,
1134
+ "grad_norm": 0.038818832486867905,
1135
+ "learning_rate": 7.090464547677262e-06,
1136
+ "loss": 0.4173,
1137
+ "step": 805
1138
+ },
1139
+ {
1140
+ "epoch": 0.9402205455600696,
1141
+ "grad_norm": 0.03407546505331993,
1142
+ "learning_rate": 6.47921760391198e-06,
1143
+ "loss": 0.4399,
1144
+ "step": 810
1145
+ },
1146
+ {
1147
+ "epoch": 0.9460243760882182,
1148
+ "grad_norm": 0.03433331474661827,
1149
+ "learning_rate": 5.8679706601467e-06,
1150
+ "loss": 0.4811,
1151
+ "step": 815
1152
+ },
1153
+ {
1154
+ "epoch": 0.9518282066163668,
1155
+ "grad_norm": 0.03800525888800621,
1156
+ "learning_rate": 5.256723716381418e-06,
1157
+ "loss": 0.4504,
1158
+ "step": 820
1159
+ },
1160
+ {
1161
+ "epoch": 0.9576320371445154,
1162
+ "grad_norm": 0.041561078280210495,
1163
+ "learning_rate": 4.645476772616137e-06,
1164
+ "loss": 0.4563,
1165
+ "step": 825
1166
+ },
1167
+ {
1168
+ "epoch": 0.963435867672664,
1169
+ "grad_norm": 0.04036097601056099,
1170
+ "learning_rate": 4.034229828850856e-06,
1171
+ "loss": 0.4296,
1172
+ "step": 830
1173
+ },
1174
+ {
1175
+ "epoch": 0.9692396982008126,
1176
+ "grad_norm": 0.03923596069216728,
1177
+ "learning_rate": 3.4229828850855746e-06,
1178
+ "loss": 0.4604,
1179
+ "step": 835
1180
+ },
1181
+ {
1182
+ "epoch": 0.9750435287289612,
1183
+ "grad_norm": 0.033339060842990875,
1184
+ "learning_rate": 2.8117359413202936e-06,
1185
+ "loss": 0.4565,
1186
+ "step": 840
1187
+ },
1188
+ {
1189
+ "epoch": 0.9808473592571096,
1190
+ "grad_norm": 0.034090008586645126,
1191
+ "learning_rate": 2.2004889975550126e-06,
1192
+ "loss": 0.4601,
1193
+ "step": 845
1194
+ },
1195
+ {
1196
+ "epoch": 0.9866511897852582,
1197
+ "grad_norm": 0.04013431444764137,
1198
+ "learning_rate": 1.5892420537897311e-06,
1199
+ "loss": 0.4687,
1200
+ "step": 850
1201
+ },
1202
+ {
1203
+ "epoch": 0.9924550203134068,
1204
+ "grad_norm": 0.03881672024726868,
1205
+ "learning_rate": 9.779951100244499e-07,
1206
+ "loss": 0.422,
1207
+ "step": 855
1208
+ },
1209
+ {
1210
+ "epoch": 0.9982588508415554,
1211
+ "grad_norm": 0.047759708017110825,
1212
+ "learning_rate": 3.667481662591687e-07,
1213
+ "loss": 0.4518,
1214
+ "step": 860
1215
+ }
1216
+ ],
1217
+ "logging_steps": 5,
1218
+ "max_steps": 862,
1219
+ "num_input_tokens_seen": 0,
1220
+ "num_train_epochs": 1,
1221
+ "save_steps": 500,
1222
+ "stateful_callbacks": {
1223
+ "TrainerControl": {
1224
+ "args": {
1225
+ "should_epoch_stop": false,
1226
+ "should_evaluate": false,
1227
+ "should_log": false,
1228
+ "should_save": true,
1229
+ "should_training_stop": true
1230
+ },
1231
+ "attributes": {}
1232
+ }
1233
+ },
1234
+ "total_flos": 1.192258616665068e+20,
1235
+ "train_batch_size": 1,
1236
+ "trial_name": null,
1237
+ "trial_params": null
1238
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang/checkpoint-862/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /share/models/Qwen3-30B-A3B-Thinking-2507
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:/share/models/Qwen3-30B-A3B-Thinking-2507
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
Qwen3-30B-A3B-Thinking-2507-sft-fusang/checkpoint-862/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
Qwen3-30B-A3B-Thinking-2507-sft-fusang/checkpoint-862/trainer_state.json ADDED
@@ -0,0 +1,1238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 862,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.005803830528148578,
14
+ "grad_norm": 0.11167649179697037,
15
+ "learning_rate": 9.090909090909091e-06,
16
+ "loss": 0.4179,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.011607661056297156,
21
+ "grad_norm": 0.05878744646906853,
22
+ "learning_rate": 2.0454545454545457e-05,
23
+ "loss": 0.4451,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.017411491584445733,
28
+ "grad_norm": 0.04675213620066643,
29
+ "learning_rate": 3.181818181818182e-05,
30
+ "loss": 0.4582,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.023215322112594312,
35
+ "grad_norm": 0.047889795154333115,
36
+ "learning_rate": 4.318181818181819e-05,
37
+ "loss": 0.4506,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.02901915264074289,
42
+ "grad_norm": 0.05356425419449806,
43
+ "learning_rate": 5.4545454545454546e-05,
44
+ "loss": 0.4452,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.034822983168891465,
49
+ "grad_norm": 0.05251117795705795,
50
+ "learning_rate": 6.59090909090909e-05,
51
+ "loss": 0.4305,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.04062681369704005,
56
+ "grad_norm": 0.055615171790122986,
57
+ "learning_rate": 7.727272727272727e-05,
58
+ "loss": 0.4372,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.046430644225188625,
63
+ "grad_norm": 0.03562075272202492,
64
+ "learning_rate": 8.863636363636364e-05,
65
+ "loss": 0.4492,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.0522344747533372,
70
+ "grad_norm": 0.04553038999438286,
71
+ "learning_rate": 0.0001,
72
+ "loss": 0.4499,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.05803830528148578,
77
+ "grad_norm": 0.05148487165570259,
78
+ "learning_rate": 9.938875305623473e-05,
79
+ "loss": 0.4576,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.06384213580963435,
84
+ "grad_norm": 0.04853189364075661,
85
+ "learning_rate": 9.877750611246945e-05,
86
+ "loss": 0.4502,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.06964596633778293,
91
+ "grad_norm": 0.045064426958560944,
92
+ "learning_rate": 9.816625916870417e-05,
93
+ "loss": 0.4499,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.07544979686593152,
98
+ "grad_norm": 0.04164193943142891,
99
+ "learning_rate": 9.755501222493889e-05,
100
+ "loss": 0.4395,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.0812536273940801,
105
+ "grad_norm": 0.03383349999785423,
106
+ "learning_rate": 9.69437652811736e-05,
107
+ "loss": 0.4371,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.08705745792222867,
112
+ "grad_norm": 0.04373278468847275,
113
+ "learning_rate": 9.633251833740831e-05,
114
+ "loss": 0.4755,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.09286128845037725,
119
+ "grad_norm": 0.04336105287075043,
120
+ "learning_rate": 9.572127139364305e-05,
121
+ "loss": 0.4265,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.09866511897852583,
126
+ "grad_norm": 0.034007731825113297,
127
+ "learning_rate": 9.511002444987775e-05,
128
+ "loss": 0.4328,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.1044689495066744,
133
+ "grad_norm": 0.03617757931351662,
134
+ "learning_rate": 9.449877750611247e-05,
135
+ "loss": 0.438,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.11027278003482298,
140
+ "grad_norm": 0.0359223447740078,
141
+ "learning_rate": 9.38875305623472e-05,
142
+ "loss": 0.4366,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.11607661056297155,
147
+ "grad_norm": 0.042958397418260574,
148
+ "learning_rate": 9.327628361858191e-05,
149
+ "loss": 0.4523,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.12188044109112015,
154
+ "grad_norm": 0.04804977774620056,
155
+ "learning_rate": 9.266503667481663e-05,
156
+ "loss": 0.4356,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.1276842716192687,
161
+ "grad_norm": 0.03226548433303833,
162
+ "learning_rate": 9.205378973105135e-05,
163
+ "loss": 0.4381,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.1334881021474173,
168
+ "grad_norm": 0.032912448048591614,
169
+ "learning_rate": 9.144254278728606e-05,
170
+ "loss": 0.451,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.13929193267556586,
175
+ "grad_norm": 0.0320778451859951,
176
+ "learning_rate": 9.08312958435208e-05,
177
+ "loss": 0.4554,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.14509576320371445,
182
+ "grad_norm": 0.03928998112678528,
183
+ "learning_rate": 9.02200488997555e-05,
184
+ "loss": 0.432,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.15089959373186304,
189
+ "grad_norm": 0.04315907880663872,
190
+ "learning_rate": 8.960880195599024e-05,
191
+ "loss": 0.4454,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.1567034242600116,
196
+ "grad_norm": 0.035480398684740067,
197
+ "learning_rate": 8.899755501222494e-05,
198
+ "loss": 0.4537,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.1625072547881602,
203
+ "grad_norm": 0.03198500722646713,
204
+ "learning_rate": 8.838630806845966e-05,
205
+ "loss": 0.4658,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 0.16831108531630876,
210
+ "grad_norm": 0.03255561366677284,
211
+ "learning_rate": 8.777506112469438e-05,
212
+ "loss": 0.4593,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 0.17411491584445735,
217
+ "grad_norm": 0.03970634937286377,
218
+ "learning_rate": 8.71638141809291e-05,
219
+ "loss": 0.4495,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 0.1799187463726059,
224
+ "grad_norm": 0.03526106849312782,
225
+ "learning_rate": 8.655256723716382e-05,
226
+ "loss": 0.424,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 0.1857225769007545,
231
+ "grad_norm": 0.051440611481666565,
232
+ "learning_rate": 8.594132029339854e-05,
233
+ "loss": 0.4457,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 0.1915264074289031,
238
+ "grad_norm": 0.032669343054294586,
239
+ "learning_rate": 8.533007334963325e-05,
240
+ "loss": 0.4457,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 0.19733023795705165,
245
+ "grad_norm": 0.03135131299495697,
246
+ "learning_rate": 8.471882640586798e-05,
247
+ "loss": 0.445,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 0.20313406848520024,
252
+ "grad_norm": 0.03780507668852806,
253
+ "learning_rate": 8.410757946210269e-05,
254
+ "loss": 0.4516,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 0.2089378990133488,
259
+ "grad_norm": 0.039683420211076736,
260
+ "learning_rate": 8.349633251833741e-05,
261
+ "loss": 0.4502,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 0.2147417295414974,
266
+ "grad_norm": 0.03234437108039856,
267
+ "learning_rate": 8.288508557457213e-05,
268
+ "loss": 0.4509,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 0.22054556006964596,
273
+ "grad_norm": 0.03360700234770775,
274
+ "learning_rate": 8.227383863080685e-05,
275
+ "loss": 0.4457,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 0.22634939059779455,
280
+ "grad_norm": 0.03230682387948036,
281
+ "learning_rate": 8.166259168704157e-05,
282
+ "loss": 0.4228,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 0.2321532211259431,
287
+ "grad_norm": 0.03940160945057869,
288
+ "learning_rate": 8.105134474327629e-05,
289
+ "loss": 0.4415,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 0.2379570516540917,
294
+ "grad_norm": 0.03374328091740608,
295
+ "learning_rate": 8.044009779951101e-05,
296
+ "loss": 0.4356,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 0.2437608821822403,
301
+ "grad_norm": 0.031871989369392395,
302
+ "learning_rate": 7.982885085574573e-05,
303
+ "loss": 0.4696,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 0.24956471271038885,
308
+ "grad_norm": 0.03276577964425087,
309
+ "learning_rate": 7.921760391198044e-05,
310
+ "loss": 0.4427,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 0.2553685432385374,
315
+ "grad_norm": 0.02574090287089348,
316
+ "learning_rate": 7.860635696821517e-05,
317
+ "loss": 0.4291,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 0.261172373766686,
322
+ "grad_norm": 0.036154329776763916,
323
+ "learning_rate": 7.799511002444988e-05,
324
+ "loss": 0.4509,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 0.2669762042948346,
329
+ "grad_norm": 0.04011650010943413,
330
+ "learning_rate": 7.73838630806846e-05,
331
+ "loss": 0.4358,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 0.2727800348229832,
336
+ "grad_norm": 0.030674200505018234,
337
+ "learning_rate": 7.677261613691932e-05,
338
+ "loss": 0.4637,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 0.2785838653511317,
343
+ "grad_norm": 0.032683223485946655,
344
+ "learning_rate": 7.616136919315404e-05,
345
+ "loss": 0.4516,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 0.2843876958792803,
350
+ "grad_norm": 0.027314957231283188,
351
+ "learning_rate": 7.555012224938876e-05,
352
+ "loss": 0.4402,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 0.2901915264074289,
357
+ "grad_norm": 0.034763675183057785,
358
+ "learning_rate": 7.493887530562348e-05,
359
+ "loss": 0.4643,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 0.2959953569355775,
364
+ "grad_norm": 0.04508906230330467,
365
+ "learning_rate": 7.432762836185819e-05,
366
+ "loss": 0.4428,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 0.3017991874637261,
371
+ "grad_norm": 0.034660518169403076,
372
+ "learning_rate": 7.371638141809292e-05,
373
+ "loss": 0.4656,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 0.3076030179918746,
378
+ "grad_norm": 0.02968621253967285,
379
+ "learning_rate": 7.310513447432763e-05,
380
+ "loss": 0.4309,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 0.3134068485200232,
385
+ "grad_norm": 0.03332359343767166,
386
+ "learning_rate": 7.249388753056235e-05,
387
+ "loss": 0.435,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 0.3192106790481718,
392
+ "grad_norm": 0.03404337912797928,
393
+ "learning_rate": 7.188264058679707e-05,
394
+ "loss": 0.4499,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 0.3250145095763204,
399
+ "grad_norm": 0.036635175347328186,
400
+ "learning_rate": 7.127139364303179e-05,
401
+ "loss": 0.4516,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 0.3308183401044689,
406
+ "grad_norm": 0.030087586492300034,
407
+ "learning_rate": 7.066014669926651e-05,
408
+ "loss": 0.4642,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 0.3366221706326175,
413
+ "grad_norm": 0.029073191806674004,
414
+ "learning_rate": 7.004889975550123e-05,
415
+ "loss": 0.4457,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 0.3424260011607661,
420
+ "grad_norm": 0.026812931522727013,
421
+ "learning_rate": 6.943765281173595e-05,
422
+ "loss": 0.4451,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 0.3482298316889147,
427
+ "grad_norm": 0.034956712275743484,
428
+ "learning_rate": 6.882640586797067e-05,
429
+ "loss": 0.4481,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 0.3540336622170633,
434
+ "grad_norm": 0.03261638805270195,
435
+ "learning_rate": 6.821515892420538e-05,
436
+ "loss": 0.4313,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 0.3598374927452118,
441
+ "grad_norm": 0.03206435590982437,
442
+ "learning_rate": 6.760391198044011e-05,
443
+ "loss": 0.4628,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 0.3656413232733604,
448
+ "grad_norm": 0.02776835672557354,
449
+ "learning_rate": 6.699266503667482e-05,
450
+ "loss": 0.443,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 0.371445153801509,
455
+ "grad_norm": 0.024607423692941666,
456
+ "learning_rate": 6.638141809290954e-05,
457
+ "loss": 0.4351,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 0.3772489843296576,
462
+ "grad_norm": 0.03608020395040512,
463
+ "learning_rate": 6.577017114914426e-05,
464
+ "loss": 0.4612,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 0.3830528148578062,
469
+ "grad_norm": 0.030558280646800995,
470
+ "learning_rate": 6.515892420537898e-05,
471
+ "loss": 0.4346,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 0.3888566453859547,
476
+ "grad_norm": 0.038997165858745575,
477
+ "learning_rate": 6.45476772616137e-05,
478
+ "loss": 0.4484,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 0.3946604759141033,
483
+ "grad_norm": 0.027846684679389,
484
+ "learning_rate": 6.393643031784842e-05,
485
+ "loss": 0.4389,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 0.4004643064422519,
490
+ "grad_norm": 0.02644030563533306,
491
+ "learning_rate": 6.332518337408312e-05,
492
+ "loss": 0.4496,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 0.4062681369704005,
497
+ "grad_norm": 0.033678922802209854,
498
+ "learning_rate": 6.271393643031786e-05,
499
+ "loss": 0.4302,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 0.412071967498549,
504
+ "grad_norm": 0.03207817301154137,
505
+ "learning_rate": 6.210268948655256e-05,
506
+ "loss": 0.4404,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 0.4178757980266976,
511
+ "grad_norm": 0.03058437816798687,
512
+ "learning_rate": 6.14914425427873e-05,
513
+ "loss": 0.4654,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 0.4236796285548462,
518
+ "grad_norm": 0.04575405269861221,
519
+ "learning_rate": 6.0880195599022005e-05,
520
+ "loss": 0.4386,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 0.4294834590829948,
525
+ "grad_norm": 0.03139202296733856,
526
+ "learning_rate": 6.026894865525673e-05,
527
+ "loss": 0.434,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 0.4352872896111434,
532
+ "grad_norm": 0.03597712516784668,
533
+ "learning_rate": 5.9657701711491446e-05,
534
+ "loss": 0.462,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 0.4410911201392919,
539
+ "grad_norm": 0.029897456988692284,
540
+ "learning_rate": 5.9046454767726166e-05,
541
+ "loss": 0.4312,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 0.4468949506674405,
546
+ "grad_norm": 0.04324301332235336,
547
+ "learning_rate": 5.843520782396088e-05,
548
+ "loss": 0.4221,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 0.4526987811955891,
553
+ "grad_norm": 0.027129394933581352,
554
+ "learning_rate": 5.7823960880195606e-05,
555
+ "loss": 0.4476,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 0.4585026117237377,
560
+ "grad_norm": 0.03885333240032196,
561
+ "learning_rate": 5.721271393643032e-05,
562
+ "loss": 0.4329,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 0.4643064422518862,
567
+ "grad_norm": 0.03425256907939911,
568
+ "learning_rate": 5.660146699266504e-05,
569
+ "loss": 0.443,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 0.4701102727800348,
574
+ "grad_norm": 0.032868240028619766,
575
+ "learning_rate": 5.5990220048899754e-05,
576
+ "loss": 0.4394,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 0.4759141033081834,
581
+ "grad_norm": 0.030719870701432228,
582
+ "learning_rate": 5.537897310513448e-05,
583
+ "loss": 0.4265,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 0.481717933836332,
588
+ "grad_norm": 0.027947254478931427,
589
+ "learning_rate": 5.4767726161369194e-05,
590
+ "loss": 0.4471,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 0.4875217643644806,
595
+ "grad_norm": 0.06247246265411377,
596
+ "learning_rate": 5.4156479217603914e-05,
597
+ "loss": 0.438,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 0.4933255948926291,
602
+ "grad_norm": 0.03340250998735428,
603
+ "learning_rate": 5.354523227383863e-05,
604
+ "loss": 0.4452,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 0.4991294254207777,
609
+ "grad_norm": 0.038149379193782806,
610
+ "learning_rate": 5.2933985330073355e-05,
611
+ "loss": 0.4332,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 0.5049332559489262,
616
+ "grad_norm": 0.02780376374721527,
617
+ "learning_rate": 5.232273838630807e-05,
618
+ "loss": 0.4574,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 0.5107370864770748,
623
+ "grad_norm": 0.031863778829574585,
624
+ "learning_rate": 5.1711491442542795e-05,
625
+ "loss": 0.4547,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 0.5165409170052234,
630
+ "grad_norm": 0.030303943902254105,
631
+ "learning_rate": 5.110024449877751e-05,
632
+ "loss": 0.4547,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 0.522344747533372,
637
+ "grad_norm": 0.03468239679932594,
638
+ "learning_rate": 5.048899755501223e-05,
639
+ "loss": 0.4657,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 0.5281485780615206,
644
+ "grad_norm": 0.031695377081632614,
645
+ "learning_rate": 4.987775061124695e-05,
646
+ "loss": 0.4329,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 0.5339524085896692,
651
+ "grad_norm": 0.034550122916698456,
652
+ "learning_rate": 4.926650366748167e-05,
653
+ "loss": 0.4511,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 0.5397562391178178,
658
+ "grad_norm": 0.025001615285873413,
659
+ "learning_rate": 4.865525672371638e-05,
660
+ "loss": 0.4549,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 0.5455600696459664,
665
+ "grad_norm": 0.028805740177631378,
666
+ "learning_rate": 4.80440097799511e-05,
667
+ "loss": 0.4543,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 0.551363900174115,
672
+ "grad_norm": 0.03354053199291229,
673
+ "learning_rate": 4.743276283618582e-05,
674
+ "loss": 0.432,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 0.5571677307022634,
679
+ "grad_norm": 0.030400967225432396,
680
+ "learning_rate": 4.6821515892420544e-05,
681
+ "loss": 0.4188,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 0.562971561230412,
686
+ "grad_norm": 0.0275269765406847,
687
+ "learning_rate": 4.6210268948655264e-05,
688
+ "loss": 0.4491,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 0.5687753917585606,
693
+ "grad_norm": 0.025978457182645798,
694
+ "learning_rate": 4.559902200488998e-05,
695
+ "loss": 0.4532,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 0.5745792222867092,
700
+ "grad_norm": 0.029258042573928833,
701
+ "learning_rate": 4.49877750611247e-05,
702
+ "loss": 0.4325,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 0.5803830528148578,
707
+ "grad_norm": 0.032496389001607895,
708
+ "learning_rate": 4.437652811735942e-05,
709
+ "loss": 0.4422,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 0.5861868833430064,
714
+ "grad_norm": 0.03094470128417015,
715
+ "learning_rate": 4.376528117359414e-05,
716
+ "loss": 0.4462,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 0.591990713871155,
721
+ "grad_norm": 0.028828352689743042,
722
+ "learning_rate": 4.315403422982885e-05,
723
+ "loss": 0.4516,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 0.5977945443993036,
728
+ "grad_norm": 0.033804845064878464,
729
+ "learning_rate": 4.254278728606357e-05,
730
+ "loss": 0.4502,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 0.6035983749274522,
735
+ "grad_norm": 0.025966903194785118,
736
+ "learning_rate": 4.193154034229829e-05,
737
+ "loss": 0.4564,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 0.6094022054556006,
742
+ "grad_norm": 0.03651871904730797,
743
+ "learning_rate": 4.132029339853301e-05,
744
+ "loss": 0.4484,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 0.6152060359837492,
749
+ "grad_norm": 0.030410734936594963,
750
+ "learning_rate": 4.070904645476773e-05,
751
+ "loss": 0.4432,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 0.6210098665118978,
756
+ "grad_norm": 0.03372242674231529,
757
+ "learning_rate": 4.0097799511002446e-05,
758
+ "loss": 0.4512,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 0.6268136970400464,
763
+ "grad_norm": 0.028306983411312103,
764
+ "learning_rate": 3.9486552567237166e-05,
765
+ "loss": 0.4364,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 0.632617527568195,
770
+ "grad_norm": 0.03793470188975334,
771
+ "learning_rate": 3.8875305623471886e-05,
772
+ "loss": 0.4279,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 0.6384213580963436,
777
+ "grad_norm": 0.03674202412366867,
778
+ "learning_rate": 3.8264058679706607e-05,
779
+ "loss": 0.4692,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 0.6442251886244922,
784
+ "grad_norm": 0.03083740547299385,
785
+ "learning_rate": 3.765281173594133e-05,
786
+ "loss": 0.4326,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 0.6500290191526408,
791
+ "grad_norm": 0.03499336168169975,
792
+ "learning_rate": 3.704156479217604e-05,
793
+ "loss": 0.4399,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 0.6558328496807894,
798
+ "grad_norm": 0.023755021393299103,
799
+ "learning_rate": 3.643031784841076e-05,
800
+ "loss": 0.4552,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 0.6616366802089378,
805
+ "grad_norm": 0.025819219648838043,
806
+ "learning_rate": 3.581907090464548e-05,
807
+ "loss": 0.4404,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 0.6674405107370864,
812
+ "grad_norm": 0.033186931163072586,
813
+ "learning_rate": 3.52078239608802e-05,
814
+ "loss": 0.4472,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 0.673244341265235,
819
+ "grad_norm": 0.033613502979278564,
820
+ "learning_rate": 3.4596577017114914e-05,
821
+ "loss": 0.4421,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 0.6790481717933836,
826
+ "grad_norm": 0.02944432757794857,
827
+ "learning_rate": 3.3985330073349635e-05,
828
+ "loss": 0.4554,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 0.6848520023215322,
833
+ "grad_norm": 0.03536716476082802,
834
+ "learning_rate": 3.3374083129584355e-05,
835
+ "loss": 0.4549,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 0.6906558328496808,
840
+ "grad_norm": 0.024904152378439903,
841
+ "learning_rate": 3.2762836185819075e-05,
842
+ "loss": 0.445,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 0.6964596633778294,
847
+ "grad_norm": 0.03327803313732147,
848
+ "learning_rate": 3.2151589242053795e-05,
849
+ "loss": 0.4601,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 0.702263493905978,
854
+ "grad_norm": 0.04129062220454216,
855
+ "learning_rate": 3.154034229828851e-05,
856
+ "loss": 0.4304,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 0.7080673244341266,
861
+ "grad_norm": 0.03460316359996796,
862
+ "learning_rate": 3.092909535452323e-05,
863
+ "loss": 0.4591,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 0.7138711549622752,
868
+ "grad_norm": 0.03884468227624893,
869
+ "learning_rate": 3.031784841075795e-05,
870
+ "loss": 0.4509,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 0.7196749854904236,
875
+ "grad_norm": 0.027258818969130516,
876
+ "learning_rate": 2.9706601466992666e-05,
877
+ "loss": 0.4375,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 0.7254788160185722,
882
+ "grad_norm": 0.0322805680334568,
883
+ "learning_rate": 2.9095354523227386e-05,
884
+ "loss": 0.4245,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 0.7312826465467208,
889
+ "grad_norm": 0.03353621065616608,
890
+ "learning_rate": 2.8484107579462103e-05,
891
+ "loss": 0.4416,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 0.7370864770748694,
896
+ "grad_norm": 0.03136138245463371,
897
+ "learning_rate": 2.7872860635696824e-05,
898
+ "loss": 0.4376,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 0.742890307603018,
903
+ "grad_norm": 0.02590339072048664,
904
+ "learning_rate": 2.7261613691931544e-05,
905
+ "loss": 0.4554,
906
+ "step": 640
907
+ },
908
+ {
909
+ "epoch": 0.7486941381311666,
910
+ "grad_norm": 0.023068683221936226,
911
+ "learning_rate": 2.665036674816626e-05,
912
+ "loss": 0.4679,
913
+ "step": 645
914
+ },
915
+ {
916
+ "epoch": 0.7544979686593152,
917
+ "grad_norm": 0.030758408829569817,
918
+ "learning_rate": 2.603911980440098e-05,
919
+ "loss": 0.4504,
920
+ "step": 650
921
+ },
922
+ {
923
+ "epoch": 0.7603017991874638,
924
+ "grad_norm": 0.03439256548881531,
925
+ "learning_rate": 2.5427872860635698e-05,
926
+ "loss": 0.4263,
927
+ "step": 655
928
+ },
929
+ {
930
+ "epoch": 0.7661056297156124,
931
+ "grad_norm": 0.027209492400288582,
932
+ "learning_rate": 2.4816625916870418e-05,
933
+ "loss": 0.4377,
934
+ "step": 660
935
+ },
936
+ {
937
+ "epoch": 0.7719094602437608,
938
+ "grad_norm": 0.028269799426198006,
939
+ "learning_rate": 2.4205378973105135e-05,
940
+ "loss": 0.5256,
941
+ "step": 665
942
+ },
943
+ {
944
+ "epoch": 0.7777132907719094,
945
+ "grad_norm": 0.027192717418074608,
946
+ "learning_rate": 2.3594132029339855e-05,
947
+ "loss": 0.4263,
948
+ "step": 670
949
+ },
950
+ {
951
+ "epoch": 0.783517121300058,
952
+ "grad_norm": 0.03299058973789215,
953
+ "learning_rate": 2.2982885085574575e-05,
954
+ "loss": 0.4184,
955
+ "step": 675
956
+ },
957
+ {
958
+ "epoch": 0.7893209518282066,
959
+ "grad_norm": 0.03457274287939072,
960
+ "learning_rate": 2.2371638141809292e-05,
961
+ "loss": 0.4398,
962
+ "step": 680
963
+ },
964
+ {
965
+ "epoch": 0.7951247823563552,
966
+ "grad_norm": 0.026992570608854294,
967
+ "learning_rate": 2.1760391198044012e-05,
968
+ "loss": 0.4589,
969
+ "step": 685
970
+ },
971
+ {
972
+ "epoch": 0.8009286128845038,
973
+ "grad_norm": 0.028259936720132828,
974
+ "learning_rate": 2.114914425427873e-05,
975
+ "loss": 0.4338,
976
+ "step": 690
977
+ },
978
+ {
979
+ "epoch": 0.8067324434126524,
980
+ "grad_norm": 0.026307212188839912,
981
+ "learning_rate": 2.053789731051345e-05,
982
+ "loss": 0.4583,
983
+ "step": 695
984
+ },
985
+ {
986
+ "epoch": 0.812536273940801,
987
+ "grad_norm": 0.03430171683430672,
988
+ "learning_rate": 1.9926650366748166e-05,
989
+ "loss": 0.4627,
990
+ "step": 700
991
+ },
992
+ {
993
+ "epoch": 0.8183401044689496,
994
+ "grad_norm": 0.03142637386918068,
995
+ "learning_rate": 1.9315403422982887e-05,
996
+ "loss": 0.4324,
997
+ "step": 705
998
+ },
999
+ {
1000
+ "epoch": 0.824143934997098,
1001
+ "grad_norm": 0.02762400545179844,
1002
+ "learning_rate": 1.8704156479217603e-05,
1003
+ "loss": 0.4366,
1004
+ "step": 710
1005
+ },
1006
+ {
1007
+ "epoch": 0.8299477655252466,
1008
+ "grad_norm": 0.026468684896826744,
1009
+ "learning_rate": 1.8092909535452324e-05,
1010
+ "loss": 0.4527,
1011
+ "step": 715
1012
+ },
1013
+ {
1014
+ "epoch": 0.8357515960533952,
1015
+ "grad_norm": 0.026880772784352303,
1016
+ "learning_rate": 1.7481662591687044e-05,
1017
+ "loss": 0.4621,
1018
+ "step": 720
1019
+ },
1020
+ {
1021
+ "epoch": 0.8415554265815438,
1022
+ "grad_norm": 0.03330186754465103,
1023
+ "learning_rate": 1.687041564792176e-05,
1024
+ "loss": 0.4454,
1025
+ "step": 725
1026
+ },
1027
+ {
1028
+ "epoch": 0.8473592571096924,
1029
+ "grad_norm": 0.03175678476691246,
1030
+ "learning_rate": 1.625916870415648e-05,
1031
+ "loss": 0.4359,
1032
+ "step": 730
1033
+ },
1034
+ {
1035
+ "epoch": 0.853163087637841,
1036
+ "grad_norm": 0.03173214942216873,
1037
+ "learning_rate": 1.5647921760391198e-05,
1038
+ "loss": 0.4677,
1039
+ "step": 735
1040
+ },
1041
+ {
1042
+ "epoch": 0.8589669181659896,
1043
+ "grad_norm": 0.02613997459411621,
1044
+ "learning_rate": 1.5036674816625918e-05,
1045
+ "loss": 0.4488,
1046
+ "step": 740
1047
+ },
1048
+ {
1049
+ "epoch": 0.8647707486941382,
1050
+ "grad_norm": 0.02250559628009796,
1051
+ "learning_rate": 1.4425427872860637e-05,
1052
+ "loss": 0.4363,
1053
+ "step": 745
1054
+ },
1055
+ {
1056
+ "epoch": 0.8705745792222868,
1057
+ "grad_norm": 0.03180099278688431,
1058
+ "learning_rate": 1.3814180929095355e-05,
1059
+ "loss": 0.4411,
1060
+ "step": 750
1061
+ },
1062
+ {
1063
+ "epoch": 0.8763784097504352,
1064
+ "grad_norm": 0.02956099808216095,
1065
+ "learning_rate": 1.3202933985330074e-05,
1066
+ "loss": 0.4147,
1067
+ "step": 755
1068
+ },
1069
+ {
1070
+ "epoch": 0.8821822402785838,
1071
+ "grad_norm": 0.027272948995232582,
1072
+ "learning_rate": 1.2591687041564792e-05,
1073
+ "loss": 0.4444,
1074
+ "step": 760
1075
+ },
1076
+ {
1077
+ "epoch": 0.8879860708067324,
1078
+ "grad_norm": 0.034130338579416275,
1079
+ "learning_rate": 1.198044009779951e-05,
1080
+ "loss": 0.5034,
1081
+ "step": 765
1082
+ },
1083
+ {
1084
+ "epoch": 0.893789901334881,
1085
+ "grad_norm": 0.03460566699504852,
1086
+ "learning_rate": 1.136919315403423e-05,
1087
+ "loss": 0.439,
1088
+ "step": 770
1089
+ },
1090
+ {
1091
+ "epoch": 0.8995937318630296,
1092
+ "grad_norm": 0.0311946552246809,
1093
+ "learning_rate": 1.075794621026895e-05,
1094
+ "loss": 0.4429,
1095
+ "step": 775
1096
+ },
1097
+ {
1098
+ "epoch": 0.9053975623911782,
1099
+ "grad_norm": 0.03752993047237396,
1100
+ "learning_rate": 1.0146699266503668e-05,
1101
+ "loss": 0.4265,
1102
+ "step": 780
1103
+ },
1104
+ {
1105
+ "epoch": 0.9112013929193268,
1106
+ "grad_norm": 0.026637699455022812,
1107
+ "learning_rate": 9.535452322738387e-06,
1108
+ "loss": 0.4489,
1109
+ "step": 785
1110
+ },
1111
+ {
1112
+ "epoch": 0.9170052234474754,
1113
+ "grad_norm": 0.026025403290987015,
1114
+ "learning_rate": 8.924205378973105e-06,
1115
+ "loss": 0.4357,
1116
+ "step": 790
1117
+ },
1118
+ {
1119
+ "epoch": 0.922809053975624,
1120
+ "grad_norm": 0.029870592057704926,
1121
+ "learning_rate": 8.312958435207824e-06,
1122
+ "loss": 0.4478,
1123
+ "step": 795
1124
+ },
1125
+ {
1126
+ "epoch": 0.9286128845037724,
1127
+ "grad_norm": 0.031670063734054565,
1128
+ "learning_rate": 7.701711491442542e-06,
1129
+ "loss": 0.4348,
1130
+ "step": 800
1131
+ },
1132
+ {
1133
+ "epoch": 0.934416715031921,
1134
+ "grad_norm": 0.032493527978658676,
1135
+ "learning_rate": 7.090464547677262e-06,
1136
+ "loss": 0.4051,
1137
+ "step": 805
1138
+ },
1139
+ {
1140
+ "epoch": 0.9402205455600696,
1141
+ "grad_norm": 0.02890474908053875,
1142
+ "learning_rate": 6.47921760391198e-06,
1143
+ "loss": 0.4272,
1144
+ "step": 810
1145
+ },
1146
+ {
1147
+ "epoch": 0.9460243760882182,
1148
+ "grad_norm": 0.02616616152226925,
1149
+ "learning_rate": 5.8679706601467e-06,
1150
+ "loss": 0.4687,
1151
+ "step": 815
1152
+ },
1153
+ {
1154
+ "epoch": 0.9518282066163668,
1155
+ "grad_norm": 0.02924773097038269,
1156
+ "learning_rate": 5.256723716381418e-06,
1157
+ "loss": 0.439,
1158
+ "step": 820
1159
+ },
1160
+ {
1161
+ "epoch": 0.9576320371445154,
1162
+ "grad_norm": 0.03177264705300331,
1163
+ "learning_rate": 4.645476772616137e-06,
1164
+ "loss": 0.4451,
1165
+ "step": 825
1166
+ },
1167
+ {
1168
+ "epoch": 0.963435867672664,
1169
+ "grad_norm": 0.02940208837389946,
1170
+ "learning_rate": 4.034229828850856e-06,
1171
+ "loss": 0.4177,
1172
+ "step": 830
1173
+ },
1174
+ {
1175
+ "epoch": 0.9692396982008126,
1176
+ "grad_norm": 0.028753064572811127,
1177
+ "learning_rate": 3.4229828850855746e-06,
1178
+ "loss": 0.447,
1179
+ "step": 835
1180
+ },
1181
+ {
1182
+ "epoch": 0.9750435287289612,
1183
+ "grad_norm": 0.035569071769714355,
1184
+ "learning_rate": 2.8117359413202936e-06,
1185
+ "loss": 0.4451,
1186
+ "step": 840
1187
+ },
1188
+ {
1189
+ "epoch": 0.9808473592571096,
1190
+ "grad_norm": 0.02479061856865883,
1191
+ "learning_rate": 2.2004889975550126e-06,
1192
+ "loss": 0.4484,
1193
+ "step": 845
1194
+ },
1195
+ {
1196
+ "epoch": 0.9866511897852582,
1197
+ "grad_norm": 0.031199142336845398,
1198
+ "learning_rate": 1.5892420537897311e-06,
1199
+ "loss": 0.4575,
1200
+ "step": 850
1201
+ },
1202
+ {
1203
+ "epoch": 0.9924550203134068,
1204
+ "grad_norm": 0.03143865615129471,
1205
+ "learning_rate": 9.779951100244499e-07,
1206
+ "loss": 0.409,
1207
+ "step": 855
1208
+ },
1209
+ {
1210
+ "epoch": 0.9982588508415554,
1211
+ "grad_norm": 0.029200268909335136,
1212
+ "learning_rate": 3.667481662591687e-07,
1213
+ "loss": 0.4396,
1214
+ "step": 860
1215
+ }
1216
+ ],
1217
+ "logging_steps": 5,
1218
+ "max_steps": 862,
1219
+ "num_input_tokens_seen": 0,
1220
+ "num_train_epochs": 1,
1221
+ "save_steps": 500,
1222
+ "stateful_callbacks": {
1223
+ "TrainerControl": {
1224
+ "args": {
1225
+ "should_epoch_stop": false,
1226
+ "should_evaluate": false,
1227
+ "should_log": false,
1228
+ "should_save": true,
1229
+ "should_training_stop": true
1230
+ },
1231
+ "attributes": {}
1232
+ }
1233
+ },
1234
+ "total_flos": 1.192258616665068e+20,
1235
+ "train_batch_size": 1,
1236
+ "trial_name": null,
1237
+ "trial_params": null
1238
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-1302/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-1736/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /share/models/Qwen3-4B-Instruct-2507
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:/share/models/Qwen3-4B-Instruct-2507
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-1736/chat_template.jinja ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- for message in messages %}
18
+ {%- if message.content is string %}
19
+ {%- set content = message.content %}
20
+ {%- else %}
21
+ {%- set content = '' %}
22
+ {%- endif %}
23
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
24
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
25
+ {%- elif message.role == "assistant" %}
26
+ {{- '<|im_start|>' + message.role + '\n' + content }}
27
+ {%- if message.tool_calls %}
28
+ {%- for tool_call in message.tool_calls %}
29
+ {%- if (loop.first and content) or (not loop.first) %}
30
+ {{- '\n' }}
31
+ {%- endif %}
32
+ {%- if tool_call.function %}
33
+ {%- set tool_call = tool_call.function %}
34
+ {%- endif %}
35
+ {{- '<tool_call>\n{"name": "' }}
36
+ {{- tool_call.name }}
37
+ {{- '", "arguments": ' }}
38
+ {%- if tool_call.arguments is string %}
39
+ {{- tool_call.arguments }}
40
+ {%- else %}
41
+ {{- tool_call.arguments | tojson }}
42
+ {%- endif %}
43
+ {{- '}\n</tool_call>' }}
44
+ {%- endfor %}
45
+ {%- endif %}
46
+ {{- '<|im_end|>\n' }}
47
+ {%- elif message.role == "tool" %}
48
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
49
+ {{- '<|im_start|>user' }}
50
+ {%- endif %}
51
+ {{- '\n<tool_response>\n' }}
52
+ {{- content }}
53
+ {{- '\n</tool_response>' }}
54
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
55
+ {{- '<|im_end|>\n' }}
56
+ {%- endif %}
57
+ {%- endif %}
58
+ {%- endfor %}
59
+ {%- if add_generation_prompt %}
60
+ {{- '<|im_start|>assistant\n' }}
61
+ {%- endif %}
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0/checkpoint-1736/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-1760/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-1760/chat_template.jinja ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- for message in messages %}
18
+ {%- if message.content is string %}
19
+ {%- set content = message.content %}
20
+ {%- else %}
21
+ {%- set content = '' %}
22
+ {%- endif %}
23
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
24
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
25
+ {%- elif message.role == "assistant" %}
26
+ {{- '<|im_start|>' + message.role + '\n' + content }}
27
+ {%- if message.tool_calls %}
28
+ {%- for tool_call in message.tool_calls %}
29
+ {%- if (loop.first and content) or (not loop.first) %}
30
+ {{- '\n' }}
31
+ {%- endif %}
32
+ {%- if tool_call.function %}
33
+ {%- set tool_call = tool_call.function %}
34
+ {%- endif %}
35
+ {{- '<tool_call>\n{"name": "' }}
36
+ {{- tool_call.name }}
37
+ {{- '", "arguments": ' }}
38
+ {%- if tool_call.arguments is string %}
39
+ {{- tool_call.arguments }}
40
+ {%- else %}
41
+ {{- tool_call.arguments | tojson }}
42
+ {%- endif %}
43
+ {{- '}\n</tool_call>' }}
44
+ {%- endfor %}
45
+ {%- endif %}
46
+ {{- '<|im_end|>\n' }}
47
+ {%- elif message.role == "tool" %}
48
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
49
+ {{- '<|im_start|>user' }}
50
+ {%- endif %}
51
+ {{- '\n<tool_response>\n' }}
52
+ {{- content }}
53
+ {{- '\n</tool_response>' }}
54
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
55
+ {{- '<|im_end|>\n' }}
56
+ {%- endif %}
57
+ {%- endif %}
58
+ {%- endfor %}
59
+ {%- if add_generation_prompt %}
60
+ {{- '<|im_start|>assistant\n' }}
61
+ {%- endif %}
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-1760/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-1760/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=13_from1_step4_fadec/checkpoint-921/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from1_step2/checkpoint-921/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /share/models/Qwen3-4B-Instruct-2507
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:/share/models/Qwen3-4B-Instruct-2507
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from1_step2/checkpoint-921/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=0_falayer=25_from1_step2/checkpoint-921/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=10/checkpoint-1760/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /share/models/Qwen3-4B-Instruct-2507
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:/share/models/Qwen3-4B-Instruct-2507
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.1
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=10/checkpoint-1760/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=10/checkpoint-1760/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 1010000,
235
+ "pad_token": "<|endoftext|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=10/checkpoint-1760/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100/checkpoint-1760/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100/checkpoint-1760/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/share/models/Qwen3-4B-Instruct-2507",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "q_proj",
29
+ "v_proj",
30
+ "k_proj"
31
+ ],
32
+ "target_parameters": null,
33
+ "task_type": "CAUSAL_LM",
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_qalora": false,
37
+ "use_rslora": true
38
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/chat_template.jinja ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- for message in messages %}
18
+ {%- if message.content is string %}
19
+ {%- set content = message.content %}
20
+ {%- else %}
21
+ {%- set content = '' %}
22
+ {%- endif %}
23
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
24
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
25
+ {%- elif message.role == "assistant" %}
26
+ {{- '<|im_start|>' + message.role + '\n' + content }}
27
+ {%- if message.tool_calls %}
28
+ {%- for tool_call in message.tool_calls %}
29
+ {%- if (loop.first and content) or (not loop.first) %}
30
+ {{- '\n' }}
31
+ {%- endif %}
32
+ {%- if tool_call.function %}
33
+ {%- set tool_call = tool_call.function %}
34
+ {%- endif %}
35
+ {{- '<tool_call>\n{"name": "' }}
36
+ {{- tool_call.name }}
37
+ {{- '", "arguments": ' }}
38
+ {%- if tool_call.arguments is string %}
39
+ {{- tool_call.arguments }}
40
+ {%- else %}
41
+ {{- tool_call.arguments | tojson }}
42
+ {%- endif %}
43
+ {{- '}\n</tool_call>' }}
44
+ {%- endfor %}
45
+ {%- endif %}
46
+ {{- '<|im_end|>\n' }}
47
+ {%- elif message.role == "tool" %}
48
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
49
+ {{- '<|im_start|>user' }}
50
+ {%- endif %}
51
+ {{- '\n<tool_response>\n' }}
52
+ {{- content }}
53
+ {{- '\n</tool_response>' }}
54
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
55
+ {{- '<|im_end|>\n' }}
56
+ {%- endif %}
57
+ {%- endif %}
58
+ {%- endfor %}
59
+ {%- if add_generation_prompt %}
60
+ {{- '<|im_start|>assistant\n' }}
61
+ {%- endif %}
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 1010000,
235
+ "pad_token": "<|endoftext|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
Qwen3-4B-Instruct-2507-sft-fusang-swa=2k_sink=100_falayer=25_from1_step2_fadec/checkpoint-921/trainer_state.json ADDED
@@ -0,0 +1,1322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 921,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.005432568246638598,
14
+ "grad_norm": 1.3015767335891724,
15
+ "learning_rate": 8.510638297872341e-06,
16
+ "loss": 0.5996,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.010865136493277196,
21
+ "grad_norm": 0.4534055292606354,
22
+ "learning_rate": 1.9148936170212766e-05,
23
+ "loss": 0.6183,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.016297704739915795,
28
+ "grad_norm": 0.35130345821380615,
29
+ "learning_rate": 2.9787234042553192e-05,
30
+ "loss": 0.5788,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.021730272986554392,
35
+ "grad_norm": 0.33144572377204895,
36
+ "learning_rate": 4.0425531914893614e-05,
37
+ "loss": 0.5739,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.027162841233192993,
42
+ "grad_norm": 0.3466748893260956,
43
+ "learning_rate": 5.1063829787234044e-05,
44
+ "loss": 0.5793,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.03259540947983159,
49
+ "grad_norm": 0.3162538707256317,
50
+ "learning_rate": 6.170212765957447e-05,
51
+ "loss": 0.6077,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.03802797772647019,
56
+ "grad_norm": 0.28290727734565735,
57
+ "learning_rate": 7.23404255319149e-05,
58
+ "loss": 0.5945,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.043460545973108784,
63
+ "grad_norm": 0.29814088344573975,
64
+ "learning_rate": 8.297872340425533e-05,
65
+ "loss": 0.5644,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.04889311421974739,
70
+ "grad_norm": 0.3688049912452698,
71
+ "learning_rate": 9.361702127659576e-05,
72
+ "loss": 0.5674,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.054325682466385986,
77
+ "grad_norm": 0.25144508481025696,
78
+ "learning_rate": 9.977116704805493e-05,
79
+ "loss": 0.5698,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.05975825071302458,
84
+ "grad_norm": 0.306525856256485,
85
+ "learning_rate": 9.919908466819223e-05,
86
+ "loss": 0.5734,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.06519081895966318,
91
+ "grad_norm": 0.24143728613853455,
92
+ "learning_rate": 9.862700228832952e-05,
93
+ "loss": 0.6082,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.07062338720630178,
98
+ "grad_norm": 0.25603583455085754,
99
+ "learning_rate": 9.805491990846683e-05,
100
+ "loss": 0.5743,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.07605595545294037,
105
+ "grad_norm": 0.3284883499145508,
106
+ "learning_rate": 9.748283752860413e-05,
107
+ "loss": 0.5715,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.08148852369957897,
112
+ "grad_norm": 0.2864092290401459,
113
+ "learning_rate": 9.691075514874142e-05,
114
+ "loss": 0.5864,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.08692109194621757,
119
+ "grad_norm": 0.24696052074432373,
120
+ "learning_rate": 9.633867276887872e-05,
121
+ "loss": 0.6029,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.09235366019285618,
126
+ "grad_norm": 0.2639234960079193,
127
+ "learning_rate": 9.576659038901601e-05,
128
+ "loss": 0.5862,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.09778622843949478,
133
+ "grad_norm": 0.247847318649292,
134
+ "learning_rate": 9.519450800915332e-05,
135
+ "loss": 0.574,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.10321879668613337,
140
+ "grad_norm": 0.36300021409988403,
141
+ "learning_rate": 9.462242562929062e-05,
142
+ "loss": 0.5561,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.10865136493277197,
147
+ "grad_norm": 0.2706812620162964,
148
+ "learning_rate": 9.405034324942791e-05,
149
+ "loss": 0.5661,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.11408393317941057,
154
+ "grad_norm": 0.2586255669593811,
155
+ "learning_rate": 9.347826086956522e-05,
156
+ "loss": 0.5926,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.11951650142604917,
161
+ "grad_norm": 0.2426815778017044,
162
+ "learning_rate": 9.290617848970252e-05,
163
+ "loss": 0.6078,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.12494906967268776,
168
+ "grad_norm": 0.2470799833536148,
169
+ "learning_rate": 9.233409610983981e-05,
170
+ "loss": 0.576,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.13038163791932636,
175
+ "grad_norm": 0.27425751090049744,
176
+ "learning_rate": 9.176201372997712e-05,
177
+ "loss": 0.5438,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.13581420616596496,
182
+ "grad_norm": 0.26391464471817017,
183
+ "learning_rate": 9.118993135011442e-05,
184
+ "loss": 0.5629,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.14124677441260355,
189
+ "grad_norm": 0.21842467784881592,
190
+ "learning_rate": 9.061784897025171e-05,
191
+ "loss": 0.5674,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.14667934265924215,
196
+ "grad_norm": 0.24267511069774628,
197
+ "learning_rate": 9.004576659038902e-05,
198
+ "loss": 0.565,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.15211191090588075,
203
+ "grad_norm": 0.2140224426984787,
204
+ "learning_rate": 8.947368421052632e-05,
205
+ "loss": 0.569,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 0.15754447915251935,
210
+ "grad_norm": 0.21704743802547455,
211
+ "learning_rate": 8.890160183066361e-05,
212
+ "loss": 0.577,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 0.16297704739915794,
217
+ "grad_norm": 0.26025763154029846,
218
+ "learning_rate": 8.832951945080092e-05,
219
+ "loss": 0.5639,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 0.16840961564579654,
224
+ "grad_norm": 0.250322163105011,
225
+ "learning_rate": 8.775743707093822e-05,
226
+ "loss": 0.5774,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 0.17384218389243514,
231
+ "grad_norm": 0.2071513682603836,
232
+ "learning_rate": 8.718535469107551e-05,
233
+ "loss": 0.5862,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 0.17927475213907373,
238
+ "grad_norm": 0.23947393894195557,
239
+ "learning_rate": 8.661327231121282e-05,
240
+ "loss": 0.5873,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 0.18470732038571236,
245
+ "grad_norm": 0.402304083108902,
246
+ "learning_rate": 8.604118993135012e-05,
247
+ "loss": 0.57,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 0.19013988863235096,
252
+ "grad_norm": 0.22468920052051544,
253
+ "learning_rate": 8.546910755148741e-05,
254
+ "loss": 0.5615,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 0.19557245687898955,
259
+ "grad_norm": 0.2339026927947998,
260
+ "learning_rate": 8.489702517162472e-05,
261
+ "loss": 0.5932,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 0.20100502512562815,
266
+ "grad_norm": 0.2048051357269287,
267
+ "learning_rate": 8.432494279176202e-05,
268
+ "loss": 0.585,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 0.20643759337226675,
273
+ "grad_norm": 0.21809840202331543,
274
+ "learning_rate": 8.375286041189931e-05,
275
+ "loss": 0.5817,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 0.21187016161890534,
280
+ "grad_norm": 0.21819952130317688,
281
+ "learning_rate": 8.318077803203662e-05,
282
+ "loss": 0.5918,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 0.21730272986554394,
287
+ "grad_norm": 0.2216586023569107,
288
+ "learning_rate": 8.260869565217392e-05,
289
+ "loss": 0.5666,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 0.22273529811218254,
294
+ "grad_norm": 0.24591778218746185,
295
+ "learning_rate": 8.203661327231121e-05,
296
+ "loss": 0.6162,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 0.22816786635882114,
301
+ "grad_norm": 0.2052900642156601,
302
+ "learning_rate": 8.146453089244852e-05,
303
+ "loss": 0.5862,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 0.23360043460545973,
308
+ "grad_norm": 0.2240307331085205,
309
+ "learning_rate": 8.089244851258582e-05,
310
+ "loss": 0.5755,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 0.23903300285209833,
315
+ "grad_norm": 0.2725607752799988,
316
+ "learning_rate": 8.032036613272312e-05,
317
+ "loss": 0.5511,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 0.24446557109873693,
322
+ "grad_norm": 0.22214853763580322,
323
+ "learning_rate": 7.974828375286042e-05,
324
+ "loss": 0.5819,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 0.24989813934537553,
329
+ "grad_norm": 0.23538362979888916,
330
+ "learning_rate": 7.917620137299772e-05,
331
+ "loss": 0.5759,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 0.25533070759201415,
336
+ "grad_norm": 0.2038874477148056,
337
+ "learning_rate": 7.860411899313502e-05,
338
+ "loss": 0.5989,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 0.2607632758386527,
343
+ "grad_norm": 0.20052260160446167,
344
+ "learning_rate": 7.803203661327232e-05,
345
+ "loss": 0.5763,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 0.26619584408529134,
350
+ "grad_norm": 0.24630379676818848,
351
+ "learning_rate": 7.745995423340962e-05,
352
+ "loss": 0.573,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 0.2716284123319299,
357
+ "grad_norm": 0.22534747421741486,
358
+ "learning_rate": 7.688787185354692e-05,
359
+ "loss": 0.5482,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 0.27706098057856854,
364
+ "grad_norm": 0.21359695494174957,
365
+ "learning_rate": 7.631578947368422e-05,
366
+ "loss": 0.5826,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 0.2824935488252071,
371
+ "grad_norm": 0.2673405110836029,
372
+ "learning_rate": 7.574370709382152e-05,
373
+ "loss": 0.6025,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 0.28792611707184573,
378
+ "grad_norm": 0.21792642772197723,
379
+ "learning_rate": 7.517162471395882e-05,
380
+ "loss": 0.5595,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 0.2933586853184843,
385
+ "grad_norm": 0.2374526411294937,
386
+ "learning_rate": 7.459954233409611e-05,
387
+ "loss": 0.5682,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 0.2987912535651229,
392
+ "grad_norm": 0.20959119498729706,
393
+ "learning_rate": 7.402745995423342e-05,
394
+ "loss": 0.5561,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 0.3042238218117615,
399
+ "grad_norm": 0.22747580707073212,
400
+ "learning_rate": 7.345537757437072e-05,
401
+ "loss": 0.5455,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 0.3096563900584001,
406
+ "grad_norm": 0.22923846542835236,
407
+ "learning_rate": 7.288329519450801e-05,
408
+ "loss": 0.5669,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 0.3150889583050387,
413
+ "grad_norm": 0.23467932641506195,
414
+ "learning_rate": 7.231121281464531e-05,
415
+ "loss": 0.5674,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 0.3205215265516773,
420
+ "grad_norm": 0.24083422124385834,
421
+ "learning_rate": 7.17391304347826e-05,
422
+ "loss": 0.5652,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 0.3259540947983159,
427
+ "grad_norm": 0.2186257690191269,
428
+ "learning_rate": 7.116704805491991e-05,
429
+ "loss": 0.5774,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 0.3313866630449545,
434
+ "grad_norm": 0.22179163992404938,
435
+ "learning_rate": 7.059496567505721e-05,
436
+ "loss": 0.558,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 0.3368192312915931,
441
+ "grad_norm": 0.37958696484565735,
442
+ "learning_rate": 7.00228832951945e-05,
443
+ "loss": 0.5844,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 0.3422517995382317,
448
+ "grad_norm": 0.2163124531507492,
449
+ "learning_rate": 6.945080091533181e-05,
450
+ "loss": 0.5832,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 0.3476843677848703,
455
+ "grad_norm": 0.22177410125732422,
456
+ "learning_rate": 6.887871853546911e-05,
457
+ "loss": 0.5828,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 0.3531169360315089,
462
+ "grad_norm": 0.2047460824251175,
463
+ "learning_rate": 6.83066361556064e-05,
464
+ "loss": 0.5527,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 0.35854950427814747,
469
+ "grad_norm": 0.22761861979961395,
470
+ "learning_rate": 6.773455377574371e-05,
471
+ "loss": 0.5769,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 0.3639820725247861,
476
+ "grad_norm": 0.2984655201435089,
477
+ "learning_rate": 6.716247139588101e-05,
478
+ "loss": 0.5655,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 0.3694146407714247,
483
+ "grad_norm": 0.2038339525461197,
484
+ "learning_rate": 6.65903890160183e-05,
485
+ "loss": 0.572,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 0.3748472090180633,
490
+ "grad_norm": 0.19332076609134674,
491
+ "learning_rate": 6.601830663615561e-05,
492
+ "loss": 0.5915,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 0.3802797772647019,
497
+ "grad_norm": 0.2224508821964264,
498
+ "learning_rate": 6.544622425629291e-05,
499
+ "loss": 0.5746,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 0.3857123455113405,
504
+ "grad_norm": 0.20780149102210999,
505
+ "learning_rate": 6.48741418764302e-05,
506
+ "loss": 0.5887,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 0.3911449137579791,
511
+ "grad_norm": 0.6229786276817322,
512
+ "learning_rate": 6.430205949656751e-05,
513
+ "loss": 0.5847,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 0.3965774820046177,
518
+ "grad_norm": 0.19432781636714935,
519
+ "learning_rate": 6.372997711670481e-05,
520
+ "loss": 0.5845,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 0.4020100502512563,
525
+ "grad_norm": 0.26033878326416016,
526
+ "learning_rate": 6.31578947368421e-05,
527
+ "loss": 0.5398,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 0.40744261849789487,
532
+ "grad_norm": 0.1879839450120926,
533
+ "learning_rate": 6.258581235697941e-05,
534
+ "loss": 0.5576,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 0.4128751867445335,
539
+ "grad_norm": 0.1986129730939865,
540
+ "learning_rate": 6.201372997711671e-05,
541
+ "loss": 0.567,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 0.41830775499117206,
546
+ "grad_norm": 0.23794332146644592,
547
+ "learning_rate": 6.1441647597254e-05,
548
+ "loss": 0.5786,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 0.4237403232378107,
553
+ "grad_norm": 0.17640449106693268,
554
+ "learning_rate": 6.086956521739131e-05,
555
+ "loss": 0.5489,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 0.42917289148444926,
560
+ "grad_norm": 0.19154198467731476,
561
+ "learning_rate": 6.029748283752861e-05,
562
+ "loss": 0.5565,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 0.4346054597310879,
567
+ "grad_norm": 0.21621261537075043,
568
+ "learning_rate": 5.9725400457665904e-05,
569
+ "loss": 0.5452,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 0.44003802797772645,
574
+ "grad_norm": 0.20776431262493134,
575
+ "learning_rate": 5.915331807780321e-05,
576
+ "loss": 0.5642,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 0.4454705962243651,
581
+ "grad_norm": 0.21817751228809357,
582
+ "learning_rate": 5.858123569794051e-05,
583
+ "loss": 0.5927,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 0.45090316447100365,
588
+ "grad_norm": 0.22786065936088562,
589
+ "learning_rate": 5.8009153318077804e-05,
590
+ "loss": 0.5689,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 0.4563357327176423,
595
+ "grad_norm": 0.21688605844974518,
596
+ "learning_rate": 5.743707093821511e-05,
597
+ "loss": 0.5644,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 0.46176830096428084,
602
+ "grad_norm": 0.21741735935211182,
603
+ "learning_rate": 5.686498855835241e-05,
604
+ "loss": 0.5559,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 0.46720086921091947,
609
+ "grad_norm": 0.26951777935028076,
610
+ "learning_rate": 5.6292906178489704e-05,
611
+ "loss": 0.5748,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 0.47263343745755804,
616
+ "grad_norm": 0.21070964634418488,
617
+ "learning_rate": 5.5720823798627006e-05,
618
+ "loss": 0.5717,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 0.47806600570419666,
623
+ "grad_norm": 0.23886334896087646,
624
+ "learning_rate": 5.51487414187643e-05,
625
+ "loss": 0.584,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 0.48349857395083523,
630
+ "grad_norm": 0.21350622177124023,
631
+ "learning_rate": 5.4576659038901604e-05,
632
+ "loss": 0.5778,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 0.48893114219747386,
637
+ "grad_norm": 0.1953973025083542,
638
+ "learning_rate": 5.4004576659038907e-05,
639
+ "loss": 0.5749,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 0.4943637104441125,
644
+ "grad_norm": 0.2156413346529007,
645
+ "learning_rate": 5.34324942791762e-05,
646
+ "loss": 0.55,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 0.49979627869075105,
651
+ "grad_norm": 0.22743190824985504,
652
+ "learning_rate": 5.28604118993135e-05,
653
+ "loss": 0.5991,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 0.5052288469373897,
658
+ "grad_norm": 0.20552119612693787,
659
+ "learning_rate": 5.228832951945081e-05,
660
+ "loss": 0.5871,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 0.5106614151840283,
665
+ "grad_norm": 0.29377639293670654,
666
+ "learning_rate": 5.17162471395881e-05,
667
+ "loss": 0.555,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 0.5160939834306668,
672
+ "grad_norm": 0.1877746433019638,
673
+ "learning_rate": 5.11441647597254e-05,
674
+ "loss": 0.5846,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 0.5215265516773054,
679
+ "grad_norm": 0.23544102907180786,
680
+ "learning_rate": 5.057208237986271e-05,
681
+ "loss": 0.5806,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 0.5269591199239441,
686
+ "grad_norm": 0.2117416262626648,
687
+ "learning_rate": 5e-05,
688
+ "loss": 0.5842,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 0.5323916881705827,
693
+ "grad_norm": 0.21826615929603577,
694
+ "learning_rate": 4.9427917620137305e-05,
695
+ "loss": 0.5613,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 0.5378242564172212,
700
+ "grad_norm": 0.20202744007110596,
701
+ "learning_rate": 4.88558352402746e-05,
702
+ "loss": 0.5699,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 0.5432568246638598,
707
+ "grad_norm": 0.21085906028747559,
708
+ "learning_rate": 4.82837528604119e-05,
709
+ "loss": 0.5666,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 0.5486893929104985,
714
+ "grad_norm": 0.1997220665216446,
715
+ "learning_rate": 4.7711670480549205e-05,
716
+ "loss": 0.5855,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 0.5541219611571371,
721
+ "grad_norm": 0.19225606322288513,
722
+ "learning_rate": 4.71395881006865e-05,
723
+ "loss": 0.6002,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 0.5595545294037756,
728
+ "grad_norm": 0.2273896485567093,
729
+ "learning_rate": 4.65675057208238e-05,
730
+ "loss": 0.582,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 0.5649870976504142,
735
+ "grad_norm": 0.2283266931772232,
736
+ "learning_rate": 4.5995423340961105e-05,
737
+ "loss": 0.5724,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 0.5704196658970528,
742
+ "grad_norm": 0.203383207321167,
743
+ "learning_rate": 4.54233409610984e-05,
744
+ "loss": 0.5323,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 0.5758522341436915,
749
+ "grad_norm": 0.21528829634189606,
750
+ "learning_rate": 4.48512585812357e-05,
751
+ "loss": 0.5758,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 0.58128480239033,
756
+ "grad_norm": 0.21587879955768585,
757
+ "learning_rate": 4.4279176201373e-05,
758
+ "loss": 0.5772,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 0.5867173706369686,
763
+ "grad_norm": 0.223943829536438,
764
+ "learning_rate": 4.37070938215103e-05,
765
+ "loss": 0.5503,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 0.5921499388836072,
770
+ "grad_norm": 0.25736063718795776,
771
+ "learning_rate": 4.3135011441647596e-05,
772
+ "loss": 0.5818,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 0.5975825071302459,
777
+ "grad_norm": 0.18794198334217072,
778
+ "learning_rate": 4.25629290617849e-05,
779
+ "loss": 0.5648,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 0.6030150753768844,
784
+ "grad_norm": 0.20583099126815796,
785
+ "learning_rate": 4.1990846681922194e-05,
786
+ "loss": 0.5799,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 0.608447643623523,
791
+ "grad_norm": 0.19779925048351288,
792
+ "learning_rate": 4.1418764302059497e-05,
793
+ "loss": 0.5782,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 0.6138802118701616,
798
+ "grad_norm": 0.20509599149227142,
799
+ "learning_rate": 4.08466819221968e-05,
800
+ "loss": 0.5729,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 0.6193127801168002,
805
+ "grad_norm": 0.2053207904100418,
806
+ "learning_rate": 4.0274599542334094e-05,
807
+ "loss": 0.5672,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 0.6247453483634389,
812
+ "grad_norm": 0.17894507944583893,
813
+ "learning_rate": 3.97025171624714e-05,
814
+ "loss": 0.5459,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 0.6301779166100774,
819
+ "grad_norm": 0.2054516226053238,
820
+ "learning_rate": 3.91304347826087e-05,
821
+ "loss": 0.5941,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 0.635610484856716,
826
+ "grad_norm": 0.2139163464307785,
827
+ "learning_rate": 3.8558352402745995e-05,
828
+ "loss": 0.5897,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 0.6410430531033546,
833
+ "grad_norm": 0.18362848460674286,
834
+ "learning_rate": 3.79862700228833e-05,
835
+ "loss": 0.5755,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 0.6464756213499933,
840
+ "grad_norm": 0.25813937187194824,
841
+ "learning_rate": 3.74141876430206e-05,
842
+ "loss": 0.5657,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 0.6519081895966318,
847
+ "grad_norm": 0.19707731902599335,
848
+ "learning_rate": 3.6842105263157895e-05,
849
+ "loss": 0.5798,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 0.6573407578432704,
854
+ "grad_norm": 0.21467731893062592,
855
+ "learning_rate": 3.62700228832952e-05,
856
+ "loss": 0.5607,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 0.662773326089909,
861
+ "grad_norm": 0.18817900121212006,
862
+ "learning_rate": 3.56979405034325e-05,
863
+ "loss": 0.6053,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 0.6682058943365476,
868
+ "grad_norm": 0.1965055763721466,
869
+ "learning_rate": 3.5125858123569795e-05,
870
+ "loss": 0.5272,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 0.6736384625831862,
875
+ "grad_norm": 0.23772867023944855,
876
+ "learning_rate": 3.45537757437071e-05,
877
+ "loss": 0.558,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 0.6790710308298248,
882
+ "grad_norm": 0.19465915858745575,
883
+ "learning_rate": 3.39816933638444e-05,
884
+ "loss": 0.5764,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 0.6845035990764634,
889
+ "grad_norm": 0.18953974545001984,
890
+ "learning_rate": 3.3409610983981695e-05,
891
+ "loss": 0.5839,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 0.689936167323102,
896
+ "grad_norm": 0.3488953113555908,
897
+ "learning_rate": 3.2837528604119e-05,
898
+ "loss": 0.5677,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 0.6953687355697405,
903
+ "grad_norm": 0.20315735042095184,
904
+ "learning_rate": 3.226544622425629e-05,
905
+ "loss": 0.5473,
906
+ "step": 640
907
+ },
908
+ {
909
+ "epoch": 0.7008013038163792,
910
+ "grad_norm": 0.1986822485923767,
911
+ "learning_rate": 3.1693363844393595e-05,
912
+ "loss": 0.5698,
913
+ "step": 645
914
+ },
915
+ {
916
+ "epoch": 0.7062338720630178,
917
+ "grad_norm": 0.1991867870092392,
918
+ "learning_rate": 3.112128146453089e-05,
919
+ "loss": 0.5637,
920
+ "step": 650
921
+ },
922
+ {
923
+ "epoch": 0.7116664403096564,
924
+ "grad_norm": 0.2192126363515854,
925
+ "learning_rate": 3.054919908466819e-05,
926
+ "loss": 0.5789,
927
+ "step": 655
928
+ },
929
+ {
930
+ "epoch": 0.7170990085562949,
931
+ "grad_norm": 0.20494726300239563,
932
+ "learning_rate": 2.9977116704805492e-05,
933
+ "loss": 0.5804,
934
+ "step": 660
935
+ },
936
+ {
937
+ "epoch": 0.7225315768029336,
938
+ "grad_norm": 0.28420111536979675,
939
+ "learning_rate": 2.9405034324942794e-05,
940
+ "loss": 0.5633,
941
+ "step": 665
942
+ },
943
+ {
944
+ "epoch": 0.7279641450495722,
945
+ "grad_norm": 0.19433985650539398,
946
+ "learning_rate": 2.8832951945080093e-05,
947
+ "loss": 0.5698,
948
+ "step": 670
949
+ },
950
+ {
951
+ "epoch": 0.7333967132962108,
952
+ "grad_norm": 0.19712510704994202,
953
+ "learning_rate": 2.826086956521739e-05,
954
+ "loss": 0.557,
955
+ "step": 675
956
+ },
957
+ {
958
+ "epoch": 0.7388292815428494,
959
+ "grad_norm": 0.2100038081407547,
960
+ "learning_rate": 2.768878718535469e-05,
961
+ "loss": 0.5807,
962
+ "step": 680
963
+ },
964
+ {
965
+ "epoch": 0.744261849789488,
966
+ "grad_norm": 0.29004234075546265,
967
+ "learning_rate": 2.7116704805491993e-05,
968
+ "loss": 0.5462,
969
+ "step": 685
970
+ },
971
+ {
972
+ "epoch": 0.7496944180361266,
973
+ "grad_norm": 0.18994742631912231,
974
+ "learning_rate": 2.654462242562929e-05,
975
+ "loss": 0.5937,
976
+ "step": 690
977
+ },
978
+ {
979
+ "epoch": 0.7551269862827652,
980
+ "grad_norm": 0.19477994740009308,
981
+ "learning_rate": 2.597254004576659e-05,
982
+ "loss": 0.5785,
983
+ "step": 695
984
+ },
985
+ {
986
+ "epoch": 0.7605595545294038,
987
+ "grad_norm": 0.20193684101104736,
988
+ "learning_rate": 2.5400457665903894e-05,
989
+ "loss": 0.5836,
990
+ "step": 700
991
+ },
992
+ {
993
+ "epoch": 0.7659921227760423,
994
+ "grad_norm": 0.22384333610534668,
995
+ "learning_rate": 2.4828375286041193e-05,
996
+ "loss": 0.5765,
997
+ "step": 705
998
+ },
999
+ {
1000
+ "epoch": 0.771424691022681,
1001
+ "grad_norm": 0.17794522643089294,
1002
+ "learning_rate": 2.425629290617849e-05,
1003
+ "loss": 0.5839,
1004
+ "step": 710
1005
+ },
1006
+ {
1007
+ "epoch": 0.7768572592693196,
1008
+ "grad_norm": 0.21384797990322113,
1009
+ "learning_rate": 2.368421052631579e-05,
1010
+ "loss": 0.6081,
1011
+ "step": 715
1012
+ },
1013
+ {
1014
+ "epoch": 0.7822898275159582,
1015
+ "grad_norm": 0.1895979642868042,
1016
+ "learning_rate": 2.311212814645309e-05,
1017
+ "loss": 0.5817,
1018
+ "step": 720
1019
+ },
1020
+ {
1021
+ "epoch": 0.7877223957625967,
1022
+ "grad_norm": 0.1993294209241867,
1023
+ "learning_rate": 2.2540045766590388e-05,
1024
+ "loss": 0.567,
1025
+ "step": 725
1026
+ },
1027
+ {
1028
+ "epoch": 0.7931549640092354,
1029
+ "grad_norm": 0.1895848959684372,
1030
+ "learning_rate": 2.1967963386727687e-05,
1031
+ "loss": 0.5772,
1032
+ "step": 730
1033
+ },
1034
+ {
1035
+ "epoch": 0.798587532255874,
1036
+ "grad_norm": 0.2276710420846939,
1037
+ "learning_rate": 2.139588100686499e-05,
1038
+ "loss": 0.549,
1039
+ "step": 735
1040
+ },
1041
+ {
1042
+ "epoch": 0.8040201005025126,
1043
+ "grad_norm": 0.20059236884117126,
1044
+ "learning_rate": 2.082379862700229e-05,
1045
+ "loss": 0.5411,
1046
+ "step": 740
1047
+ },
1048
+ {
1049
+ "epoch": 0.8094526687491511,
1050
+ "grad_norm": 0.2584899067878723,
1051
+ "learning_rate": 2.0251716247139587e-05,
1052
+ "loss": 0.5706,
1053
+ "step": 745
1054
+ },
1055
+ {
1056
+ "epoch": 0.8148852369957897,
1057
+ "grad_norm": 0.19888870418071747,
1058
+ "learning_rate": 1.967963386727689e-05,
1059
+ "loss": 0.5652,
1060
+ "step": 750
1061
+ },
1062
+ {
1063
+ "epoch": 0.8203178052424284,
1064
+ "grad_norm": 0.23057852685451508,
1065
+ "learning_rate": 1.910755148741419e-05,
1066
+ "loss": 0.5925,
1067
+ "step": 755
1068
+ },
1069
+ {
1070
+ "epoch": 0.825750373489067,
1071
+ "grad_norm": 0.23049262166023254,
1072
+ "learning_rate": 1.853546910755149e-05,
1073
+ "loss": 0.5722,
1074
+ "step": 760
1075
+ },
1076
+ {
1077
+ "epoch": 0.8311829417357055,
1078
+ "grad_norm": 0.20783977210521698,
1079
+ "learning_rate": 1.796338672768879e-05,
1080
+ "loss": 0.572,
1081
+ "step": 765
1082
+ },
1083
+ {
1084
+ "epoch": 0.8366155099823441,
1085
+ "grad_norm": 0.2562456727027893,
1086
+ "learning_rate": 1.739130434782609e-05,
1087
+ "loss": 0.5454,
1088
+ "step": 770
1089
+ },
1090
+ {
1091
+ "epoch": 0.8420480782289828,
1092
+ "grad_norm": 0.21120162308216095,
1093
+ "learning_rate": 1.6819221967963388e-05,
1094
+ "loss": 0.5904,
1095
+ "step": 775
1096
+ },
1097
+ {
1098
+ "epoch": 0.8474806464756214,
1099
+ "grad_norm": 0.21850056946277618,
1100
+ "learning_rate": 1.6247139588100687e-05,
1101
+ "loss": 0.5993,
1102
+ "step": 780
1103
+ },
1104
+ {
1105
+ "epoch": 0.8529132147222599,
1106
+ "grad_norm": 0.2106572985649109,
1107
+ "learning_rate": 1.5675057208237986e-05,
1108
+ "loss": 0.606,
1109
+ "step": 785
1110
+ },
1111
+ {
1112
+ "epoch": 0.8583457829688985,
1113
+ "grad_norm": 0.1892135888338089,
1114
+ "learning_rate": 1.5102974828375288e-05,
1115
+ "loss": 0.5748,
1116
+ "step": 790
1117
+ },
1118
+ {
1119
+ "epoch": 0.8637783512155371,
1120
+ "grad_norm": 0.2126905769109726,
1121
+ "learning_rate": 1.4530892448512587e-05,
1122
+ "loss": 0.5704,
1123
+ "step": 795
1124
+ },
1125
+ {
1126
+ "epoch": 0.8692109194621758,
1127
+ "grad_norm": 0.22039473056793213,
1128
+ "learning_rate": 1.3958810068649886e-05,
1129
+ "loss": 0.5759,
1130
+ "step": 800
1131
+ },
1132
+ {
1133
+ "epoch": 0.8746434877088144,
1134
+ "grad_norm": 0.21076731383800507,
1135
+ "learning_rate": 1.3386727688787188e-05,
1136
+ "loss": 0.5937,
1137
+ "step": 805
1138
+ },
1139
+ {
1140
+ "epoch": 0.8800760559554529,
1141
+ "grad_norm": 0.17734327912330627,
1142
+ "learning_rate": 1.2814645308924485e-05,
1143
+ "loss": 0.5809,
1144
+ "step": 810
1145
+ },
1146
+ {
1147
+ "epoch": 0.8855086242020915,
1148
+ "grad_norm": 0.19097428023815155,
1149
+ "learning_rate": 1.2242562929061784e-05,
1150
+ "loss": 0.5598,
1151
+ "step": 815
1152
+ },
1153
+ {
1154
+ "epoch": 0.8909411924487302,
1155
+ "grad_norm": 0.23482643067836761,
1156
+ "learning_rate": 1.1670480549199085e-05,
1157
+ "loss": 0.5682,
1158
+ "step": 820
1159
+ },
1160
+ {
1161
+ "epoch": 0.8963737606953688,
1162
+ "grad_norm": 0.19752998650074005,
1163
+ "learning_rate": 1.1098398169336386e-05,
1164
+ "loss": 0.5689,
1165
+ "step": 825
1166
+ },
1167
+ {
1168
+ "epoch": 0.9018063289420073,
1169
+ "grad_norm": 0.23479461669921875,
1170
+ "learning_rate": 1.0526315789473684e-05,
1171
+ "loss": 0.5859,
1172
+ "step": 830
1173
+ },
1174
+ {
1175
+ "epoch": 0.9072388971886459,
1176
+ "grad_norm": 0.21521364152431488,
1177
+ "learning_rate": 9.954233409610985e-06,
1178
+ "loss": 0.6074,
1179
+ "step": 835
1180
+ },
1181
+ {
1182
+ "epoch": 0.9126714654352845,
1183
+ "grad_norm": 0.2059374749660492,
1184
+ "learning_rate": 9.382151029748284e-06,
1185
+ "loss": 0.583,
1186
+ "step": 840
1187
+ },
1188
+ {
1189
+ "epoch": 0.9181040336819232,
1190
+ "grad_norm": 0.20290476083755493,
1191
+ "learning_rate": 8.810068649885583e-06,
1192
+ "loss": 0.5651,
1193
+ "step": 845
1194
+ },
1195
+ {
1196
+ "epoch": 0.9235366019285617,
1197
+ "grad_norm": 0.18844471871852875,
1198
+ "learning_rate": 8.237986270022884e-06,
1199
+ "loss": 0.556,
1200
+ "step": 850
1201
+ },
1202
+ {
1203
+ "epoch": 0.9289691701752003,
1204
+ "grad_norm": 0.18698588013648987,
1205
+ "learning_rate": 7.665903890160184e-06,
1206
+ "loss": 0.5899,
1207
+ "step": 855
1208
+ },
1209
+ {
1210
+ "epoch": 0.9344017384218389,
1211
+ "grad_norm": 0.21699076890945435,
1212
+ "learning_rate": 7.093821510297482e-06,
1213
+ "loss": 0.6056,
1214
+ "step": 860
1215
+ },
1216
+ {
1217
+ "epoch": 0.9398343066684776,
1218
+ "grad_norm": 0.19663618505001068,
1219
+ "learning_rate": 6.521739130434783e-06,
1220
+ "loss": 0.5898,
1221
+ "step": 865
1222
+ },
1223
+ {
1224
+ "epoch": 0.9452668749151161,
1225
+ "grad_norm": 0.2180209904909134,
1226
+ "learning_rate": 5.949656750572083e-06,
1227
+ "loss": 0.557,
1228
+ "step": 870
1229
+ },
1230
+ {
1231
+ "epoch": 0.9506994431617547,
1232
+ "grad_norm": 0.22569262981414795,
1233
+ "learning_rate": 5.3775743707093824e-06,
1234
+ "loss": 0.5516,
1235
+ "step": 875
1236
+ },
1237
+ {
1238
+ "epoch": 0.9561320114083933,
1239
+ "grad_norm": 0.2216615080833435,
1240
+ "learning_rate": 4.805491990846682e-06,
1241
+ "loss": 0.6001,
1242
+ "step": 880
1243
+ },
1244
+ {
1245
+ "epoch": 0.961564579655032,
1246
+ "grad_norm": 0.1988694965839386,
1247
+ "learning_rate": 4.233409610983982e-06,
1248
+ "loss": 0.5834,
1249
+ "step": 885
1250
+ },
1251
+ {
1252
+ "epoch": 0.9669971479016705,
1253
+ "grad_norm": 0.19006194174289703,
1254
+ "learning_rate": 3.6613272311212818e-06,
1255
+ "loss": 0.5679,
1256
+ "step": 890
1257
+ },
1258
+ {
1259
+ "epoch": 0.9724297161483091,
1260
+ "grad_norm": 0.23912011086940765,
1261
+ "learning_rate": 3.0892448512585815e-06,
1262
+ "loss": 0.5479,
1263
+ "step": 895
1264
+ },
1265
+ {
1266
+ "epoch": 0.9778622843949477,
1267
+ "grad_norm": 0.18458198010921478,
1268
+ "learning_rate": 2.517162471395881e-06,
1269
+ "loss": 0.5643,
1270
+ "step": 900
1271
+ },
1272
+ {
1273
+ "epoch": 0.9832948526415863,
1274
+ "grad_norm": 0.18322934210300446,
1275
+ "learning_rate": 1.9450800915331807e-06,
1276
+ "loss": 0.5439,
1277
+ "step": 905
1278
+ },
1279
+ {
1280
+ "epoch": 0.988727420888225,
1281
+ "grad_norm": 0.24298790097236633,
1282
+ "learning_rate": 1.3729977116704805e-06,
1283
+ "loss": 0.5892,
1284
+ "step": 910
1285
+ },
1286
+ {
1287
+ "epoch": 0.9941599891348635,
1288
+ "grad_norm": 0.20500127971172333,
1289
+ "learning_rate": 8.009153318077803e-07,
1290
+ "loss": 0.578,
1291
+ "step": 915
1292
+ },
1293
+ {
1294
+ "epoch": 0.9995925573815021,
1295
+ "grad_norm": 0.2129577100276947,
1296
+ "learning_rate": 2.288329519450801e-07,
1297
+ "loss": 0.5471,
1298
+ "step": 920
1299
+ }
1300
+ ],
1301
+ "logging_steps": 5,
1302
+ "max_steps": 921,
1303
+ "num_input_tokens_seen": 0,
1304
+ "num_train_epochs": 1,
1305
+ "save_steps": 500,
1306
+ "stateful_callbacks": {
1307
+ "TrainerControl": {
1308
+ "args": {
1309
+ "should_epoch_stop": false,
1310
+ "should_evaluate": false,
1311
+ "should_log": false,
1312
+ "should_save": true,
1313
+ "should_training_stop": true
1314
+ },
1315
+ "attributes": {}
1316
+ }
1317
+ },
1318
+ "total_flos": 1.5239517919298716e+19,
1319
+ "train_batch_size": 1,
1320
+ "trial_name": null,
1321
+ "trial_params": null
1322
+ }
Qwen3-4B-Instruct-2507-sft-fusang/checkpoint-1760/trainer_state.json ADDED
@@ -0,0 +1,2498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1760,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.002841716396703609,
14
+ "grad_norm": 0.9752756357192993,
15
+ "learning_rate": 4.5454545454545455e-06,
16
+ "loss": 0.6068,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.005683432793407218,
21
+ "grad_norm": 0.5571355223655701,
22
+ "learning_rate": 1.0227272727272729e-05,
23
+ "loss": 0.5936,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.008525149190110827,
28
+ "grad_norm": 0.3266292214393616,
29
+ "learning_rate": 1.590909090909091e-05,
30
+ "loss": 0.5728,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.011366865586814436,
35
+ "grad_norm": 0.2658981680870056,
36
+ "learning_rate": 2.1590909090909093e-05,
37
+ "loss": 0.5402,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.014208581983518044,
42
+ "grad_norm": 0.30417537689208984,
43
+ "learning_rate": 2.7272727272727273e-05,
44
+ "loss": 0.5487,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.017050298380221655,
49
+ "grad_norm": 0.26923367381095886,
50
+ "learning_rate": 3.295454545454545e-05,
51
+ "loss": 0.6084,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.019892014776925263,
56
+ "grad_norm": 0.30384576320648193,
57
+ "learning_rate": 3.8636363636363636e-05,
58
+ "loss": 0.5957,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.022733731173628872,
63
+ "grad_norm": 0.2878063917160034,
64
+ "learning_rate": 4.431818181818182e-05,
65
+ "loss": 0.5845,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.02557544757033248,
70
+ "grad_norm": 0.25360503792762756,
71
+ "learning_rate": 5e-05,
72
+ "loss": 0.5963,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.02841716396703609,
77
+ "grad_norm": 0.26214471459388733,
78
+ "learning_rate": 5.568181818181818e-05,
79
+ "loss": 0.5689,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.0312588803637397,
84
+ "grad_norm": 0.3016664683818817,
85
+ "learning_rate": 6.136363636363636e-05,
86
+ "loss": 0.5885,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.03410059676044331,
91
+ "grad_norm": 0.2853708267211914,
92
+ "learning_rate": 6.704545454545455e-05,
93
+ "loss": 0.5814,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.03694231315714692,
98
+ "grad_norm": 0.2524615526199341,
99
+ "learning_rate": 7.272727272727273e-05,
100
+ "loss": 0.5719,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.039784029553850526,
105
+ "grad_norm": 0.2268151193857193,
106
+ "learning_rate": 7.840909090909091e-05,
107
+ "loss": 0.5717,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.042625745950554135,
112
+ "grad_norm": 0.2180832326412201,
113
+ "learning_rate": 8.40909090909091e-05,
114
+ "loss": 0.555,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.045467462347257744,
119
+ "grad_norm": 0.23236437141895294,
120
+ "learning_rate": 8.977272727272728e-05,
121
+ "loss": 0.5594,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.04830917874396135,
126
+ "grad_norm": 0.24800875782966614,
127
+ "learning_rate": 9.545454545454546e-05,
128
+ "loss": 0.5743,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.05115089514066496,
133
+ "grad_norm": 0.1982068121433258,
134
+ "learning_rate": 9.994019138755981e-05,
135
+ "loss": 0.6041,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.05399261153736857,
140
+ "grad_norm": 0.2268919050693512,
141
+ "learning_rate": 9.964114832535886e-05,
142
+ "loss": 0.5892,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.05683432793407218,
147
+ "grad_norm": 0.22892409563064575,
148
+ "learning_rate": 9.93421052631579e-05,
149
+ "loss": 0.5772,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.059676044330775786,
154
+ "grad_norm": 0.21798421442508698,
155
+ "learning_rate": 9.904306220095694e-05,
156
+ "loss": 0.5776,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.0625177607274794,
161
+ "grad_norm": 0.20109155774116516,
162
+ "learning_rate": 9.874401913875598e-05,
163
+ "loss": 0.5717,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.06535947712418301,
168
+ "grad_norm": 0.17350049316883087,
169
+ "learning_rate": 9.844497607655503e-05,
170
+ "loss": 0.5653,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.06820119352088662,
175
+ "grad_norm": 0.20336377620697021,
176
+ "learning_rate": 9.814593301435408e-05,
177
+ "loss": 0.5998,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.07104290991759023,
182
+ "grad_norm": 0.1792660355567932,
183
+ "learning_rate": 9.784688995215312e-05,
184
+ "loss": 0.5575,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.07388462631429384,
189
+ "grad_norm": 0.2105855494737625,
190
+ "learning_rate": 9.754784688995216e-05,
191
+ "loss": 0.5898,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.07672634271099744,
196
+ "grad_norm": 0.2220708131790161,
197
+ "learning_rate": 9.72488038277512e-05,
198
+ "loss": 0.5744,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.07956805910770105,
203
+ "grad_norm": 0.20286299288272858,
204
+ "learning_rate": 9.694976076555024e-05,
205
+ "loss": 0.5712,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 0.08240977550440466,
210
+ "grad_norm": 0.1932576298713684,
211
+ "learning_rate": 9.66507177033493e-05,
212
+ "loss": 0.5684,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 0.08525149190110827,
217
+ "grad_norm": 0.21917824447155,
218
+ "learning_rate": 9.635167464114832e-05,
219
+ "loss": 0.5584,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 0.08809320829781188,
224
+ "grad_norm": 0.21882839500904083,
225
+ "learning_rate": 9.605263157894737e-05,
226
+ "loss": 0.5508,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 0.09093492469451549,
231
+ "grad_norm": 0.234402596950531,
232
+ "learning_rate": 9.575358851674642e-05,
233
+ "loss": 0.5544,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 0.0937766410912191,
238
+ "grad_norm": 0.17900532484054565,
239
+ "learning_rate": 9.545454545454546e-05,
240
+ "loss": 0.5645,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 0.0966183574879227,
245
+ "grad_norm": 0.1782204657793045,
246
+ "learning_rate": 9.51555023923445e-05,
247
+ "loss": 0.5739,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 0.09946007388462631,
252
+ "grad_norm": 0.18758229911327362,
253
+ "learning_rate": 9.485645933014354e-05,
254
+ "loss": 0.5639,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 0.10230179028132992,
259
+ "grad_norm": 0.2168463170528412,
260
+ "learning_rate": 9.455741626794258e-05,
261
+ "loss": 0.5877,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 0.10514350667803353,
266
+ "grad_norm": 0.18619057536125183,
267
+ "learning_rate": 9.425837320574164e-05,
268
+ "loss": 0.5907,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 0.10798522307473714,
273
+ "grad_norm": 0.19158032536506653,
274
+ "learning_rate": 9.395933014354067e-05,
275
+ "loss": 0.5591,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 0.11082693947144075,
280
+ "grad_norm": 0.18429265916347504,
281
+ "learning_rate": 9.366028708133972e-05,
282
+ "loss": 0.5665,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 0.11366865586814436,
287
+ "grad_norm": 0.17102861404418945,
288
+ "learning_rate": 9.336124401913876e-05,
289
+ "loss": 0.5824,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 0.11651037226484796,
294
+ "grad_norm": 0.19570764899253845,
295
+ "learning_rate": 9.30622009569378e-05,
296
+ "loss": 0.5557,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 0.11935208866155157,
301
+ "grad_norm": 0.18533465266227722,
302
+ "learning_rate": 9.276315789473686e-05,
303
+ "loss": 0.5746,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 0.12219380505825518,
308
+ "grad_norm": 0.18167763948440552,
309
+ "learning_rate": 9.246411483253588e-05,
310
+ "loss": 0.5714,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 0.1250355214549588,
315
+ "grad_norm": 0.2030726820230484,
316
+ "learning_rate": 9.216507177033494e-05,
317
+ "loss": 0.531,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 0.1278772378516624,
322
+ "grad_norm": 0.18000352382659912,
323
+ "learning_rate": 9.186602870813398e-05,
324
+ "loss": 0.567,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 0.13071895424836602,
329
+ "grad_norm": 0.191226065158844,
330
+ "learning_rate": 9.156698564593302e-05,
331
+ "loss": 0.535,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 0.13356067064506963,
336
+ "grad_norm": 0.173014834523201,
337
+ "learning_rate": 9.126794258373206e-05,
338
+ "loss": 0.5825,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 0.13640238704177324,
343
+ "grad_norm": 0.21560324728488922,
344
+ "learning_rate": 9.09688995215311e-05,
345
+ "loss": 0.5888,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 0.13924410343847685,
350
+ "grad_norm": 0.21009966731071472,
351
+ "learning_rate": 9.066985645933016e-05,
352
+ "loss": 0.5284,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 0.14208581983518045,
357
+ "grad_norm": 0.18440449237823486,
358
+ "learning_rate": 9.03708133971292e-05,
359
+ "loss": 0.5527,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 0.14492753623188406,
364
+ "grad_norm": 0.2049122303724289,
365
+ "learning_rate": 9.007177033492822e-05,
366
+ "loss": 0.5805,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 0.14776925262858767,
371
+ "grad_norm": 0.19917908310890198,
372
+ "learning_rate": 8.977272727272728e-05,
373
+ "loss": 0.5663,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 0.15061096902529128,
378
+ "grad_norm": 0.16981367766857147,
379
+ "learning_rate": 8.947368421052632e-05,
380
+ "loss": 0.5969,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 0.1534526854219949,
385
+ "grad_norm": 0.17967240512371063,
386
+ "learning_rate": 8.917464114832537e-05,
387
+ "loss": 0.5716,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 0.1562944018186985,
392
+ "grad_norm": 0.19180747866630554,
393
+ "learning_rate": 8.88755980861244e-05,
394
+ "loss": 0.5788,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 0.1591361182154021,
399
+ "grad_norm": 0.19337241351604462,
400
+ "learning_rate": 8.857655502392344e-05,
401
+ "loss": 0.5545,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 0.16197783461210571,
406
+ "grad_norm": 0.2016487866640091,
407
+ "learning_rate": 8.82775119617225e-05,
408
+ "loss": 0.563,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 0.16481955100880932,
413
+ "grad_norm": 0.18139953911304474,
414
+ "learning_rate": 8.797846889952154e-05,
415
+ "loss": 0.5178,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 0.16766126740551293,
420
+ "grad_norm": 0.16124670207500458,
421
+ "learning_rate": 8.767942583732058e-05,
422
+ "loss": 0.5548,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 0.17050298380221654,
427
+ "grad_norm": 0.19367216527462006,
428
+ "learning_rate": 8.738038277511962e-05,
429
+ "loss": 0.5615,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 0.17334470019892015,
434
+ "grad_norm": 0.16001980006694794,
435
+ "learning_rate": 8.708133971291866e-05,
436
+ "loss": 0.578,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 0.17618641659562376,
441
+ "grad_norm": 0.15890493988990784,
442
+ "learning_rate": 8.678229665071771e-05,
443
+ "loss": 0.5617,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 0.17902813299232737,
448
+ "grad_norm": 0.1561274379491806,
449
+ "learning_rate": 8.648325358851675e-05,
450
+ "loss": 0.5917,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 0.18186984938903097,
455
+ "grad_norm": 0.18406479060649872,
456
+ "learning_rate": 8.61842105263158e-05,
457
+ "loss": 0.5701,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 0.18471156578573458,
462
+ "grad_norm": 0.15967822074890137,
463
+ "learning_rate": 8.588516746411484e-05,
464
+ "loss": 0.5571,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 0.1875532821824382,
469
+ "grad_norm": 0.16989850997924805,
470
+ "learning_rate": 8.558612440191388e-05,
471
+ "loss": 0.5861,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 0.1903949985791418,
476
+ "grad_norm": 0.17215800285339355,
477
+ "learning_rate": 8.528708133971293e-05,
478
+ "loss": 0.5985,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 0.1932367149758454,
483
+ "grad_norm": 0.18377338349819183,
484
+ "learning_rate": 8.498803827751196e-05,
485
+ "loss": 0.5799,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 0.19607843137254902,
490
+ "grad_norm": 0.18066288530826569,
491
+ "learning_rate": 8.468899521531101e-05,
492
+ "loss": 0.5835,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 0.19892014776925263,
497
+ "grad_norm": 0.1578647494316101,
498
+ "learning_rate": 8.438995215311005e-05,
499
+ "loss": 0.5275,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 0.20176186416595623,
504
+ "grad_norm": 0.17480728030204773,
505
+ "learning_rate": 8.40909090909091e-05,
506
+ "loss": 0.5473,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 0.20460358056265984,
511
+ "grad_norm": 0.16667082905769348,
512
+ "learning_rate": 8.379186602870814e-05,
513
+ "loss": 0.5708,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 0.20744529695936345,
518
+ "grad_norm": 0.15754733979701996,
519
+ "learning_rate": 8.349282296650718e-05,
520
+ "loss": 0.5781,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 0.21028701335606706,
525
+ "grad_norm": 0.18018724024295807,
526
+ "learning_rate": 8.319377990430622e-05,
527
+ "loss": 0.5705,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 0.21312872975277067,
532
+ "grad_norm": 0.17777396738529205,
533
+ "learning_rate": 8.289473684210527e-05,
534
+ "loss": 0.567,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 0.21597044614947428,
539
+ "grad_norm": 0.19776058197021484,
540
+ "learning_rate": 8.259569377990431e-05,
541
+ "loss": 0.5894,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 0.21881216254617789,
546
+ "grad_norm": 0.1884015053510666,
547
+ "learning_rate": 8.229665071770335e-05,
548
+ "loss": 0.5754,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 0.2216538789428815,
553
+ "grad_norm": 0.1602102369070053,
554
+ "learning_rate": 8.19976076555024e-05,
555
+ "loss": 0.5486,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 0.2244955953395851,
560
+ "grad_norm": 0.2285519540309906,
561
+ "learning_rate": 8.169856459330143e-05,
562
+ "loss": 0.5416,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 0.2273373117362887,
567
+ "grad_norm": 0.17223553359508514,
568
+ "learning_rate": 8.139952153110049e-05,
569
+ "loss": 0.5731,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 0.23017902813299232,
574
+ "grad_norm": 0.14779961109161377,
575
+ "learning_rate": 8.110047846889952e-05,
576
+ "loss": 0.5824,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 0.23302074452969593,
581
+ "grad_norm": 0.1669321060180664,
582
+ "learning_rate": 8.080143540669857e-05,
583
+ "loss": 0.5872,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 0.23586246092639954,
588
+ "grad_norm": 0.166211798787117,
589
+ "learning_rate": 8.050239234449761e-05,
590
+ "loss": 0.5956,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 0.23870417732310314,
595
+ "grad_norm": 0.2019493579864502,
596
+ "learning_rate": 8.020334928229665e-05,
597
+ "loss": 0.5583,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 0.24154589371980675,
602
+ "grad_norm": 0.15369437634944916,
603
+ "learning_rate": 7.99043062200957e-05,
604
+ "loss": 0.5655,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 0.24438761011651036,
609
+ "grad_norm": 0.15199318528175354,
610
+ "learning_rate": 7.960526315789473e-05,
611
+ "loss": 0.5926,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 0.24722932651321397,
616
+ "grad_norm": 0.17065800726413727,
617
+ "learning_rate": 7.930622009569379e-05,
618
+ "loss": 0.5705,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 0.2500710429099176,
623
+ "grad_norm": 0.16088539361953735,
624
+ "learning_rate": 7.900717703349283e-05,
625
+ "loss": 0.5828,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 0.2529127593066212,
630
+ "grad_norm": 0.17311115562915802,
631
+ "learning_rate": 7.870813397129187e-05,
632
+ "loss": 0.5547,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 0.2557544757033248,
637
+ "grad_norm": 0.17743873596191406,
638
+ "learning_rate": 7.840909090909091e-05,
639
+ "loss": 0.5652,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 0.25859619210002843,
644
+ "grad_norm": 0.1869676560163498,
645
+ "learning_rate": 7.811004784688995e-05,
646
+ "loss": 0.5748,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 0.26143790849673204,
651
+ "grad_norm": 0.19634956121444702,
652
+ "learning_rate": 7.7811004784689e-05,
653
+ "loss": 0.5824,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 0.26427962489343565,
658
+ "grad_norm": 0.17620642483234406,
659
+ "learning_rate": 7.751196172248805e-05,
660
+ "loss": 0.5739,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 0.26712134129013926,
665
+ "grad_norm": 0.18111678957939148,
666
+ "learning_rate": 7.721291866028707e-05,
667
+ "loss": 0.5917,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 0.26996305768684287,
672
+ "grad_norm": 0.17866134643554688,
673
+ "learning_rate": 7.691387559808613e-05,
674
+ "loss": 0.5409,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 0.2728047740835465,
679
+ "grad_norm": 0.17009033262729645,
680
+ "learning_rate": 7.661483253588517e-05,
681
+ "loss": 0.5758,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 0.2756464904802501,
686
+ "grad_norm": 0.15558762848377228,
687
+ "learning_rate": 7.631578947368422e-05,
688
+ "loss": 0.5642,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 0.2784882068769537,
693
+ "grad_norm": 0.14788499474525452,
694
+ "learning_rate": 7.601674641148325e-05,
695
+ "loss": 0.5673,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 0.2813299232736573,
700
+ "grad_norm": 0.16207771003246307,
701
+ "learning_rate": 7.571770334928229e-05,
702
+ "loss": 0.5725,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 0.2841716396703609,
707
+ "grad_norm": 0.16308216750621796,
708
+ "learning_rate": 7.541866028708135e-05,
709
+ "loss": 0.5719,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 0.2870133560670645,
714
+ "grad_norm": 0.14916519820690155,
715
+ "learning_rate": 7.511961722488039e-05,
716
+ "loss": 0.6092,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 0.2898550724637681,
721
+ "grad_norm": 0.15949136018753052,
722
+ "learning_rate": 7.482057416267943e-05,
723
+ "loss": 0.5912,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 0.29269678886047173,
728
+ "grad_norm": 0.16426579654216766,
729
+ "learning_rate": 7.452153110047847e-05,
730
+ "loss": 0.5834,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 0.29553850525717534,
735
+ "grad_norm": 0.15682825446128845,
736
+ "learning_rate": 7.422248803827751e-05,
737
+ "loss": 0.5572,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 0.29838022165387895,
742
+ "grad_norm": 0.1494492143392563,
743
+ "learning_rate": 7.392344497607656e-05,
744
+ "loss": 0.5618,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 0.30122193805058256,
749
+ "grad_norm": 0.1563103348016739,
750
+ "learning_rate": 7.36244019138756e-05,
751
+ "loss": 0.582,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 0.30406365444728617,
756
+ "grad_norm": 0.16356562077999115,
757
+ "learning_rate": 7.332535885167465e-05,
758
+ "loss": 0.5805,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 0.3069053708439898,
763
+ "grad_norm": 0.17900019884109497,
764
+ "learning_rate": 7.302631578947369e-05,
765
+ "loss": 0.5506,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 0.3097470872406934,
770
+ "grad_norm": 0.1820659339427948,
771
+ "learning_rate": 7.272727272727273e-05,
772
+ "loss": 0.5616,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 0.312588803637397,
777
+ "grad_norm": 0.1745116263628006,
778
+ "learning_rate": 7.242822966507178e-05,
779
+ "loss": 0.5537,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 0.3154305200341006,
784
+ "grad_norm": 0.18802793323993683,
785
+ "learning_rate": 7.212918660287081e-05,
786
+ "loss": 0.5985,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 0.3182722364308042,
791
+ "grad_norm": 0.18087241053581238,
792
+ "learning_rate": 7.183014354066986e-05,
793
+ "loss": 0.5638,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 0.3211139528275078,
798
+ "grad_norm": 0.15812823176383972,
799
+ "learning_rate": 7.15311004784689e-05,
800
+ "loss": 0.56,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 0.32395566922421143,
805
+ "grad_norm": 0.227083221077919,
806
+ "learning_rate": 7.123205741626795e-05,
807
+ "loss": 0.5504,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 0.32679738562091504,
812
+ "grad_norm": 0.16168774664402008,
813
+ "learning_rate": 7.093301435406699e-05,
814
+ "loss": 0.5497,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 0.32963910201761865,
819
+ "grad_norm": 0.19533157348632812,
820
+ "learning_rate": 7.063397129186603e-05,
821
+ "loss": 0.5762,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 0.33248081841432225,
826
+ "grad_norm": 0.1547001451253891,
827
+ "learning_rate": 7.033492822966508e-05,
828
+ "loss": 0.5617,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 0.33532253481102586,
833
+ "grad_norm": 0.1422310620546341,
834
+ "learning_rate": 7.003588516746412e-05,
835
+ "loss": 0.5683,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 0.33816425120772947,
840
+ "grad_norm": 0.1877267211675644,
841
+ "learning_rate": 6.973684210526315e-05,
842
+ "loss": 0.5568,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 0.3410059676044331,
847
+ "grad_norm": 0.17235694825649261,
848
+ "learning_rate": 6.94377990430622e-05,
849
+ "loss": 0.5585,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 0.3438476840011367,
854
+ "grad_norm": 0.15059125423431396,
855
+ "learning_rate": 6.913875598086125e-05,
856
+ "loss": 0.5884,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 0.3466894003978403,
861
+ "grad_norm": 0.24481505155563354,
862
+ "learning_rate": 6.883971291866029e-05,
863
+ "loss": 0.5789,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 0.3495311167945439,
868
+ "grad_norm": 0.20350155234336853,
869
+ "learning_rate": 6.854066985645934e-05,
870
+ "loss": 0.5779,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 0.3523728331912475,
875
+ "grad_norm": 0.1397661566734314,
876
+ "learning_rate": 6.824162679425837e-05,
877
+ "loss": 0.6028,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 0.3552145495879511,
882
+ "grad_norm": 0.15289326012134552,
883
+ "learning_rate": 6.794258373205742e-05,
884
+ "loss": 0.5846,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 0.35805626598465473,
889
+ "grad_norm": 0.18911781907081604,
890
+ "learning_rate": 6.764354066985646e-05,
891
+ "loss": 0.5734,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 0.36089798238135834,
896
+ "grad_norm": 0.17620323598384857,
897
+ "learning_rate": 6.73444976076555e-05,
898
+ "loss": 0.5798,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 0.36373969877806195,
903
+ "grad_norm": 0.16716086864471436,
904
+ "learning_rate": 6.704545454545455e-05,
905
+ "loss": 0.573,
906
+ "step": 640
907
+ },
908
+ {
909
+ "epoch": 0.36658141517476556,
910
+ "grad_norm": 0.15906579792499542,
911
+ "learning_rate": 6.674641148325359e-05,
912
+ "loss": 0.5881,
913
+ "step": 645
914
+ },
915
+ {
916
+ "epoch": 0.36942313157146917,
917
+ "grad_norm": 0.16022855043411255,
918
+ "learning_rate": 6.644736842105264e-05,
919
+ "loss": 0.5792,
920
+ "step": 650
921
+ },
922
+ {
923
+ "epoch": 0.3722648479681728,
924
+ "grad_norm": 0.15457934141159058,
925
+ "learning_rate": 6.614832535885168e-05,
926
+ "loss": 0.5695,
927
+ "step": 655
928
+ },
929
+ {
930
+ "epoch": 0.3751065643648764,
931
+ "grad_norm": 0.19283390045166016,
932
+ "learning_rate": 6.584928229665072e-05,
933
+ "loss": 0.5883,
934
+ "step": 660
935
+ },
936
+ {
937
+ "epoch": 0.37794828076158,
938
+ "grad_norm": 0.1575131118297577,
939
+ "learning_rate": 6.555023923444976e-05,
940
+ "loss": 0.5746,
941
+ "step": 665
942
+ },
943
+ {
944
+ "epoch": 0.3807899971582836,
945
+ "grad_norm": 0.1719864159822464,
946
+ "learning_rate": 6.52511961722488e-05,
947
+ "loss": 0.5707,
948
+ "step": 670
949
+ },
950
+ {
951
+ "epoch": 0.3836317135549872,
952
+ "grad_norm": 0.1621527373790741,
953
+ "learning_rate": 6.495215311004786e-05,
954
+ "loss": 0.5738,
955
+ "step": 675
956
+ },
957
+ {
958
+ "epoch": 0.3864734299516908,
959
+ "grad_norm": 0.16876845061779022,
960
+ "learning_rate": 6.465311004784689e-05,
961
+ "loss": 0.5559,
962
+ "step": 680
963
+ },
964
+ {
965
+ "epoch": 0.3893151463483944,
966
+ "grad_norm": 0.16403600573539734,
967
+ "learning_rate": 6.435406698564594e-05,
968
+ "loss": 0.6129,
969
+ "step": 685
970
+ },
971
+ {
972
+ "epoch": 0.39215686274509803,
973
+ "grad_norm": 0.16663706302642822,
974
+ "learning_rate": 6.405502392344498e-05,
975
+ "loss": 0.5915,
976
+ "step": 690
977
+ },
978
+ {
979
+ "epoch": 0.39499857914180164,
980
+ "grad_norm": 0.1531498283147812,
981
+ "learning_rate": 6.375598086124402e-05,
982
+ "loss": 0.584,
983
+ "step": 695
984
+ },
985
+ {
986
+ "epoch": 0.39784029553850525,
987
+ "grad_norm": 0.1686207801103592,
988
+ "learning_rate": 6.345693779904308e-05,
989
+ "loss": 0.5637,
990
+ "step": 700
991
+ },
992
+ {
993
+ "epoch": 0.40068201193520886,
994
+ "grad_norm": 0.17847242951393127,
995
+ "learning_rate": 6.31578947368421e-05,
996
+ "loss": 0.579,
997
+ "step": 705
998
+ },
999
+ {
1000
+ "epoch": 0.40352372833191247,
1001
+ "grad_norm": 0.1523343026638031,
1002
+ "learning_rate": 6.285885167464114e-05,
1003
+ "loss": 0.5938,
1004
+ "step": 710
1005
+ },
1006
+ {
1007
+ "epoch": 0.4063654447286161,
1008
+ "grad_norm": 0.15405000746250153,
1009
+ "learning_rate": 6.25598086124402e-05,
1010
+ "loss": 0.5758,
1011
+ "step": 715
1012
+ },
1013
+ {
1014
+ "epoch": 0.4092071611253197,
1015
+ "grad_norm": 0.1683824509382248,
1016
+ "learning_rate": 6.226076555023924e-05,
1017
+ "loss": 0.5722,
1018
+ "step": 720
1019
+ },
1020
+ {
1021
+ "epoch": 0.4120488775220233,
1022
+ "grad_norm": 0.18010036647319794,
1023
+ "learning_rate": 6.196172248803828e-05,
1024
+ "loss": 0.5362,
1025
+ "step": 725
1026
+ },
1027
+ {
1028
+ "epoch": 0.4148905939187269,
1029
+ "grad_norm": 0.19708412885665894,
1030
+ "learning_rate": 6.166267942583732e-05,
1031
+ "loss": 0.5757,
1032
+ "step": 730
1033
+ },
1034
+ {
1035
+ "epoch": 0.4177323103154305,
1036
+ "grad_norm": 0.15475505590438843,
1037
+ "learning_rate": 6.136363636363636e-05,
1038
+ "loss": 0.6017,
1039
+ "step": 735
1040
+ },
1041
+ {
1042
+ "epoch": 0.4205740267121341,
1043
+ "grad_norm": 0.1665363609790802,
1044
+ "learning_rate": 6.106459330143542e-05,
1045
+ "loss": 0.58,
1046
+ "step": 740
1047
+ },
1048
+ {
1049
+ "epoch": 0.4234157431088377,
1050
+ "grad_norm": 0.18012359738349915,
1051
+ "learning_rate": 6.076555023923445e-05,
1052
+ "loss": 0.5596,
1053
+ "step": 745
1054
+ },
1055
+ {
1056
+ "epoch": 0.42625745950554134,
1057
+ "grad_norm": 0.15219123661518097,
1058
+ "learning_rate": 6.046650717703349e-05,
1059
+ "loss": 0.5698,
1060
+ "step": 750
1061
+ },
1062
+ {
1063
+ "epoch": 0.42909917590224494,
1064
+ "grad_norm": 0.1898249089717865,
1065
+ "learning_rate": 6.016746411483254e-05,
1066
+ "loss": 0.5801,
1067
+ "step": 755
1068
+ },
1069
+ {
1070
+ "epoch": 0.43194089229894855,
1071
+ "grad_norm": 0.17774541676044464,
1072
+ "learning_rate": 5.9868421052631587e-05,
1073
+ "loss": 0.5662,
1074
+ "step": 760
1075
+ },
1076
+ {
1077
+ "epoch": 0.43478260869565216,
1078
+ "grad_norm": 0.16042256355285645,
1079
+ "learning_rate": 5.956937799043063e-05,
1080
+ "loss": 0.5582,
1081
+ "step": 765
1082
+ },
1083
+ {
1084
+ "epoch": 0.43762432509235577,
1085
+ "grad_norm": 0.1782207190990448,
1086
+ "learning_rate": 5.927033492822967e-05,
1087
+ "loss": 0.5645,
1088
+ "step": 770
1089
+ },
1090
+ {
1091
+ "epoch": 0.4404660414890594,
1092
+ "grad_norm": 0.15645284950733185,
1093
+ "learning_rate": 5.897129186602871e-05,
1094
+ "loss": 0.5733,
1095
+ "step": 775
1096
+ },
1097
+ {
1098
+ "epoch": 0.443307757885763,
1099
+ "grad_norm": 0.1498394012451172,
1100
+ "learning_rate": 5.867224880382776e-05,
1101
+ "loss": 0.5894,
1102
+ "step": 780
1103
+ },
1104
+ {
1105
+ "epoch": 0.4461494742824666,
1106
+ "grad_norm": 0.14148397743701935,
1107
+ "learning_rate": 5.8373205741626804e-05,
1108
+ "loss": 0.5592,
1109
+ "step": 785
1110
+ },
1111
+ {
1112
+ "epoch": 0.4489911906791702,
1113
+ "grad_norm": 0.1406758725643158,
1114
+ "learning_rate": 5.807416267942584e-05,
1115
+ "loss": 0.565,
1116
+ "step": 790
1117
+ },
1118
+ {
1119
+ "epoch": 0.4518329070758738,
1120
+ "grad_norm": 0.17311552166938782,
1121
+ "learning_rate": 5.777511961722488e-05,
1122
+ "loss": 0.5548,
1123
+ "step": 795
1124
+ },
1125
+ {
1126
+ "epoch": 0.4546746234725774,
1127
+ "grad_norm": 0.16679054498672485,
1128
+ "learning_rate": 5.747607655502393e-05,
1129
+ "loss": 0.5522,
1130
+ "step": 800
1131
+ },
1132
+ {
1133
+ "epoch": 0.45751633986928103,
1134
+ "grad_norm": 0.1412728875875473,
1135
+ "learning_rate": 5.7177033492822975e-05,
1136
+ "loss": 0.5506,
1137
+ "step": 805
1138
+ },
1139
+ {
1140
+ "epoch": 0.46035805626598464,
1141
+ "grad_norm": 0.1498885601758957,
1142
+ "learning_rate": 5.687799043062201e-05,
1143
+ "loss": 0.5833,
1144
+ "step": 810
1145
+ },
1146
+ {
1147
+ "epoch": 0.46319977266268825,
1148
+ "grad_norm": 0.1563435047864914,
1149
+ "learning_rate": 5.6578947368421056e-05,
1150
+ "loss": 0.5926,
1151
+ "step": 815
1152
+ },
1153
+ {
1154
+ "epoch": 0.46604148905939186,
1155
+ "grad_norm": 0.1565445065498352,
1156
+ "learning_rate": 5.62799043062201e-05,
1157
+ "loss": 0.582,
1158
+ "step": 820
1159
+ },
1160
+ {
1161
+ "epoch": 0.46888320545609546,
1162
+ "grad_norm": 0.14581437408924103,
1163
+ "learning_rate": 5.5980861244019145e-05,
1164
+ "loss": 0.5936,
1165
+ "step": 825
1166
+ },
1167
+ {
1168
+ "epoch": 0.4717249218527991,
1169
+ "grad_norm": 0.14694763720035553,
1170
+ "learning_rate": 5.568181818181818e-05,
1171
+ "loss": 0.5672,
1172
+ "step": 830
1173
+ },
1174
+ {
1175
+ "epoch": 0.4745666382495027,
1176
+ "grad_norm": 0.18627385795116425,
1177
+ "learning_rate": 5.5382775119617226e-05,
1178
+ "loss": 0.5826,
1179
+ "step": 835
1180
+ },
1181
+ {
1182
+ "epoch": 0.4774083546462063,
1183
+ "grad_norm": 0.1670178472995758,
1184
+ "learning_rate": 5.5083732057416274e-05,
1185
+ "loss": 0.5488,
1186
+ "step": 840
1187
+ },
1188
+ {
1189
+ "epoch": 0.4802500710429099,
1190
+ "grad_norm": 0.21247391402721405,
1191
+ "learning_rate": 5.4784688995215315e-05,
1192
+ "loss": 0.5664,
1193
+ "step": 845
1194
+ },
1195
+ {
1196
+ "epoch": 0.4830917874396135,
1197
+ "grad_norm": 0.16471049189567566,
1198
+ "learning_rate": 5.448564593301436e-05,
1199
+ "loss": 0.56,
1200
+ "step": 850
1201
+ },
1202
+ {
1203
+ "epoch": 0.4859335038363171,
1204
+ "grad_norm": 0.15371420979499817,
1205
+ "learning_rate": 5.4186602870813397e-05,
1206
+ "loss": 0.5633,
1207
+ "step": 855
1208
+ },
1209
+ {
1210
+ "epoch": 0.4887752202330207,
1211
+ "grad_norm": 0.14671985805034637,
1212
+ "learning_rate": 5.3887559808612444e-05,
1213
+ "loss": 0.6158,
1214
+ "step": 860
1215
+ },
1216
+ {
1217
+ "epoch": 0.49161693662972433,
1218
+ "grad_norm": 0.16204605996608734,
1219
+ "learning_rate": 5.3588516746411485e-05,
1220
+ "loss": 0.5805,
1221
+ "step": 865
1222
+ },
1223
+ {
1224
+ "epoch": 0.49445865302642794,
1225
+ "grad_norm": 0.15839259326457977,
1226
+ "learning_rate": 5.328947368421053e-05,
1227
+ "loss": 0.5521,
1228
+ "step": 870
1229
+ },
1230
+ {
1231
+ "epoch": 0.49730036942313155,
1232
+ "grad_norm": 0.17325200140476227,
1233
+ "learning_rate": 5.299043062200957e-05,
1234
+ "loss": 0.5709,
1235
+ "step": 875
1236
+ },
1237
+ {
1238
+ "epoch": 0.5001420858198352,
1239
+ "grad_norm": 0.157701313495636,
1240
+ "learning_rate": 5.2691387559808614e-05,
1241
+ "loss": 0.5732,
1242
+ "step": 880
1243
+ },
1244
+ {
1245
+ "epoch": 0.5029838022165388,
1246
+ "grad_norm": 0.1631327122449875,
1247
+ "learning_rate": 5.239234449760766e-05,
1248
+ "loss": 0.5595,
1249
+ "step": 885
1250
+ },
1251
+ {
1252
+ "epoch": 0.5058255186132424,
1253
+ "grad_norm": 0.150161013007164,
1254
+ "learning_rate": 5.20933014354067e-05,
1255
+ "loss": 0.5655,
1256
+ "step": 890
1257
+ },
1258
+ {
1259
+ "epoch": 0.508667235009946,
1260
+ "grad_norm": 0.16893287003040314,
1261
+ "learning_rate": 5.179425837320574e-05,
1262
+ "loss": 0.588,
1263
+ "step": 895
1264
+ },
1265
+ {
1266
+ "epoch": 0.5115089514066496,
1267
+ "grad_norm": 0.15415838360786438,
1268
+ "learning_rate": 5.1495215311004785e-05,
1269
+ "loss": 0.5725,
1270
+ "step": 900
1271
+ },
1272
+ {
1273
+ "epoch": 0.5143506678033533,
1274
+ "grad_norm": 0.18115073442459106,
1275
+ "learning_rate": 5.119617224880383e-05,
1276
+ "loss": 0.5887,
1277
+ "step": 905
1278
+ },
1279
+ {
1280
+ "epoch": 0.5171923842000569,
1281
+ "grad_norm": 0.16705133020877838,
1282
+ "learning_rate": 5.089712918660288e-05,
1283
+ "loss": 0.5963,
1284
+ "step": 910
1285
+ },
1286
+ {
1287
+ "epoch": 0.5200341005967605,
1288
+ "grad_norm": 0.17432160675525665,
1289
+ "learning_rate": 5.0598086124401914e-05,
1290
+ "loss": 0.5516,
1291
+ "step": 915
1292
+ },
1293
+ {
1294
+ "epoch": 0.5228758169934641,
1295
+ "grad_norm": 0.1740056574344635,
1296
+ "learning_rate": 5.0299043062200955e-05,
1297
+ "loss": 0.5684,
1298
+ "step": 920
1299
+ },
1300
+ {
1301
+ "epoch": 0.5257175333901677,
1302
+ "grad_norm": 0.14044822752475739,
1303
+ "learning_rate": 5e-05,
1304
+ "loss": 0.5794,
1305
+ "step": 925
1306
+ },
1307
+ {
1308
+ "epoch": 0.5285592497868713,
1309
+ "grad_norm": 0.1570068746805191,
1310
+ "learning_rate": 4.970095693779905e-05,
1311
+ "loss": 0.5871,
1312
+ "step": 930
1313
+ },
1314
+ {
1315
+ "epoch": 0.5314009661835749,
1316
+ "grad_norm": 0.15085619688034058,
1317
+ "learning_rate": 4.940191387559809e-05,
1318
+ "loss": 0.5596,
1319
+ "step": 935
1320
+ },
1321
+ {
1322
+ "epoch": 0.5342426825802785,
1323
+ "grad_norm": 0.1418176144361496,
1324
+ "learning_rate": 4.910287081339713e-05,
1325
+ "loss": 0.5617,
1326
+ "step": 940
1327
+ },
1328
+ {
1329
+ "epoch": 0.5370843989769821,
1330
+ "grad_norm": 0.1582961082458496,
1331
+ "learning_rate": 4.880382775119617e-05,
1332
+ "loss": 0.5582,
1333
+ "step": 945
1334
+ },
1335
+ {
1336
+ "epoch": 0.5399261153736857,
1337
+ "grad_norm": 0.16853678226470947,
1338
+ "learning_rate": 4.850478468899522e-05,
1339
+ "loss": 0.5724,
1340
+ "step": 950
1341
+ },
1342
+ {
1343
+ "epoch": 0.5427678317703893,
1344
+ "grad_norm": 0.17164859175682068,
1345
+ "learning_rate": 4.820574162679426e-05,
1346
+ "loss": 0.5869,
1347
+ "step": 955
1348
+ },
1349
+ {
1350
+ "epoch": 0.545609548167093,
1351
+ "grad_norm": 0.15529300272464752,
1352
+ "learning_rate": 4.790669856459331e-05,
1353
+ "loss": 0.5825,
1354
+ "step": 960
1355
+ },
1356
+ {
1357
+ "epoch": 0.5484512645637966,
1358
+ "grad_norm": 0.16565600037574768,
1359
+ "learning_rate": 4.760765550239234e-05,
1360
+ "loss": 0.551,
1361
+ "step": 965
1362
+ },
1363
+ {
1364
+ "epoch": 0.5512929809605002,
1365
+ "grad_norm": 0.24184668064117432,
1366
+ "learning_rate": 4.730861244019139e-05,
1367
+ "loss": 0.5573,
1368
+ "step": 970
1369
+ },
1370
+ {
1371
+ "epoch": 0.5541346973572038,
1372
+ "grad_norm": 0.15095993876457214,
1373
+ "learning_rate": 4.700956937799043e-05,
1374
+ "loss": 0.5584,
1375
+ "step": 975
1376
+ },
1377
+ {
1378
+ "epoch": 0.5569764137539074,
1379
+ "grad_norm": 0.16745509207248688,
1380
+ "learning_rate": 4.671052631578948e-05,
1381
+ "loss": 0.582,
1382
+ "step": 980
1383
+ },
1384
+ {
1385
+ "epoch": 0.559818130150611,
1386
+ "grad_norm": 0.1616193652153015,
1387
+ "learning_rate": 4.641148325358852e-05,
1388
+ "loss": 0.5837,
1389
+ "step": 985
1390
+ },
1391
+ {
1392
+ "epoch": 0.5626598465473146,
1393
+ "grad_norm": 0.1706905961036682,
1394
+ "learning_rate": 4.611244019138756e-05,
1395
+ "loss": 0.5943,
1396
+ "step": 990
1397
+ },
1398
+ {
1399
+ "epoch": 0.5655015629440182,
1400
+ "grad_norm": 0.16318464279174805,
1401
+ "learning_rate": 4.58133971291866e-05,
1402
+ "loss": 0.556,
1403
+ "step": 995
1404
+ },
1405
+ {
1406
+ "epoch": 0.5683432793407218,
1407
+ "grad_norm": 0.12837469577789307,
1408
+ "learning_rate": 4.551435406698565e-05,
1409
+ "loss": 0.5527,
1410
+ "step": 1000
1411
+ },
1412
+ {
1413
+ "epoch": 0.5711849957374254,
1414
+ "grad_norm": 0.1470261663198471,
1415
+ "learning_rate": 4.521531100478469e-05,
1416
+ "loss": 0.5893,
1417
+ "step": 1005
1418
+ },
1419
+ {
1420
+ "epoch": 0.574026712134129,
1421
+ "grad_norm": 0.4100290834903717,
1422
+ "learning_rate": 4.491626794258373e-05,
1423
+ "loss": 0.6028,
1424
+ "step": 1010
1425
+ },
1426
+ {
1427
+ "epoch": 0.5768684285308326,
1428
+ "grad_norm": 0.15563902258872986,
1429
+ "learning_rate": 4.461722488038278e-05,
1430
+ "loss": 0.5607,
1431
+ "step": 1015
1432
+ },
1433
+ {
1434
+ "epoch": 0.5797101449275363,
1435
+ "grad_norm": 0.15360063314437866,
1436
+ "learning_rate": 4.431818181818182e-05,
1437
+ "loss": 0.5833,
1438
+ "step": 1020
1439
+ },
1440
+ {
1441
+ "epoch": 0.5825518613242399,
1442
+ "grad_norm": 0.14984561502933502,
1443
+ "learning_rate": 4.401913875598087e-05,
1444
+ "loss": 0.5429,
1445
+ "step": 1025
1446
+ },
1447
+ {
1448
+ "epoch": 0.5853935777209435,
1449
+ "grad_norm": 0.15414854884147644,
1450
+ "learning_rate": 4.372009569377991e-05,
1451
+ "loss": 0.5868,
1452
+ "step": 1030
1453
+ },
1454
+ {
1455
+ "epoch": 0.5882352941176471,
1456
+ "grad_norm": 0.13921906054019928,
1457
+ "learning_rate": 4.342105263157895e-05,
1458
+ "loss": 0.5879,
1459
+ "step": 1035
1460
+ },
1461
+ {
1462
+ "epoch": 0.5910770105143507,
1463
+ "grad_norm": 0.21716231107711792,
1464
+ "learning_rate": 4.312200956937799e-05,
1465
+ "loss": 0.5636,
1466
+ "step": 1040
1467
+ },
1468
+ {
1469
+ "epoch": 0.5939187269110543,
1470
+ "grad_norm": 0.15942206978797913,
1471
+ "learning_rate": 4.282296650717704e-05,
1472
+ "loss": 0.5603,
1473
+ "step": 1045
1474
+ },
1475
+ {
1476
+ "epoch": 0.5967604433077579,
1477
+ "grad_norm": 0.14409542083740234,
1478
+ "learning_rate": 4.252392344497608e-05,
1479
+ "loss": 0.5535,
1480
+ "step": 1050
1481
+ },
1482
+ {
1483
+ "epoch": 0.5996021597044615,
1484
+ "grad_norm": 0.15243200957775116,
1485
+ "learning_rate": 4.2224880382775126e-05,
1486
+ "loss": 0.5695,
1487
+ "step": 1055
1488
+ },
1489
+ {
1490
+ "epoch": 0.6024438761011651,
1491
+ "grad_norm": 0.16177250444889069,
1492
+ "learning_rate": 4.192583732057416e-05,
1493
+ "loss": 0.5949,
1494
+ "step": 1060
1495
+ },
1496
+ {
1497
+ "epoch": 0.6052855924978687,
1498
+ "grad_norm": 0.14140868186950684,
1499
+ "learning_rate": 4.162679425837321e-05,
1500
+ "loss": 0.5875,
1501
+ "step": 1065
1502
+ },
1503
+ {
1504
+ "epoch": 0.6081273088945723,
1505
+ "grad_norm": 0.17228946089744568,
1506
+ "learning_rate": 4.132775119617225e-05,
1507
+ "loss": 0.5824,
1508
+ "step": 1070
1509
+ },
1510
+ {
1511
+ "epoch": 0.610969025291276,
1512
+ "grad_norm": 0.14932122826576233,
1513
+ "learning_rate": 4.1028708133971296e-05,
1514
+ "loss": 0.582,
1515
+ "step": 1075
1516
+ },
1517
+ {
1518
+ "epoch": 0.6138107416879796,
1519
+ "grad_norm": 0.1791832447052002,
1520
+ "learning_rate": 4.0729665071770337e-05,
1521
+ "loss": 0.5507,
1522
+ "step": 1080
1523
+ },
1524
+ {
1525
+ "epoch": 0.6166524580846832,
1526
+ "grad_norm": 0.15530230104923248,
1527
+ "learning_rate": 4.043062200956938e-05,
1528
+ "loss": 0.5851,
1529
+ "step": 1085
1530
+ },
1531
+ {
1532
+ "epoch": 0.6194941744813868,
1533
+ "grad_norm": 0.15048903226852417,
1534
+ "learning_rate": 4.0131578947368425e-05,
1535
+ "loss": 0.5629,
1536
+ "step": 1090
1537
+ },
1538
+ {
1539
+ "epoch": 0.6223358908780904,
1540
+ "grad_norm": 0.14732453227043152,
1541
+ "learning_rate": 3.9832535885167466e-05,
1542
+ "loss": 0.5752,
1543
+ "step": 1095
1544
+ },
1545
+ {
1546
+ "epoch": 0.625177607274794,
1547
+ "grad_norm": 0.15778231620788574,
1548
+ "learning_rate": 3.9533492822966514e-05,
1549
+ "loss": 0.5607,
1550
+ "step": 1100
1551
+ },
1552
+ {
1553
+ "epoch": 0.6280193236714976,
1554
+ "grad_norm": 0.16504403948783875,
1555
+ "learning_rate": 3.9234449760765554e-05,
1556
+ "loss": 0.5887,
1557
+ "step": 1105
1558
+ },
1559
+ {
1560
+ "epoch": 0.6308610400682012,
1561
+ "grad_norm": 0.15236054360866547,
1562
+ "learning_rate": 3.8935406698564595e-05,
1563
+ "loss": 0.5575,
1564
+ "step": 1110
1565
+ },
1566
+ {
1567
+ "epoch": 0.6337027564649048,
1568
+ "grad_norm": 0.15717913210391998,
1569
+ "learning_rate": 3.8636363636363636e-05,
1570
+ "loss": 0.537,
1571
+ "step": 1115
1572
+ },
1573
+ {
1574
+ "epoch": 0.6365444728616084,
1575
+ "grad_norm": 0.16705450415611267,
1576
+ "learning_rate": 3.8337320574162684e-05,
1577
+ "loss": 0.5769,
1578
+ "step": 1120
1579
+ },
1580
+ {
1581
+ "epoch": 0.639386189258312,
1582
+ "grad_norm": 0.15541672706604004,
1583
+ "learning_rate": 3.8038277511961725e-05,
1584
+ "loss": 0.5634,
1585
+ "step": 1125
1586
+ },
1587
+ {
1588
+ "epoch": 0.6422279056550156,
1589
+ "grad_norm": 0.23576730489730835,
1590
+ "learning_rate": 3.7739234449760765e-05,
1591
+ "loss": 0.583,
1592
+ "step": 1130
1593
+ },
1594
+ {
1595
+ "epoch": 0.6450696220517192,
1596
+ "grad_norm": 0.14925654232501984,
1597
+ "learning_rate": 3.7440191387559806e-05,
1598
+ "loss": 0.5774,
1599
+ "step": 1135
1600
+ },
1601
+ {
1602
+ "epoch": 0.6479113384484229,
1603
+ "grad_norm": 0.133391872048378,
1604
+ "learning_rate": 3.7141148325358854e-05,
1605
+ "loss": 0.5981,
1606
+ "step": 1140
1607
+ },
1608
+ {
1609
+ "epoch": 0.6507530548451265,
1610
+ "grad_norm": 0.1577860563993454,
1611
+ "learning_rate": 3.6842105263157895e-05,
1612
+ "loss": 0.5844,
1613
+ "step": 1145
1614
+ },
1615
+ {
1616
+ "epoch": 0.6535947712418301,
1617
+ "grad_norm": 0.15949822962284088,
1618
+ "learning_rate": 3.654306220095694e-05,
1619
+ "loss": 0.5646,
1620
+ "step": 1150
1621
+ },
1622
+ {
1623
+ "epoch": 0.6564364876385337,
1624
+ "grad_norm": 0.15498408675193787,
1625
+ "learning_rate": 3.624401913875598e-05,
1626
+ "loss": 0.5679,
1627
+ "step": 1155
1628
+ },
1629
+ {
1630
+ "epoch": 0.6592782040352373,
1631
+ "grad_norm": 0.18732386827468872,
1632
+ "learning_rate": 3.5944976076555024e-05,
1633
+ "loss": 0.5714,
1634
+ "step": 1160
1635
+ },
1636
+ {
1637
+ "epoch": 0.6621199204319409,
1638
+ "grad_norm": 0.1633375883102417,
1639
+ "learning_rate": 3.5645933014354065e-05,
1640
+ "loss": 0.5654,
1641
+ "step": 1165
1642
+ },
1643
+ {
1644
+ "epoch": 0.6649616368286445,
1645
+ "grad_norm": 0.15558752417564392,
1646
+ "learning_rate": 3.534688995215311e-05,
1647
+ "loss": 0.5445,
1648
+ "step": 1170
1649
+ },
1650
+ {
1651
+ "epoch": 0.6678033532253481,
1652
+ "grad_norm": 0.14220796525478363,
1653
+ "learning_rate": 3.504784688995216e-05,
1654
+ "loss": 0.5756,
1655
+ "step": 1175
1656
+ },
1657
+ {
1658
+ "epoch": 0.6706450696220517,
1659
+ "grad_norm": 0.1663515418767929,
1660
+ "learning_rate": 3.4748803827751194e-05,
1661
+ "loss": 0.5892,
1662
+ "step": 1180
1663
+ },
1664
+ {
1665
+ "epoch": 0.6734867860187553,
1666
+ "grad_norm": 0.1588052362203598,
1667
+ "learning_rate": 3.444976076555024e-05,
1668
+ "loss": 0.5954,
1669
+ "step": 1185
1670
+ },
1671
+ {
1672
+ "epoch": 0.6763285024154589,
1673
+ "grad_norm": 0.1659833937883377,
1674
+ "learning_rate": 3.415071770334928e-05,
1675
+ "loss": 0.5849,
1676
+ "step": 1190
1677
+ },
1678
+ {
1679
+ "epoch": 0.6791702188121626,
1680
+ "grad_norm": 0.1444244086742401,
1681
+ "learning_rate": 3.385167464114833e-05,
1682
+ "loss": 0.5807,
1683
+ "step": 1195
1684
+ },
1685
+ {
1686
+ "epoch": 0.6820119352088662,
1687
+ "grad_norm": 0.14998075366020203,
1688
+ "learning_rate": 3.355263157894737e-05,
1689
+ "loss": 0.5676,
1690
+ "step": 1200
1691
+ },
1692
+ {
1693
+ "epoch": 0.6848536516055698,
1694
+ "grad_norm": 0.14586575329303741,
1695
+ "learning_rate": 3.325358851674641e-05,
1696
+ "loss": 0.5833,
1697
+ "step": 1205
1698
+ },
1699
+ {
1700
+ "epoch": 0.6876953680022734,
1701
+ "grad_norm": 0.16619591414928436,
1702
+ "learning_rate": 3.295454545454545e-05,
1703
+ "loss": 0.5738,
1704
+ "step": 1210
1705
+ },
1706
+ {
1707
+ "epoch": 0.690537084398977,
1708
+ "grad_norm": 0.15603290498256683,
1709
+ "learning_rate": 3.26555023923445e-05,
1710
+ "loss": 0.549,
1711
+ "step": 1215
1712
+ },
1713
+ {
1714
+ "epoch": 0.6933788007956806,
1715
+ "grad_norm": 0.16562019288539886,
1716
+ "learning_rate": 3.235645933014354e-05,
1717
+ "loss": 0.5681,
1718
+ "step": 1220
1719
+ },
1720
+ {
1721
+ "epoch": 0.6962205171923842,
1722
+ "grad_norm": 0.1772131323814392,
1723
+ "learning_rate": 3.205741626794259e-05,
1724
+ "loss": 0.5649,
1725
+ "step": 1225
1726
+ },
1727
+ {
1728
+ "epoch": 0.6990622335890878,
1729
+ "grad_norm": 0.21865883469581604,
1730
+ "learning_rate": 3.175837320574162e-05,
1731
+ "loss": 0.5487,
1732
+ "step": 1230
1733
+ },
1734
+ {
1735
+ "epoch": 0.7019039499857914,
1736
+ "grad_norm": 0.1668052226305008,
1737
+ "learning_rate": 3.145933014354067e-05,
1738
+ "loss": 0.5594,
1739
+ "step": 1235
1740
+ },
1741
+ {
1742
+ "epoch": 0.704745666382495,
1743
+ "grad_norm": 0.17883329093456268,
1744
+ "learning_rate": 3.116028708133971e-05,
1745
+ "loss": 0.5677,
1746
+ "step": 1240
1747
+ },
1748
+ {
1749
+ "epoch": 0.7075873827791986,
1750
+ "grad_norm": 0.17108604311943054,
1751
+ "learning_rate": 3.086124401913876e-05,
1752
+ "loss": 0.5732,
1753
+ "step": 1245
1754
+ },
1755
+ {
1756
+ "epoch": 0.7104290991759022,
1757
+ "grad_norm": 0.13776730000972748,
1758
+ "learning_rate": 3.05622009569378e-05,
1759
+ "loss": 0.5526,
1760
+ "step": 1250
1761
+ },
1762
+ {
1763
+ "epoch": 0.7132708155726059,
1764
+ "grad_norm": 0.15627716481685638,
1765
+ "learning_rate": 3.0263157894736844e-05,
1766
+ "loss": 0.5679,
1767
+ "step": 1255
1768
+ },
1769
+ {
1770
+ "epoch": 0.7161125319693095,
1771
+ "grad_norm": 0.15834760665893555,
1772
+ "learning_rate": 2.996411483253589e-05,
1773
+ "loss": 0.5875,
1774
+ "step": 1260
1775
+ },
1776
+ {
1777
+ "epoch": 0.7189542483660131,
1778
+ "grad_norm": 0.1533428430557251,
1779
+ "learning_rate": 2.966507177033493e-05,
1780
+ "loss": 0.572,
1781
+ "step": 1265
1782
+ },
1783
+ {
1784
+ "epoch": 0.7217959647627167,
1785
+ "grad_norm": 0.17058540880680084,
1786
+ "learning_rate": 2.9366028708133974e-05,
1787
+ "loss": 0.537,
1788
+ "step": 1270
1789
+ },
1790
+ {
1791
+ "epoch": 0.7246376811594203,
1792
+ "grad_norm": 0.15672728419303894,
1793
+ "learning_rate": 2.9066985645933014e-05,
1794
+ "loss": 0.5552,
1795
+ "step": 1275
1796
+ },
1797
+ {
1798
+ "epoch": 0.7274793975561239,
1799
+ "grad_norm": 1.2518200874328613,
1800
+ "learning_rate": 2.8767942583732062e-05,
1801
+ "loss": 0.5934,
1802
+ "step": 1280
1803
+ },
1804
+ {
1805
+ "epoch": 0.7303211139528275,
1806
+ "grad_norm": 0.1489401012659073,
1807
+ "learning_rate": 2.84688995215311e-05,
1808
+ "loss": 0.596,
1809
+ "step": 1285
1810
+ },
1811
+ {
1812
+ "epoch": 0.7331628303495311,
1813
+ "grad_norm": 0.14582081139087677,
1814
+ "learning_rate": 2.8169856459330147e-05,
1815
+ "loss": 0.5869,
1816
+ "step": 1290
1817
+ },
1818
+ {
1819
+ "epoch": 0.7360045467462347,
1820
+ "grad_norm": 0.20285780727863312,
1821
+ "learning_rate": 2.7870813397129185e-05,
1822
+ "loss": 0.5854,
1823
+ "step": 1295
1824
+ },
1825
+ {
1826
+ "epoch": 0.7388462631429383,
1827
+ "grad_norm": 0.14528052508831024,
1828
+ "learning_rate": 2.7571770334928232e-05,
1829
+ "loss": 0.5594,
1830
+ "step": 1300
1831
+ },
1832
+ {
1833
+ "epoch": 0.7416879795396419,
1834
+ "grad_norm": 0.1703929305076599,
1835
+ "learning_rate": 2.7272727272727273e-05,
1836
+ "loss": 0.563,
1837
+ "step": 1305
1838
+ },
1839
+ {
1840
+ "epoch": 0.7445296959363455,
1841
+ "grad_norm": 0.1452837884426117,
1842
+ "learning_rate": 2.6973684210526317e-05,
1843
+ "loss": 0.5627,
1844
+ "step": 1310
1845
+ },
1846
+ {
1847
+ "epoch": 0.7473714123330492,
1848
+ "grad_norm": 0.14418819546699524,
1849
+ "learning_rate": 2.6674641148325358e-05,
1850
+ "loss": 0.5594,
1851
+ "step": 1315
1852
+ },
1853
+ {
1854
+ "epoch": 0.7502131287297528,
1855
+ "grad_norm": 0.17991849780082703,
1856
+ "learning_rate": 2.6375598086124402e-05,
1857
+ "loss": 0.5791,
1858
+ "step": 1320
1859
+ },
1860
+ {
1861
+ "epoch": 0.7530548451264564,
1862
+ "grad_norm": 0.15669088065624237,
1863
+ "learning_rate": 2.6076555023923443e-05,
1864
+ "loss": 0.5747,
1865
+ "step": 1325
1866
+ },
1867
+ {
1868
+ "epoch": 0.75589656152316,
1869
+ "grad_norm": 0.1644110381603241,
1870
+ "learning_rate": 2.5777511961722488e-05,
1871
+ "loss": 0.5576,
1872
+ "step": 1330
1873
+ },
1874
+ {
1875
+ "epoch": 0.7587382779198636,
1876
+ "grad_norm": 0.14174972474575043,
1877
+ "learning_rate": 2.5478468899521535e-05,
1878
+ "loss": 0.5909,
1879
+ "step": 1335
1880
+ },
1881
+ {
1882
+ "epoch": 0.7615799943165672,
1883
+ "grad_norm": 0.16112005710601807,
1884
+ "learning_rate": 2.5179425837320576e-05,
1885
+ "loss": 0.5808,
1886
+ "step": 1340
1887
+ },
1888
+ {
1889
+ "epoch": 0.7644217107132708,
1890
+ "grad_norm": 0.17508378624916077,
1891
+ "learning_rate": 2.4880382775119617e-05,
1892
+ "loss": 0.5462,
1893
+ "step": 1345
1894
+ },
1895
+ {
1896
+ "epoch": 0.7672634271099744,
1897
+ "grad_norm": 0.14891307055950165,
1898
+ "learning_rate": 2.458133971291866e-05,
1899
+ "loss": 0.5756,
1900
+ "step": 1350
1901
+ },
1902
+ {
1903
+ "epoch": 0.770105143506678,
1904
+ "grad_norm": 0.16033193469047546,
1905
+ "learning_rate": 2.4282296650717702e-05,
1906
+ "loss": 0.5692,
1907
+ "step": 1355
1908
+ },
1909
+ {
1910
+ "epoch": 0.7729468599033816,
1911
+ "grad_norm": 0.16894228756427765,
1912
+ "learning_rate": 2.3983253588516746e-05,
1913
+ "loss": 0.5942,
1914
+ "step": 1360
1915
+ },
1916
+ {
1917
+ "epoch": 0.7757885763000852,
1918
+ "grad_norm": 0.15012076497077942,
1919
+ "learning_rate": 2.368421052631579e-05,
1920
+ "loss": 0.5623,
1921
+ "step": 1365
1922
+ },
1923
+ {
1924
+ "epoch": 0.7786302926967889,
1925
+ "grad_norm": 0.1476900577545166,
1926
+ "learning_rate": 2.3385167464114835e-05,
1927
+ "loss": 0.538,
1928
+ "step": 1370
1929
+ },
1930
+ {
1931
+ "epoch": 0.7814720090934925,
1932
+ "grad_norm": 0.1336384266614914,
1933
+ "learning_rate": 2.308612440191388e-05,
1934
+ "loss": 0.5683,
1935
+ "step": 1375
1936
+ },
1937
+ {
1938
+ "epoch": 0.7843137254901961,
1939
+ "grad_norm": 0.15805655717849731,
1940
+ "learning_rate": 2.278708133971292e-05,
1941
+ "loss": 0.5713,
1942
+ "step": 1380
1943
+ },
1944
+ {
1945
+ "epoch": 0.7871554418868997,
1946
+ "grad_norm": 0.1553046703338623,
1947
+ "learning_rate": 2.2488038277511964e-05,
1948
+ "loss": 0.5401,
1949
+ "step": 1385
1950
+ },
1951
+ {
1952
+ "epoch": 0.7899971582836033,
1953
+ "grad_norm": 0.1558494120836258,
1954
+ "learning_rate": 2.2188995215311005e-05,
1955
+ "loss": 0.5717,
1956
+ "step": 1390
1957
+ },
1958
+ {
1959
+ "epoch": 0.7928388746803069,
1960
+ "grad_norm": 0.18873989582061768,
1961
+ "learning_rate": 2.188995215311005e-05,
1962
+ "loss": 0.5636,
1963
+ "step": 1395
1964
+ },
1965
+ {
1966
+ "epoch": 0.7956805910770105,
1967
+ "grad_norm": 0.14990967512130737,
1968
+ "learning_rate": 2.1590909090909093e-05,
1969
+ "loss": 0.5581,
1970
+ "step": 1400
1971
+ },
1972
+ {
1973
+ "epoch": 0.7985223074737141,
1974
+ "grad_norm": 0.19469797611236572,
1975
+ "learning_rate": 2.1291866028708134e-05,
1976
+ "loss": 0.5549,
1977
+ "step": 1405
1978
+ },
1979
+ {
1980
+ "epoch": 0.8013640238704177,
1981
+ "grad_norm": 0.1545160710811615,
1982
+ "learning_rate": 2.099282296650718e-05,
1983
+ "loss": 0.5888,
1984
+ "step": 1410
1985
+ },
1986
+ {
1987
+ "epoch": 0.8042057402671213,
1988
+ "grad_norm": 0.1678376942873001,
1989
+ "learning_rate": 2.069377990430622e-05,
1990
+ "loss": 0.5655,
1991
+ "step": 1415
1992
+ },
1993
+ {
1994
+ "epoch": 0.8070474566638249,
1995
+ "grad_norm": 0.16768623888492584,
1996
+ "learning_rate": 2.0394736842105264e-05,
1997
+ "loss": 0.5558,
1998
+ "step": 1420
1999
+ },
2000
+ {
2001
+ "epoch": 0.8098891730605285,
2002
+ "grad_norm": 0.13661779463291168,
2003
+ "learning_rate": 2.0095693779904308e-05,
2004
+ "loss": 0.5747,
2005
+ "step": 1425
2006
+ },
2007
+ {
2008
+ "epoch": 0.8127308894572322,
2009
+ "grad_norm": 0.1540144979953766,
2010
+ "learning_rate": 1.979665071770335e-05,
2011
+ "loss": 0.5679,
2012
+ "step": 1430
2013
+ },
2014
+ {
2015
+ "epoch": 0.8155726058539358,
2016
+ "grad_norm": 0.13239075243473053,
2017
+ "learning_rate": 1.9497607655502393e-05,
2018
+ "loss": 0.5707,
2019
+ "step": 1435
2020
+ },
2021
+ {
2022
+ "epoch": 0.8184143222506394,
2023
+ "grad_norm": 0.14625592529773712,
2024
+ "learning_rate": 1.9198564593301434e-05,
2025
+ "loss": 0.5849,
2026
+ "step": 1440
2027
+ },
2028
+ {
2029
+ "epoch": 0.821256038647343,
2030
+ "grad_norm": 0.14197929203510284,
2031
+ "learning_rate": 1.8899521531100478e-05,
2032
+ "loss": 0.5631,
2033
+ "step": 1445
2034
+ },
2035
+ {
2036
+ "epoch": 0.8240977550440466,
2037
+ "grad_norm": 0.13680891692638397,
2038
+ "learning_rate": 1.8600478468899522e-05,
2039
+ "loss": 0.5652,
2040
+ "step": 1450
2041
+ },
2042
+ {
2043
+ "epoch": 0.8269394714407502,
2044
+ "grad_norm": 0.175118550658226,
2045
+ "learning_rate": 1.8301435406698566e-05,
2046
+ "loss": 0.5749,
2047
+ "step": 1455
2048
+ },
2049
+ {
2050
+ "epoch": 0.8297811878374538,
2051
+ "grad_norm": 0.18835903704166412,
2052
+ "learning_rate": 1.800239234449761e-05,
2053
+ "loss": 0.5794,
2054
+ "step": 1460
2055
+ },
2056
+ {
2057
+ "epoch": 0.8326229042341574,
2058
+ "grad_norm": 0.3392263352870941,
2059
+ "learning_rate": 1.770334928229665e-05,
2060
+ "loss": 0.5951,
2061
+ "step": 1465
2062
+ },
2063
+ {
2064
+ "epoch": 0.835464620630861,
2065
+ "grad_norm": 0.139173686504364,
2066
+ "learning_rate": 1.7404306220095696e-05,
2067
+ "loss": 0.5562,
2068
+ "step": 1470
2069
+ },
2070
+ {
2071
+ "epoch": 0.8383063370275646,
2072
+ "grad_norm": 0.24194057285785675,
2073
+ "learning_rate": 1.7105263157894737e-05,
2074
+ "loss": 0.5626,
2075
+ "step": 1475
2076
+ },
2077
+ {
2078
+ "epoch": 0.8411480534242682,
2079
+ "grad_norm": 0.1710263043642044,
2080
+ "learning_rate": 1.680622009569378e-05,
2081
+ "loss": 0.5832,
2082
+ "step": 1480
2083
+ },
2084
+ {
2085
+ "epoch": 0.8439897698209718,
2086
+ "grad_norm": 0.15678372979164124,
2087
+ "learning_rate": 1.6507177033492825e-05,
2088
+ "loss": 0.5809,
2089
+ "step": 1485
2090
+ },
2091
+ {
2092
+ "epoch": 0.8468314862176755,
2093
+ "grad_norm": 0.15351912379264832,
2094
+ "learning_rate": 1.6208133971291866e-05,
2095
+ "loss": 0.5664,
2096
+ "step": 1490
2097
+ },
2098
+ {
2099
+ "epoch": 0.8496732026143791,
2100
+ "grad_norm": 0.16644535958766937,
2101
+ "learning_rate": 1.590909090909091e-05,
2102
+ "loss": 0.5514,
2103
+ "step": 1495
2104
+ },
2105
+ {
2106
+ "epoch": 0.8525149190110827,
2107
+ "grad_norm": 0.14531302452087402,
2108
+ "learning_rate": 1.561004784688995e-05,
2109
+ "loss": 0.5646,
2110
+ "step": 1500
2111
+ },
2112
+ {
2113
+ "epoch": 0.8553566354077863,
2114
+ "grad_norm": 0.1624838262796402,
2115
+ "learning_rate": 1.5311004784688995e-05,
2116
+ "loss": 0.5483,
2117
+ "step": 1505
2118
+ },
2119
+ {
2120
+ "epoch": 0.8581983518044899,
2121
+ "grad_norm": 0.1581767201423645,
2122
+ "learning_rate": 1.5011961722488038e-05,
2123
+ "loss": 0.6055,
2124
+ "step": 1510
2125
+ },
2126
+ {
2127
+ "epoch": 0.8610400682011935,
2128
+ "grad_norm": 0.13509996235370636,
2129
+ "learning_rate": 1.471291866028708e-05,
2130
+ "loss": 0.5702,
2131
+ "step": 1515
2132
+ },
2133
+ {
2134
+ "epoch": 0.8638817845978971,
2135
+ "grad_norm": 0.1682087630033493,
2136
+ "learning_rate": 1.4413875598086125e-05,
2137
+ "loss": 0.55,
2138
+ "step": 1520
2139
+ },
2140
+ {
2141
+ "epoch": 0.8667235009946007,
2142
+ "grad_norm": 0.13495485484600067,
2143
+ "learning_rate": 1.4114832535885167e-05,
2144
+ "loss": 0.563,
2145
+ "step": 1525
2146
+ },
2147
+ {
2148
+ "epoch": 0.8695652173913043,
2149
+ "grad_norm": 0.15126639604568481,
2150
+ "learning_rate": 1.3815789473684213e-05,
2151
+ "loss": 0.5607,
2152
+ "step": 1530
2153
+ },
2154
+ {
2155
+ "epoch": 0.8724069337880079,
2156
+ "grad_norm": 0.1609649509191513,
2157
+ "learning_rate": 1.3516746411483256e-05,
2158
+ "loss": 0.5767,
2159
+ "step": 1535
2160
+ },
2161
+ {
2162
+ "epoch": 0.8752486501847115,
2163
+ "grad_norm": 0.1570013165473938,
2164
+ "learning_rate": 1.3217703349282298e-05,
2165
+ "loss": 0.5838,
2166
+ "step": 1540
2167
+ },
2168
+ {
2169
+ "epoch": 0.8780903665814151,
2170
+ "grad_norm": 0.1471746861934662,
2171
+ "learning_rate": 1.291866028708134e-05,
2172
+ "loss": 0.5687,
2173
+ "step": 1545
2174
+ },
2175
+ {
2176
+ "epoch": 0.8809320829781188,
2177
+ "grad_norm": 0.13889586925506592,
2178
+ "learning_rate": 1.2619617224880383e-05,
2179
+ "loss": 0.572,
2180
+ "step": 1550
2181
+ },
2182
+ {
2183
+ "epoch": 0.8837737993748224,
2184
+ "grad_norm": 0.1460907906293869,
2185
+ "learning_rate": 1.2320574162679427e-05,
2186
+ "loss": 0.5731,
2187
+ "step": 1555
2188
+ },
2189
+ {
2190
+ "epoch": 0.886615515771526,
2191
+ "grad_norm": 0.14351268112659454,
2192
+ "learning_rate": 1.202153110047847e-05,
2193
+ "loss": 0.5438,
2194
+ "step": 1560
2195
+ },
2196
+ {
2197
+ "epoch": 0.8894572321682296,
2198
+ "grad_norm": 0.14592865109443665,
2199
+ "learning_rate": 1.1722488038277513e-05,
2200
+ "loss": 0.577,
2201
+ "step": 1565
2202
+ },
2203
+ {
2204
+ "epoch": 0.8922989485649332,
2205
+ "grad_norm": 0.16943998634815216,
2206
+ "learning_rate": 1.1423444976076555e-05,
2207
+ "loss": 0.5645,
2208
+ "step": 1570
2209
+ },
2210
+ {
2211
+ "epoch": 0.8951406649616368,
2212
+ "grad_norm": 0.1501266062259674,
2213
+ "learning_rate": 1.1124401913875598e-05,
2214
+ "loss": 0.5524,
2215
+ "step": 1575
2216
+ },
2217
+ {
2218
+ "epoch": 0.8979823813583404,
2219
+ "grad_norm": 0.14711496233940125,
2220
+ "learning_rate": 1.0825358851674642e-05,
2221
+ "loss": 0.5793,
2222
+ "step": 1580
2223
+ },
2224
+ {
2225
+ "epoch": 0.900824097755044,
2226
+ "grad_norm": 0.15462088584899902,
2227
+ "learning_rate": 1.0526315789473684e-05,
2228
+ "loss": 0.5662,
2229
+ "step": 1585
2230
+ },
2231
+ {
2232
+ "epoch": 0.9036658141517476,
2233
+ "grad_norm": 0.14514751732349396,
2234
+ "learning_rate": 1.0227272727272729e-05,
2235
+ "loss": 0.5707,
2236
+ "step": 1590
2237
+ },
2238
+ {
2239
+ "epoch": 0.9065075305484512,
2240
+ "grad_norm": 0.14459151029586792,
2241
+ "learning_rate": 9.928229665071771e-06,
2242
+ "loss": 0.5649,
2243
+ "step": 1595
2244
+ },
2245
+ {
2246
+ "epoch": 0.9093492469451548,
2247
+ "grad_norm": 0.1554642617702484,
2248
+ "learning_rate": 9.629186602870814e-06,
2249
+ "loss": 0.5921,
2250
+ "step": 1600
2251
+ },
2252
+ {
2253
+ "epoch": 0.9121909633418585,
2254
+ "grad_norm": 0.14525796473026276,
2255
+ "learning_rate": 9.330143540669856e-06,
2256
+ "loss": 0.5847,
2257
+ "step": 1605
2258
+ },
2259
+ {
2260
+ "epoch": 0.9150326797385621,
2261
+ "grad_norm": 0.1505240797996521,
2262
+ "learning_rate": 9.0311004784689e-06,
2263
+ "loss": 0.577,
2264
+ "step": 1610
2265
+ },
2266
+ {
2267
+ "epoch": 0.9178743961352657,
2268
+ "grad_norm": 0.14378653466701508,
2269
+ "learning_rate": 8.732057416267943e-06,
2270
+ "loss": 0.5321,
2271
+ "step": 1615
2272
+ },
2273
+ {
2274
+ "epoch": 0.9207161125319693,
2275
+ "grad_norm": 0.15809813141822815,
2276
+ "learning_rate": 8.433014354066986e-06,
2277
+ "loss": 0.5712,
2278
+ "step": 1620
2279
+ },
2280
+ {
2281
+ "epoch": 0.9235578289286729,
2282
+ "grad_norm": 0.14394868910312653,
2283
+ "learning_rate": 8.133971291866028e-06,
2284
+ "loss": 0.5347,
2285
+ "step": 1625
2286
+ },
2287
+ {
2288
+ "epoch": 0.9263995453253765,
2289
+ "grad_norm": 0.1609821915626526,
2290
+ "learning_rate": 7.834928229665072e-06,
2291
+ "loss": 0.5843,
2292
+ "step": 1630
2293
+ },
2294
+ {
2295
+ "epoch": 0.9292412617220801,
2296
+ "grad_norm": 0.14901985228061676,
2297
+ "learning_rate": 7.535885167464116e-06,
2298
+ "loss": 0.5899,
2299
+ "step": 1635
2300
+ },
2301
+ {
2302
+ "epoch": 0.9320829781187837,
2303
+ "grad_norm": 0.16525277495384216,
2304
+ "learning_rate": 7.236842105263158e-06,
2305
+ "loss": 0.5651,
2306
+ "step": 1640
2307
+ },
2308
+ {
2309
+ "epoch": 0.9349246945154873,
2310
+ "grad_norm": 0.1574372798204422,
2311
+ "learning_rate": 6.937799043062202e-06,
2312
+ "loss": 0.5702,
2313
+ "step": 1645
2314
+ },
2315
+ {
2316
+ "epoch": 0.9377664109121909,
2317
+ "grad_norm": 0.18484370410442352,
2318
+ "learning_rate": 6.638755980861244e-06,
2319
+ "loss": 0.5855,
2320
+ "step": 1650
2321
+ },
2322
+ {
2323
+ "epoch": 0.9406081273088945,
2324
+ "grad_norm": 0.15279646217823029,
2325
+ "learning_rate": 6.339712918660287e-06,
2326
+ "loss": 0.5672,
2327
+ "step": 1655
2328
+ },
2329
+ {
2330
+ "epoch": 0.9434498437055981,
2331
+ "grad_norm": 0.1466342955827713,
2332
+ "learning_rate": 6.040669856459331e-06,
2333
+ "loss": 0.5818,
2334
+ "step": 1660
2335
+ },
2336
+ {
2337
+ "epoch": 0.9462915601023018,
2338
+ "grad_norm": 0.146029993891716,
2339
+ "learning_rate": 5.741626794258374e-06,
2340
+ "loss": 0.5569,
2341
+ "step": 1665
2342
+ },
2343
+ {
2344
+ "epoch": 0.9491332764990054,
2345
+ "grad_norm": 0.16354189813137054,
2346
+ "learning_rate": 5.442583732057416e-06,
2347
+ "loss": 0.5768,
2348
+ "step": 1670
2349
+ },
2350
+ {
2351
+ "epoch": 0.951974992895709,
2352
+ "grad_norm": 0.14640045166015625,
2353
+ "learning_rate": 5.14354066985646e-06,
2354
+ "loss": 0.5683,
2355
+ "step": 1675
2356
+ },
2357
+ {
2358
+ "epoch": 0.9548167092924126,
2359
+ "grad_norm": 0.15549986064434052,
2360
+ "learning_rate": 4.844497607655503e-06,
2361
+ "loss": 0.5649,
2362
+ "step": 1680
2363
+ },
2364
+ {
2365
+ "epoch": 0.9576584256891162,
2366
+ "grad_norm": 0.18970870971679688,
2367
+ "learning_rate": 4.5454545454545455e-06,
2368
+ "loss": 0.5964,
2369
+ "step": 1685
2370
+ },
2371
+ {
2372
+ "epoch": 0.9605001420858198,
2373
+ "grad_norm": 0.13758742809295654,
2374
+ "learning_rate": 4.246411483253589e-06,
2375
+ "loss": 0.5725,
2376
+ "step": 1690
2377
+ },
2378
+ {
2379
+ "epoch": 0.9633418584825234,
2380
+ "grad_norm": 0.175694540143013,
2381
+ "learning_rate": 3.9473684210526315e-06,
2382
+ "loss": 0.5436,
2383
+ "step": 1695
2384
+ },
2385
+ {
2386
+ "epoch": 0.966183574879227,
2387
+ "grad_norm": 0.1392461508512497,
2388
+ "learning_rate": 3.6483253588516753e-06,
2389
+ "loss": 0.5469,
2390
+ "step": 1700
2391
+ },
2392
+ {
2393
+ "epoch": 0.9690252912759306,
2394
+ "grad_norm": 0.14097018539905548,
2395
+ "learning_rate": 3.349282296650718e-06,
2396
+ "loss": 0.562,
2397
+ "step": 1705
2398
+ },
2399
+ {
2400
+ "epoch": 0.9718670076726342,
2401
+ "grad_norm": 0.1417640596628189,
2402
+ "learning_rate": 3.0502392344497608e-06,
2403
+ "loss": 0.574,
2404
+ "step": 1710
2405
+ },
2406
+ {
2407
+ "epoch": 0.9747087240693378,
2408
+ "grad_norm": 0.149598628282547,
2409
+ "learning_rate": 2.751196172248804e-06,
2410
+ "loss": 0.5619,
2411
+ "step": 1715
2412
+ },
2413
+ {
2414
+ "epoch": 0.9775504404660414,
2415
+ "grad_norm": 0.14410585165023804,
2416
+ "learning_rate": 2.452153110047847e-06,
2417
+ "loss": 0.5669,
2418
+ "step": 1720
2419
+ },
2420
+ {
2421
+ "epoch": 0.9803921568627451,
2422
+ "grad_norm": 0.15505129098892212,
2423
+ "learning_rate": 2.15311004784689e-06,
2424
+ "loss": 0.5573,
2425
+ "step": 1725
2426
+ },
2427
+ {
2428
+ "epoch": 0.9832338732594487,
2429
+ "grad_norm": 0.13935989141464233,
2430
+ "learning_rate": 1.854066985645933e-06,
2431
+ "loss": 0.5529,
2432
+ "step": 1730
2433
+ },
2434
+ {
2435
+ "epoch": 0.9860755896561523,
2436
+ "grad_norm": 0.15468458831310272,
2437
+ "learning_rate": 1.555023923444976e-06,
2438
+ "loss": 0.5788,
2439
+ "step": 1735
2440
+ },
2441
+ {
2442
+ "epoch": 0.9889173060528559,
2443
+ "grad_norm": 0.15632416307926178,
2444
+ "learning_rate": 1.2559808612440192e-06,
2445
+ "loss": 0.5673,
2446
+ "step": 1740
2447
+ },
2448
+ {
2449
+ "epoch": 0.9917590224495595,
2450
+ "grad_norm": 0.19154873490333557,
2451
+ "learning_rate": 9.569377990430622e-07,
2452
+ "loss": 0.5613,
2453
+ "step": 1745
2454
+ },
2455
+ {
2456
+ "epoch": 0.9946007388462631,
2457
+ "grad_norm": 0.13292330503463745,
2458
+ "learning_rate": 6.578947368421053e-07,
2459
+ "loss": 0.5693,
2460
+ "step": 1750
2461
+ },
2462
+ {
2463
+ "epoch": 0.9974424552429667,
2464
+ "grad_norm": 0.16198578476905823,
2465
+ "learning_rate": 3.5885167464114835e-07,
2466
+ "loss": 0.5678,
2467
+ "step": 1755
2468
+ },
2469
+ {
2470
+ "epoch": 1.0,
2471
+ "grad_norm": 0.2121179699897766,
2472
+ "learning_rate": 5.980861244019139e-08,
2473
+ "loss": 0.5747,
2474
+ "step": 1760
2475
+ }
2476
+ ],
2477
+ "logging_steps": 5,
2478
+ "max_steps": 1760,
2479
+ "num_input_tokens_seen": 0,
2480
+ "num_train_epochs": 1,
2481
+ "save_steps": 500,
2482
+ "stateful_callbacks": {
2483
+ "TrainerControl": {
2484
+ "args": {
2485
+ "should_epoch_stop": false,
2486
+ "should_evaluate": false,
2487
+ "should_log": false,
2488
+ "should_save": true,
2489
+ "should_training_stop": true
2490
+ },
2491
+ "attributes": {}
2492
+ }
2493
+ },
2494
+ "total_flos": 2.910811156402248e+19,
2495
+ "train_batch_size": 1,
2496
+ "trial_name": null,
2497
+ "trial_params": null
2498
+ }
Qwen3-4B-Thinking-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-2778/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
Qwen3-4B-Thinking-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-2778/chat_template.jinja ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n<think>\n' }}
86
+ {%- endif %}
Qwen3-4B-Thinking-2507-sft-fusang-swa=2k_sink=0_fadec/checkpoint-2778/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }