zaydzuhri's picture
Add files using upload-large-folder tool
1e817be verified
raw
history blame
22 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from fla.ops.utils.op import exp, safe_exp
from fla.utils import check_shared_mem, is_nvidia_hopper
BKV_LIST = [64, 128] if check_shared_mem() else [32, 64]
NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8]
@triton.heuristics({
'USE_G': lambda args: args['g'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
for BK in BKV_LIST
for BV in BKV_LIST
for num_warps in NUM_WARPS
for num_stages in [2, 3, 4]
],
key=['H', 'K', 'V', 'BT'],
)
@triton.jit(do_not_specialize=['T'])
def chunk_fwd_kernel_o(
q,
k,
v,
h,
g,
o,
offsets,
indices,
scale,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_G: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
s_qk = K if HEAD_FIRST else H*K
s_vo = V if HEAD_FIRST else H*V
s_g = 1 if HEAD_FIRST else H
# offset calculation
q += (i_bh * T*K) if HEAD_FIRST else ((bos * H + i_h) * K)
k += (i_bh * T*K) if HEAD_FIRST else ((bos * H + i_h) * K)
v += (i_bh * T*V) if HEAD_FIRST else ((bos * H + i_h) * V)
o += (i_bh * T*V) if HEAD_FIRST else ((bos * H + i_h) * V)
h += ((i_bh * NT + i_t).to(tl.int64) * K*V) if HEAD_FIRST else ((i_tg * H + i_h).to(tl.int64) * K*V)
b_o = tl.zeros([BT, BV], dtype=tl.float32)
b_A = tl.zeros([BT, BT], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
p_q = tl.make_block_ptr(q, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k, (K, T), (1, s_qk), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_h = tl.make_block_ptr(h, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
# [BT, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
# [BK, BT]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BK, BV]
b_h = tl.load(p_h, boundary_check=(0, 1))
# [BT, BK] @ [BK, BV] -> [BT, BV]
b_o += tl.dot(b_q, b_h)
# [BT, BK] @ [BK, BT] -> [BT, BT]
b_A += tl.dot(b_q, b_k)
if USE_G:
g += (i_bh * T) if HEAD_FIRST else (bos * H + i_h)
p_g = tl.make_block_ptr(g, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
b_g = tl.load(p_g, boundary_check=(0,))
b_o = b_o * exp(b_g)[:, None]
b_A = b_A * safe_exp(b_g[:, None] - b_g[None, :])
o_i = tl.arange(0, BT)
m_A = o_i[:, None] >= o_i[None, :]
b_A = tl.where(m_A, b_A, 0)
p_v = tl.make_block_ptr(v, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
# to fix mma -> mma layout conversion
# already solved by triton v3.2 or higher
b_o = b_o * scale + tl.dot(b_A.to(b_v.dtype), b_v) * scale
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None,
'USE_G': lambda args: args['g'] is not None,
'USE_DW': lambda args: args['dw'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in NUM_WARPS
for num_stages in [2, 3, 4]
],
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G', 'USE_DW'],
)
@triton.jit(do_not_specialize=['T'])
def chunk_bwd_kernel_dqkwg(
q,
k,
v,
h,
g,
do,
dh,
dq,
dk,
dg,
w,
dv,
dw,
offsets,
indices,
scale,
B: tl.constexpr,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_G: tl.constexpr,
USE_DW: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_G:
dg += i_k * B * H * T
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
# offset calculation
v += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
do += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
h += (i_bh * NT + i_t).to(tl.int64) * K*V if HEAD_FIRST else (i_tg * H + i_h).to(tl.int64) * K*V
dh += (i_bh * NT + i_t).to(tl.int64) * K*V if HEAD_FIRST else (i_tg * H + i_h).to(tl.int64) * K*V
q += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
k += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
dq += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
dk += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
s_qk = K if HEAD_FIRST else H*K
s_vo = V if HEAD_FIRST else H*V
s_g = 1 if HEAD_FIRST else H
# for delta rule only
if USE_DW:
dw += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
dv += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
w += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
b_ds = tl.zeros([BT, BT], dtype=tl.float32)
b_dg_last = tl.zeros([1,], dtype=tl.float32) if USE_G else None
b_dw = tl.zeros([BT, BK], dtype=tl.float32) if USE_DW else None
for i_v in range(tl.cdiv(V, BV)):
p_v = tl.make_block_ptr(v, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_do = tl.make_block_ptr(do, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
p_dh = tl.make_block_ptr(dh, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
# [BT, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BV, BK]
b_h = tl.load(p_h, boundary_check=(0, 1))
b_dh = tl.load(p_dh, boundary_check=(0, 1))
if USE_G:
b_dg_last += (tl.sum(b_h * b_dh))
# [BT, BV] @ [BV, BT] -> [BT, BT]
b_ds += tl.dot(b_do, tl.trans(b_v))
# [BT, BV] @ [BV, BK] -> [BT, BK]
b_dq += tl.dot(b_do, b_h.to(b_do.dtype))
# [BT, BV] @ [BV, BK] -> [BT, BK]
b_dk += tl.dot(b_v, b_dh.to(b_v.dtype))
if USE_DW:
p_dv = tl.make_block_ptr(dv, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_dv = tl.load(p_dv, boundary_check=(0, 1))
b_dw += tl.dot(b_dv.to(b_v.dtype), b_h.to(b_v.dtype))
if USE_DW and not USE_G:
p_dw = tl.make_block_ptr(dw, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
tl.store(p_dw, -b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1))
tl.debug_barrier()
o_i = tl.arange(0, BT)
p_q = tl.make_block_ptr(q, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
p_dq = tl.make_block_ptr(dq, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
if USE_G:
b_dg = tl.zeros([BT,], dtype=tl.float32)
g += i_bh * T if HEAD_FIRST else bos * H + i_h
dg += i_bh * T if HEAD_FIRST else bos * H + i_h
p_g = tl.make_block_ptr(g, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
b_g = tl.load(p_g, boundary_check=(0,))
b_g_last = tl.load(g + (min(i_t * BT + BT, T) - 1) * s_g)
b_dg_last *= exp(b_g_last)
if USE_DW:
p_w = tl.make_block_ptr(w, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dw = tl.make_block_ptr(dw, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_w = tl.load(p_w, boundary_check=(0, 1))
b_dw = b_dw * exp(b_g)[:, None]
tl.store(p_dw, -b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1))
b_dg -= tl.sum(b_w * b_dw, axis=1)
b_dq = b_dq * exp(b_g)[:, None] * scale
b_dg += tl.sum(b_dq * b_q, axis=1)
b_dk = b_dk * safe_exp(-b_g + b_g_last)[:, None]
b_dg -= tl.sum(b_k * b_dk, axis=1)
b_dg_last += tl.sum(b_dk * b_k)
b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * safe_exp(b_g[:, None] - b_g[None, :]), 0) * scale
b_ds2 = b_ds * tl.dot(b_q, tl.trans(b_k))
b_dg += tl.sum(b_ds2, axis=1)
b_dg -= tl.sum(b_ds2, axis=0)
b_ds = b_ds.to(b_k.dtype)
# [BT, BK]
b_dq += tl.dot(b_ds, b_k)
b_dk += tl.dot(tl.trans(b_ds), b_q)
p_dg = tl.make_block_ptr(dg, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
# (SY 09/21) revcumsum in a separate kernel due to strange triton compiler issue
# b_dg = tl.dot(tl.where(o_i[:, None] <= o_i[None, :], 1., 0.), b_dg, allow_tf32=False) + b_dg_last)
b_dg = tl.where(o_i < min(BT, T-i_t*BT) - 1, b_dg, b_dg + b_dg_last)
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
else:
b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds, 0)
b_ds = b_ds.to(b_k.dtype)
b_dq += tl.dot(b_ds, b_k)
b_dk += tl.dot(tl.trans(b_ds), b_q) * scale
b_dq *= scale
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None,
'USE_G': lambda args: args['g'] is not None,
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [2, 4, 8]
for num_stages in [2, 3, 4]
],
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G'],
)
@triton.jit(do_not_specialize=['T'])
def chunk_bwd_kernel_dv(
q,
k,
g,
do,
dv,
dh,
offsets,
indices,
scale,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_G: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
# offset calculation
q += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
k += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
do += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
dv += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
s_qk = K if HEAD_FIRST else H*K
s_vo = V if HEAD_FIRST else H*V
s_g = 1 if HEAD_FIRST else H
dh += (i_bh * NT + i_t).to(tl.int64) * K*V if HEAD_FIRST else (i_tg * H + i_h).to(tl.int64) * K*V
b_A = tl.zeros([BT, BT], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
p_k = tl.make_block_ptr(k, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_q = tl.make_block_ptr(q, (K, T), (1, s_qk), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_A += tl.dot(b_k, b_q)
p_dh = tl.make_block_ptr(dh, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_dh = tl.load(p_dh, boundary_check=(0, 1))
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype))
if USE_G:
g += (i_bh * T) if HEAD_FIRST else (bos * H + i_h)
p_g = tl.make_block_ptr(g, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
b_g = tl.load(p_g, boundary_check=(0,))
b_g_last = tl.load(g + (min(i_t * BT + BT, T) - 1) * s_g)
b_dv *= safe_exp(-b_g + b_g_last)[:, None]
mask = (tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :])
if USE_G:
b_A = tl.where(mask, b_A * safe_exp(b_g[None, :] - b_g[:, None]) * scale, 0).to(do.dtype.element_ty)
else:
b_A = tl.where(mask, b_A * scale, 0).to(do.dtype.element_ty)
p_do = tl.make_block_ptr(do, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_dv += tl.dot(b_A.to(b_do.dtype), b_do)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_G': lambda args: args['g'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None,
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in NUM_WARPS
for num_stages in [2, 3, 4]
],
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G'],
)
@triton.jit(do_not_specialize=['T'])
def chunk_bwd_kernel_dv_local(
q,
k,
g,
do,
dv,
offsets,
indices,
scale,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_G: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_t, i_bh = tl.program_id(0), tl.program_id(1)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
# offset calculation
q += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
k += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
do += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
dv += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
s_qk = K if HEAD_FIRST else H*K
s_vo = V if HEAD_FIRST else H*V
s_g = 1 if HEAD_FIRST else H
b_A = tl.zeros([BT, BT], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
p_k = tl.make_block_ptr(k, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_q = tl.make_block_ptr(q, (K, T), (1, s_qk), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_A += tl.dot(b_k, b_q)
if USE_G:
g += (i_bh * T) if HEAD_FIRST else (bos * H + i_h)
p_g = tl.make_block_ptr(g, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
b_g = tl.load(p_g, boundary_check=(0,))
mask = (tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :])
if USE_G:
b_A = tl.where(mask, b_A * safe_exp(b_g[None, :] - b_g[:, None]) * scale, 0).to(do.dtype.element_ty)
else:
b_A = tl.where(mask, b_A * scale, 0).to(do.dtype.element_ty)
for i_v in range(tl.cdiv(V, BV)):
p_do = tl.make_block_ptr(do, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_dv = tl.dot(b_A.to(b_do.dtype), b_do)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
def chunk_fwd_o(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
h: torch.Tensor,
g: Optional[torch.Tensor] = None, # cumsum of log decay
scale: Optional[float] = None,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> torch.Tensor:
if head_first:
B, H, T, K, V = *q.shape, v.shape[-1]
else:
B, T, H, K, V = *q.shape, v.shape[-1]
if scale is None:
scale = k.shape[-1] ** -0.5
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
o = torch.empty_like(v)
def grid(meta): return (triton.cdiv(V, meta['BV']), NT, B * H)
chunk_fwd_kernel_o[grid](
q,
k,
v,
h,
g,
o,
offsets,
indices,
scale,
T=T,
H=H,
K=K,
V=V,
BT=BT,
HEAD_FIRST=head_first
)
return o
def chunk_bwd_dv(
q: torch.Tensor,
k: torch.Tensor,
g: torch.Tensor,
do: torch.Tensor,
dh: torch.Tensor,
scale: float,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> torch.Tensor:
if head_first:
B, H, T, K, V = *k.shape, do.shape[-1]
else:
B, T, H, K, V = *k.shape, do.shape[-1]
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
# H100 can have larger block size
if check_shared_mem('hopper', k.device.index):
CONST_TILING = 128
elif check_shared_mem:
CONST_TILING = 64
else:
CONST_TILING = 32
BK = min(triton.next_power_of_2(K), CONST_TILING)
BV = min(triton.next_power_of_2(V), CONST_TILING)
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
NV = triton.cdiv(V, BV)
dv = torch.empty_like(do)
grid = (NV, NT, B * H)
chunk_bwd_kernel_dv[grid](
q,
k,
g,
do,
dv,
dh,
offsets,
indices,
scale,
T=T,
H=H,
K=K,
V=V,
BT=BT,
BK=BK,
BV=BV,
HEAD_FIRST=head_first
)
return dv
def chunk_bwd_dv_local(
q: torch.Tensor,
k: torch.Tensor,
g: torch.Tensor,
do: torch.Tensor,
dh: torch.Tensor,
scale: float,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> torch.Tensor:
if head_first:
B, H, T, K, V = *k.shape, do.shape[-1]
else:
B, T, H, K, V = *k.shape, do.shape[-1]
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
# H100 can have larger block size
if check_shared_mem('hopper', k.device.index):
CONST_TILING = 128
elif check_shared_mem:
CONST_TILING = 64
else:
CONST_TILING = 32
BK = min(triton.next_power_of_2(K), CONST_TILING)
BV = min(triton.next_power_of_2(V), CONST_TILING)
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
dv = torch.empty_like(do)
grid = (NT, B * H)
chunk_bwd_kernel_dv_local[grid](
q,
k,
g,
do,
dv,
offsets,
indices,
scale,
T=T,
H=H,
K=K,
V=V,
BT=BT,
BK=BK,
BV=BV,
HEAD_FIRST=head_first
)
return dv
def chunk_bwd_dqkwg(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
do: torch.Tensor,
h: torch.Tensor,
dh: torch.Tensor,
dv: Optional[torch.Tensor] = None,
w: Optional[torch.Tensor] = None,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
chunk_size: int = 64,
scale: float = 1.0,
head_first: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
CONST_TILING = 64 if check_shared_mem() else 32
BK = min(triton.next_power_of_2(K), CONST_TILING)
BV = min(triton.next_power_of_2(V), CONST_TILING)
NK = triton.cdiv(K, BK)
dq = torch.empty_like(q)
dk = torch.empty_like(k)
dg = torch.empty(NK, *g.shape, dtype=torch.float32, device=g.device) if g is not None else None
dw = torch.empty_like(w) if w is not None else None
grid = (NK, NT, B * H)
chunk_bwd_kernel_dqkwg[grid](
q=q,
k=k,
v=v,
h=h,
g=g,
do=do,
dh=dh,
dv=dv,
w=w,
dw=dw,
dq=dq,
dk=dk,
dg=dg,
offsets=offsets,
indices=indices,
scale=scale,
B=B,
T=T,
H=H,
K=K,
V=V,
BT=BT,
BK=BK,
BV=BV,
HEAD_FIRST=head_first
)
if dg is not None:
dg = dg.sum(0)
return dq, dk, dw, dg