File size: 10,779 Bytes
5b64e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import functools
from typing import Any, Generic, Iterator, TypeVar
import torch
import torch.nn as nn
from torch.distributed.checkpoint.state_dict import (
get_optimizer_state_dict,
set_optimizer_state_dict,
StateDictOptions,
)
from torch.distributed.checkpoint.stateful import Stateful
from torch.optim import Optimizer
from torchtitan.components.ft import FTManager, has_torchft
from torchtitan.config_manager import JobConfig
__all__ = [
"OptimizersContainer",
"build_optimizers",
]
if has_torchft:
import torchft as ft
T = TypeVar("T", bound=Optimizer)
class OptimizersContainer(Optimizer, Stateful, Generic[T]):
"""A container for multiple optimizers.
This class is used to wrap multiple optimizers into a single object that can be
used to reduce the complexity of the training loop. This mimics the behavior of
``torch.optim.Optimizer``. This class currently only supports ``Adam`` and ``AdamW``.
**Note**
Users who want to customize the optimizer behavior can inherit from this class and
extend the functionality as needed. The following methods must follow the same signature
as ``torch.optim.Optimizer`` class: ``step()``, ``zero_grad()``, ``state_dict()``,
``load_state_dict()``.
**Limitations**
This class assumes that all the optimizers are the same type and have the same
configurations. With this assumption, TorchTitan can support lr scheduler resharding
(e.g., loading a checkpoint with a different number of GPUs and/or different
parallelization strategy). Note that ``get_optimizer_state_dict`` already enables the
resharding for the optimizer state but not for the lr scheduler state, hence the limitation.
Args:
model_parts (List[nn.Module]): List of model parts to be optimized.
optimizer_kwargs (Dict[str, Any]): Keyword arguments for the optimizers.
name (str): Name of the optimizers.
"""
optimizers: list[T]
model_parts: list[nn.Module]
def __init__(
self,
model_parts: list[nn.Module],
optimizer_cls: type[T],
optimizer_kwargs: dict[str, Any],
) -> None:
all_params = []
self.optimizers = []
self.model_parts = model_parts
for model in self.model_parts:
params = [p for p in model.parameters() if p.requires_grad]
self.optimizers.append(optimizer_cls(params, **optimizer_kwargs))
all_params.extend(params)
self._validate_length(len(self.model_parts))
self._post_init(all_params, optimizer_kwargs)
def __iter__(self) -> Iterator[T]:
return iter(self.optimizers)
def __len__(self) -> int:
return len(self.optimizers)
def step(self, *args, **kwargs) -> None:
for optimizer in self.optimizers:
optimizer.step(*args, **kwargs)
def zero_grad(self, *args, **kwargs) -> None:
for optimizer in self.optimizers:
optimizer.zero_grad(*args, **kwargs)
def state_dict(self) -> dict[str, Any]:
func = functools.partial(
get_optimizer_state_dict,
options=StateDictOptions(flatten_optimizer_state_dict=True),
)
return {
k: v
for sd in map(func, self.model_parts, self.optimizers)
for k, v in sd.items()
}
def load_state_dict(self, state_dict: dict[str, Any]) -> None:
func = functools.partial(
set_optimizer_state_dict,
optim_state_dict=state_dict,
options=StateDictOptions(flatten_optimizer_state_dict=True),
)
list(map(func, self.model_parts, self.optimizers))
def _validate_length(self, expected_length: int) -> None:
assert expected_length == len(self.optimizers), (
"Must pass one optimizer per model part or per param if "
"using OptimizersInBackwardContainer."
)
def _post_init(
self, all_params: list[nn.Parameter], optimizer_kwargs: dict[str, Any]
) -> None:
# We need to call Optimizer.__init__() to initialize some necessary optimizer
# functionality such as hooks.
Optimizer.__init__(self, all_params, optimizer_kwargs)
class OptimizersInBackwardContainer(OptimizersContainer):
"""OptimizersContainer for executing ``optim.step()`` in backward pass.
This class extend ``OptimizersContainer`` to support optimizer step in
backward pass. ``step()`` and ``zero_grad()`` are no-op in this class.
Instead, ``register_post_accumulate_grad_hook`` is used to register a hook to
execute these methods when the gradient is accumulated.
"""
def __init__(
self,
model_parts: list[nn.Module],
optimizer_cls: type[T],
optimizer_kwargs: dict[str, Any],
) -> None:
all_params = []
self.model_parts = model_parts
optim_dict = {}
for model in self.model_parts:
for p in model.parameters():
if p.requires_grad:
optim_dict[p] = optimizer_cls([p], **optimizer_kwargs)
all_params.append(p)
def optim_hook(param) -> None:
optim_dict[param].step()
optim_dict[param].zero_grad()
for model in self.model_parts:
for param in model.parameters():
if param.requires_grad:
param.register_post_accumulate_grad_hook(optim_hook)
self.optimizers = list(optim_dict.values())
self._validate_length(
sum(len(list(model.parameters())) for model in self.model_parts)
)
self._post_init(all_params, optimizer_kwargs)
def step(self) -> None:
pass
def zero_grad(self) -> None:
pass
class FTOptimizersContainer(OptimizersContainer):
def __init__(
self,
model_parts: list[nn.Module],
optimizer_cls: type[T],
optimizer_kwargs: dict[str, Any],
ft_manager: "ft.Manager",
) -> None:
super().__init__(model_parts, optimizer_cls, optimizer_kwargs)
# Force to initialize the optimizer state so that `optim.step()`
# won't be called by state_dict() and load_state_dict().
_ = {
k: v
for sd in map(get_optimizer_state_dict, model_parts, self.optimizers)
for k, v in sd.items()
}
self.cache_state_dict: dict[str, Any] = {}
self._ft_optimizer = ft.Optimizer(ft_manager, self)
self._call_from_ft: bool = False
def init_cache_state_dict(self) -> None:
self.cache_state_dict = super().state_dict()
def state_dict(self) -> dict[str, Any]:
return self.cache_state_dict
def load_state_dict(self, state_dict: dict[str, Any]) -> None:
# We have to invalidate the `cache_state_dict` because optimizer uses
# assign instead of copy when doing `load_state_dict()`. Without
# invalidating the `cache_state_dict`, there will be memory leakage.
self.cache_state_dict = {}
super().load_state_dict(state_dict)
self.init_cache_state_dict()
def step(self, *args, **kwargs) -> None:
"""Calling the correct step() depending on the caller.
TorchFT's OptimizerWrapper.step() is designed to be callled only once
per train step per ft.Manager regardless how many optimizers are used.
Hence we will need to appropriately dispatch the call.
"""
if self._call_from_ft:
super().step(*args, **kwargs)
else:
self._call_from_ft = True
self._ft_optimizer.step(*args, **kwargs)
self._call_from_ft = False
def zero_grad(self, *args, **kwargs) -> None:
"""Calling the correct zero_grad() depending on the caller.
Check the comment in ``step()``.
"""
if self._call_from_ft:
super().zero_grad(*args, **kwargs)
else:
self._call_from_ft = True
self._ft_optimizer.zero_grad(*args, **kwargs)
self._call_from_ft = False
def build_optimizers(
model_parts: list[nn.Module],
job_config: JobConfig,
ft_manager: FTManager,
) -> OptimizersContainer:
"""Create a OptimizersContainer for the given model parts and job config.
This function creates a ``OptimizersContainer`` for the given model parts.
``job_config`` should define the correct optimizer name and parameters.
This function currently supports creating ``OptimizersContainer`` and
``OptimizersInBackwardContainer``.
**Note**
Users who want to customize the optimizer behavior can create their own
``OptimizersContainer`` subclass and ``build_optimizers``. Passing the
customized ``build_optimizers`` to ``TrainSpec`` will create the customized
``OptimizersContainer``.
Args:
model_parts (List[nn.Module]): List of model parts to be optimized.
job_config (JobConfig): Job config containing the optimizer name and parameters.
"""
optim_in_bwd = job_config.optimizer.early_step_in_backward
if optim_in_bwd and job_config.parallelism.pipeline_parallel_degree > 1:
raise NotImplementedError(
"Optimizers in backward is not supported with pipeline parallelism."
)
name = job_config.optimizer.name
lr = job_config.optimizer.lr
eps = job_config.optimizer.eps
optim_implementation = job_config.optimizer.implementation
assert optim_implementation in ["fused", "foreach", "for-loop"]
fused = optim_implementation == "fused"
foreach = optim_implementation == "foreach"
optimizer_kwargs = {
"lr": lr,
"eps": eps,
"betas": (0.9, 0.95),
"weight_decay": 0.1,
"fused": fused,
"foreach": foreach,
}
optimizer_classes = {
"Adam": torch.optim.Adam,
"AdamW": torch.optim.AdamW,
}
if name not in optimizer_classes:
raise NotImplementedError(f"Optimizer {name} not added.")
optimizer_cls = optimizer_classes[name]
if optim_in_bwd and ft_manager.enabled:
raise ValueError("TorchFT is not supported with optimizers in backward.")
elif optim_in_bwd:
return OptimizersInBackwardContainer(
model_parts, optimizer_cls, optimizer_kwargs
)
elif ft_manager.enabled:
return FTOptimizersContainer(
model_parts, optimizer_cls, optimizer_kwargs, ft_manager.manager
)
else:
return OptimizersContainer(model_parts, optimizer_cls, optimizer_kwargs)
|