Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- fla/ops/abc/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/attn/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/attn/parallel.py +629 -0
- fla/ops/based/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/common/__pycache__/chunk_delta_h.cpython-312.pyc +0 -0
- fla/ops/common/chunk_delta_h.py +399 -0
- fla/ops/common/chunk_h_parallel.py +650 -0
- fla/ops/common/fused_recurrent.py +575 -0
- fla/ops/common/utils.py +69 -0
- fla/ops/delta_rule/README.md +90 -0
- fla/ops/delta_rule/__init__.py +11 -0
- fla/ops/delta_rule/parallel.py +394 -0
- fla/ops/gated_delta_rule/__init__.py +7 -0
- fla/ops/gated_delta_rule/__pycache__/chunk.cpython-312.pyc +0 -0
- fla/ops/gated_delta_rule/__pycache__/fused_recurrent.cpython-312.pyc +0 -0
- fla/ops/generalized_delta_rule/__init__.py +9 -0
- fla/ops/generalized_delta_rule/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__init__.py +7 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_A_bwd.cpython-312.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_h_bwd.cpython-312.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/wy_fast_fwd.cpython-312.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/chunk_A_bwd.py +446 -0
- fla/ops/generalized_delta_rule/dplr/chunk_A_fwd.py +324 -0
- fla/ops/generalized_delta_rule/dplr/chunk_h_bwd.py +196 -0
- fla/ops/generalized_delta_rule/dplr/chunk_h_fwd.py +197 -0
- fla/ops/generalized_delta_rule/dplr/fused_recurrent.py +292 -0
- fla/ops/generalized_delta_rule/dplr/naive.py +96 -0
- fla/ops/generalized_delta_rule/iplr/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/generalized_delta_rule/iplr/__pycache__/wy_fast.cpython-312.pyc +0 -0
- fla/ops/generalized_delta_rule/iplr/wy_fast.py +338 -0
- fla/ops/gla/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/gla/__pycache__/chunk.cpython-312.pyc +0 -0
- fla/ops/gla/__pycache__/fused_chunk.cpython-312.pyc +0 -0
- fla/ops/gla/__pycache__/fused_recurrent.cpython-312.pyc +0 -0
- fla/ops/gsa/__init__.py +9 -0
- fla/ops/gsa/naive.py +68 -0
- fla/ops/hgrn/__pycache__/fused_recurrent.cpython-312.pyc +0 -0
- fla/ops/hgrn/chunk.py +282 -0
- fla/ops/hgrn/fused_recurrent.py +308 -0
- fla/ops/lightning_attn/__pycache__/fused_recurrent.cpython-312.pyc +0 -0
- fla/ops/linear_attn/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/linear_attn/__pycache__/utils.cpython-312.pyc +0 -0
- fla/ops/linear_attn/fused_recurrent.py +251 -0
- fla/ops/nsa/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/nsa/__pycache__/naive.cpython-312.pyc +0 -0
- fla/ops/nsa/__pycache__/parallel.cpython-312.pyc +0 -0
- fla/ops/rebased/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/rebased/parallel.py +466 -0
- fla/ops/retention/__pycache__/__init__.cpython-312.pyc +0 -0
fla/ops/abc/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (212 Bytes). View file
|
|
|
fla/ops/attn/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (220 Bytes). View file
|
|
|
fla/ops/attn/parallel.py
ADDED
|
@@ -0,0 +1,629 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
from einops import rearrange, reduce
|
| 10 |
+
|
| 11 |
+
from fla.ops.common.utils import prepare_chunk_indices
|
| 12 |
+
from fla.ops.utils.op import exp, log
|
| 13 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_shared_mem, contiguous
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@triton.heuristics({
|
| 17 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 18 |
+
})
|
| 19 |
+
@triton.autotune(
|
| 20 |
+
configs=[
|
| 21 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 22 |
+
for num_warps in [1, 2, 4] + ([8] if check_shared_mem('hopper') else [])
|
| 23 |
+
for num_stages in [2, 3, 4, 5]
|
| 24 |
+
],
|
| 25 |
+
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
|
| 26 |
+
)
|
| 27 |
+
@triton.jit
|
| 28 |
+
def parallel_attn_fwd_kernel(
|
| 29 |
+
q,
|
| 30 |
+
k,
|
| 31 |
+
v,
|
| 32 |
+
o,
|
| 33 |
+
lse,
|
| 34 |
+
scale,
|
| 35 |
+
offsets,
|
| 36 |
+
indices,
|
| 37 |
+
T,
|
| 38 |
+
B: tl.constexpr,
|
| 39 |
+
H: tl.constexpr,
|
| 40 |
+
HQ: tl.constexpr,
|
| 41 |
+
G: tl.constexpr,
|
| 42 |
+
K: tl.constexpr,
|
| 43 |
+
V: tl.constexpr,
|
| 44 |
+
BT: tl.constexpr,
|
| 45 |
+
BS: tl.constexpr,
|
| 46 |
+
BK: tl.constexpr,
|
| 47 |
+
BV: tl.constexpr,
|
| 48 |
+
USE_OFFSETS: tl.constexpr
|
| 49 |
+
):
|
| 50 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 51 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
| 52 |
+
i_h = i_hq // G
|
| 53 |
+
|
| 54 |
+
if USE_OFFSETS:
|
| 55 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 56 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 57 |
+
T = eos - bos
|
| 58 |
+
else:
|
| 59 |
+
i_n = i_b
|
| 60 |
+
bos, eos = i_n * T, i_n * T + T
|
| 61 |
+
|
| 62 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 63 |
+
p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 64 |
+
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
| 65 |
+
|
| 66 |
+
# the Q block is kept in the shared memory throughout the whole kernel
|
| 67 |
+
# [BT, BK]
|
| 68 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 69 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
| 70 |
+
# [BT, BV]
|
| 71 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
| 72 |
+
|
| 73 |
+
b_m = tl.full([BT], float('-inf'), dtype=tl.float32)
|
| 74 |
+
b_acc = tl.zeros([BT], dtype=tl.float32)
|
| 75 |
+
for i_s in range(0, i_t * BT, BS):
|
| 76 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
|
| 77 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
|
| 78 |
+
# [BK, BS]
|
| 79 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 80 |
+
# [BS, BV]
|
| 81 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 82 |
+
# [BT, BS]
|
| 83 |
+
b_s = tl.dot(b_q, b_k)
|
| 84 |
+
|
| 85 |
+
# [BT, BS]
|
| 86 |
+
b_m, b_mp = tl.maximum(b_m, tl.max(b_s, 1)), b_m
|
| 87 |
+
b_r = exp(b_mp - b_m)
|
| 88 |
+
# [BT, BS]
|
| 89 |
+
b_p = exp(b_s - b_m[:, None])
|
| 90 |
+
# [BT]
|
| 91 |
+
b_acc = b_acc * b_r + tl.sum(b_p, 1)
|
| 92 |
+
# [BT, BV]
|
| 93 |
+
b_o = b_o * b_r[:, None] + tl.dot(b_p.to(b_q.dtype), b_v)
|
| 94 |
+
|
| 95 |
+
b_mp = b_m
|
| 96 |
+
|
| 97 |
+
# [BT]
|
| 98 |
+
o_q = i_t * BT + tl.arange(0, BT)
|
| 99 |
+
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
|
| 100 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
|
| 101 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
|
| 102 |
+
|
| 103 |
+
# [BS]
|
| 104 |
+
o_k = i_s + tl.arange(0, BS)
|
| 105 |
+
# [BK, BS]
|
| 106 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 107 |
+
# [BS, BV]
|
| 108 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 109 |
+
# [BT, BS]
|
| 110 |
+
b_s = tl.dot(b_q, b_k)
|
| 111 |
+
b_s = tl.where(o_q[:, None] >= o_k[None, :], b_s, float('-inf'))
|
| 112 |
+
|
| 113 |
+
# [BT]
|
| 114 |
+
b_m, b_mp = tl.maximum(b_m, tl.max(b_s, 1)), b_m
|
| 115 |
+
b_r = exp(b_mp - b_m)
|
| 116 |
+
# [BT, BS]
|
| 117 |
+
b_p = exp(b_s - b_m[:, None])
|
| 118 |
+
# [BT]
|
| 119 |
+
b_acc = b_acc * b_r + tl.sum(b_p, 1)
|
| 120 |
+
# [BT, BV]
|
| 121 |
+
b_o = b_o * b_r[:, None] + tl.dot(b_p.to(b_q.dtype), b_v)
|
| 122 |
+
|
| 123 |
+
b_mp = b_m
|
| 124 |
+
b_o = b_o / b_acc[:, None]
|
| 125 |
+
b_m += log(b_acc)
|
| 126 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
| 127 |
+
tl.store(p_lse, b_m.to(p_lse.dtype.element_ty), boundary_check=(0,))
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@triton.jit
|
| 131 |
+
def parallel_attn_bwd_kernel_preprocess(
|
| 132 |
+
o,
|
| 133 |
+
do,
|
| 134 |
+
delta,
|
| 135 |
+
B: tl.constexpr,
|
| 136 |
+
V: tl.constexpr
|
| 137 |
+
):
|
| 138 |
+
i_n = tl.program_id(0)
|
| 139 |
+
o_d = tl.arange(0, B)
|
| 140 |
+
m_d = o_d < V
|
| 141 |
+
|
| 142 |
+
b_o = tl.load(o + i_n * V + o_d, mask=m_d, other=0)
|
| 143 |
+
b_do = tl.load(do + i_n * V + o_d, mask=m_d, other=0).to(tl.float32)
|
| 144 |
+
b_delta = tl.sum(b_o * b_do)
|
| 145 |
+
|
| 146 |
+
tl.store(delta + i_n, b_delta.to(delta.dtype.element_ty))
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
@triton.heuristics({
|
| 150 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 151 |
+
})
|
| 152 |
+
@triton.autotune(
|
| 153 |
+
configs=[
|
| 154 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 155 |
+
for num_warps in [1, 2, 4] + ([8] if check_shared_mem('hopper') else [])
|
| 156 |
+
for num_stages in [2, 3, 4, 5]
|
| 157 |
+
],
|
| 158 |
+
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
|
| 159 |
+
)
|
| 160 |
+
@triton.jit(do_not_specialize=['T'])
|
| 161 |
+
def parallel_attn_bwd_kernel_dq(
|
| 162 |
+
q,
|
| 163 |
+
k,
|
| 164 |
+
v,
|
| 165 |
+
lse,
|
| 166 |
+
delta,
|
| 167 |
+
do,
|
| 168 |
+
dq,
|
| 169 |
+
scale,
|
| 170 |
+
offsets,
|
| 171 |
+
indices,
|
| 172 |
+
T,
|
| 173 |
+
B: tl.constexpr,
|
| 174 |
+
H: tl.constexpr,
|
| 175 |
+
HQ: tl.constexpr,
|
| 176 |
+
G: tl.constexpr,
|
| 177 |
+
K: tl.constexpr,
|
| 178 |
+
V: tl.constexpr,
|
| 179 |
+
BT: tl.constexpr,
|
| 180 |
+
BS: tl.constexpr,
|
| 181 |
+
BK: tl.constexpr,
|
| 182 |
+
BV: tl.constexpr,
|
| 183 |
+
USE_OFFSETS: tl.constexpr
|
| 184 |
+
):
|
| 185 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 186 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
| 187 |
+
i_h = i_hq // G
|
| 188 |
+
|
| 189 |
+
if USE_OFFSETS:
|
| 190 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 191 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 192 |
+
T = eos - bos
|
| 193 |
+
else:
|
| 194 |
+
i_n = i_b
|
| 195 |
+
bos, eos = i_n * T, i_n * T + T
|
| 196 |
+
|
| 197 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 198 |
+
p_dq = tl.make_block_ptr(dq + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 199 |
+
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 200 |
+
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
| 201 |
+
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
| 202 |
+
|
| 203 |
+
# [BT, BK]
|
| 204 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 205 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
| 206 |
+
# [BT, BV]
|
| 207 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
| 208 |
+
# [BT]
|
| 209 |
+
b_lse = tl.load(p_lse, boundary_check=(0,))
|
| 210 |
+
b_delta = tl.load(p_delta, boundary_check=(0,))
|
| 211 |
+
|
| 212 |
+
# [BT, BK]
|
| 213 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
| 214 |
+
for i_s in range(0, i_t * BT, BS):
|
| 215 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
|
| 216 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_s), (BV, BS), (0, 1))
|
| 217 |
+
# [BK, BS]
|
| 218 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 219 |
+
# [BV, BS]
|
| 220 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 221 |
+
|
| 222 |
+
# [BT, BS]
|
| 223 |
+
b_s = tl.dot(b_q, b_k)
|
| 224 |
+
b_p = exp(b_s - b_lse[:, None])
|
| 225 |
+
|
| 226 |
+
# [BT, BV] @ [BV, BS] -> [BT, BS]
|
| 227 |
+
b_dp = tl.dot(b_do, b_v)
|
| 228 |
+
b_ds = b_p * (b_dp.to(tl.float32) - b_delta[:, None])
|
| 229 |
+
# [BT, BS] @ [BS, BK] -> [BT, BK]
|
| 230 |
+
b_dq += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_k))
|
| 231 |
+
|
| 232 |
+
# [BT]
|
| 233 |
+
o_q = i_t * BT + tl.arange(0, BT)
|
| 234 |
+
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
|
| 235 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
|
| 236 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_s), (BV, BS), (0, 1))
|
| 237 |
+
# [BS]
|
| 238 |
+
o_k = i_s + tl.arange(0, BS)
|
| 239 |
+
# [BK, BS]
|
| 240 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 241 |
+
# [BV, BS]
|
| 242 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 243 |
+
|
| 244 |
+
# [BT, BS]
|
| 245 |
+
b_s = tl.dot(b_q, b_k)
|
| 246 |
+
b_p = exp(b_s - b_lse[:, None])
|
| 247 |
+
b_p = tl.where(o_q[:, None] >= o_k[None, :], b_p, 0)
|
| 248 |
+
|
| 249 |
+
# [BT, BV] @ [BV, BS] -> [BT, BS]
|
| 250 |
+
b_dp = tl.dot(b_do, b_v)
|
| 251 |
+
b_ds = b_p * (b_dp.to(tl.float32) - b_delta[:, None])
|
| 252 |
+
# [BT, BS] @ [BS, BK] -> [BT, BK]
|
| 253 |
+
b_dq += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_k))
|
| 254 |
+
|
| 255 |
+
b_dq *= scale
|
| 256 |
+
|
| 257 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
@triton.heuristics({
|
| 261 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 262 |
+
})
|
| 263 |
+
@triton.autotune(
|
| 264 |
+
configs=[
|
| 265 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 266 |
+
for num_warps in [1, 2, 4] + ([8] if check_shared_mem('hopper') else [])
|
| 267 |
+
for num_stages in [2, 3, 4, 5]
|
| 268 |
+
],
|
| 269 |
+
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
|
| 270 |
+
)
|
| 271 |
+
@triton.jit(do_not_specialize=['T'])
|
| 272 |
+
def parallel_attn_bwd_kernel_dkv(
|
| 273 |
+
q,
|
| 274 |
+
k,
|
| 275 |
+
v,
|
| 276 |
+
lse,
|
| 277 |
+
delta,
|
| 278 |
+
do,
|
| 279 |
+
dk,
|
| 280 |
+
dv,
|
| 281 |
+
offsets,
|
| 282 |
+
indices,
|
| 283 |
+
scale,
|
| 284 |
+
T,
|
| 285 |
+
B: tl.constexpr,
|
| 286 |
+
H: tl.constexpr,
|
| 287 |
+
HQ: tl.constexpr,
|
| 288 |
+
G: tl.constexpr,
|
| 289 |
+
K: tl.constexpr,
|
| 290 |
+
V: tl.constexpr,
|
| 291 |
+
BT: tl.constexpr,
|
| 292 |
+
BS: tl.constexpr,
|
| 293 |
+
BK: tl.constexpr,
|
| 294 |
+
BV: tl.constexpr,
|
| 295 |
+
USE_OFFSETS: tl.constexpr
|
| 296 |
+
):
|
| 297 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 298 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
| 299 |
+
i_h = i_hq // G
|
| 300 |
+
|
| 301 |
+
if USE_OFFSETS:
|
| 302 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 303 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 304 |
+
T = eos - bos
|
| 305 |
+
else:
|
| 306 |
+
i_n = i_b
|
| 307 |
+
bos, eos = i_n * T, i_n * T + T
|
| 308 |
+
|
| 309 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 310 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 311 |
+
p_dk = tl.make_block_ptr(dk + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 312 |
+
p_dv = tl.make_block_ptr(dv + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 313 |
+
|
| 314 |
+
# [BT, BK]
|
| 315 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 316 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
| 317 |
+
# [BT, BV]
|
| 318 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 319 |
+
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
|
| 320 |
+
|
| 321 |
+
o_k = i_t * BT + tl.arange(0, BT)
|
| 322 |
+
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
|
| 323 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_s, 0), (BS, BK), (1, 0))
|
| 324 |
+
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
|
| 325 |
+
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
| 326 |
+
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
| 327 |
+
|
| 328 |
+
# [BS]
|
| 329 |
+
o_q = i_s + tl.arange(0, BS)
|
| 330 |
+
# [BS, BK]
|
| 331 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 332 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
| 333 |
+
# [BS, BV]
|
| 334 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
| 335 |
+
# [BS]
|
| 336 |
+
b_lse = tl.load(p_lse, boundary_check=(0,))
|
| 337 |
+
b_delta = tl.load(p_delta, boundary_check=(0,))
|
| 338 |
+
# [BT, BS]
|
| 339 |
+
b_s = tl.dot(b_k, tl.trans(b_q))
|
| 340 |
+
b_p = exp(b_s - b_lse[None, :])
|
| 341 |
+
b_p = tl.where(o_k[:, None] <= o_q[None, :], b_p, 0)
|
| 342 |
+
# [BT, BS] @ [BS, BV] -> [BT, BV]
|
| 343 |
+
b_dv += tl.dot(b_p.to(b_do.dtype), b_do)
|
| 344 |
+
# [BT, BV] @ [BV, BS] -> [BT, BS]
|
| 345 |
+
b_dp = tl.dot(b_v, tl.trans(b_do))
|
| 346 |
+
# [BT, BS]
|
| 347 |
+
b_ds = b_p * (b_dp - b_delta[None, :])
|
| 348 |
+
# [BT, BS] @ [BS, BK] -> [BT, BK]
|
| 349 |
+
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q)
|
| 350 |
+
|
| 351 |
+
for i_s in range((i_t + 1) * BT, tl.cdiv(T, BS) * BS, BS):
|
| 352 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_s, 0), (BS, BK), (1, 0))
|
| 353 |
+
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
|
| 354 |
+
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
| 355 |
+
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
| 356 |
+
|
| 357 |
+
# [BS]
|
| 358 |
+
o_q = i_s + tl.arange(0, BS)
|
| 359 |
+
# [BS, BK]
|
| 360 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 361 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
| 362 |
+
# [BS, BV]
|
| 363 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
| 364 |
+
# [BS]
|
| 365 |
+
b_lse = tl.load(p_lse, boundary_check=(0,))
|
| 366 |
+
b_delta = tl.load(p_delta, boundary_check=(0,))
|
| 367 |
+
# [BT, BS]
|
| 368 |
+
b_s = tl.dot(b_k, tl.trans(b_q))
|
| 369 |
+
b_p = exp(b_s - b_lse[None, :])
|
| 370 |
+
# [BT, BS] @ [BS, BV] -> [BT, BV]
|
| 371 |
+
b_dv += tl.dot(b_p.to(b_do.dtype), b_do)
|
| 372 |
+
# [BT, BV] @ [BV, BS] -> [BT, BS]
|
| 373 |
+
b_dp = tl.dot(b_v, tl.trans(b_do))
|
| 374 |
+
# [BT, BS]
|
| 375 |
+
b_ds = b_p * (b_dp - b_delta[None, :])
|
| 376 |
+
# [BT, BS] @ [BS, BK] -> [BT, BK]
|
| 377 |
+
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q)
|
| 378 |
+
|
| 379 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
| 380 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def parallel_attn_fwd(
|
| 384 |
+
q: torch.Tensor,
|
| 385 |
+
k: torch.Tensor,
|
| 386 |
+
v: torch.Tensor,
|
| 387 |
+
scale: float,
|
| 388 |
+
chunk_size: int = 128,
|
| 389 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 390 |
+
indices: Optional[torch.LongTensor] = None,
|
| 391 |
+
):
|
| 392 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
| 393 |
+
HQ = q.shape[2]
|
| 394 |
+
G = HQ // H
|
| 395 |
+
BT = chunk_size
|
| 396 |
+
if check_shared_mem('hopper', q.device.index):
|
| 397 |
+
BS = min(64, max(16, triton.next_power_of_2(T)))
|
| 398 |
+
BK = min(256, max(16, triton.next_power_of_2(K)))
|
| 399 |
+
BV = min(256, max(16, triton.next_power_of_2(V)))
|
| 400 |
+
elif check_shared_mem('ampere', q.device.index):
|
| 401 |
+
BS = min(32, max(16, triton.next_power_of_2(T)))
|
| 402 |
+
BK = min(256, max(16, triton.next_power_of_2(K)))
|
| 403 |
+
BV = min(128, max(16, triton.next_power_of_2(V)))
|
| 404 |
+
else:
|
| 405 |
+
BS = min(32, max(16, triton.next_power_of_2(T)))
|
| 406 |
+
BK = min(256, max(16, triton.next_power_of_2(K)))
|
| 407 |
+
BV = min(64, max(16, triton.next_power_of_2(V)))
|
| 408 |
+
NK = triton.cdiv(K, BK)
|
| 409 |
+
NV = triton.cdiv(V, BV)
|
| 410 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
| 411 |
+
assert NK == 1, "The key dimension can not be larger than 256"
|
| 412 |
+
|
| 413 |
+
o = torch.empty(B, T, HQ, V, dtype=v.dtype, device=q.device)
|
| 414 |
+
lse = torch.empty(B, T, HQ, dtype=torch.float, device=q.device)
|
| 415 |
+
|
| 416 |
+
grid = (NV, NT, B * HQ)
|
| 417 |
+
parallel_attn_fwd_kernel[grid](
|
| 418 |
+
q=q,
|
| 419 |
+
k=k,
|
| 420 |
+
v=v,
|
| 421 |
+
o=o,
|
| 422 |
+
lse=lse,
|
| 423 |
+
scale=scale,
|
| 424 |
+
offsets=offsets,
|
| 425 |
+
indices=indices,
|
| 426 |
+
B=B,
|
| 427 |
+
T=T,
|
| 428 |
+
H=H,
|
| 429 |
+
HQ=HQ,
|
| 430 |
+
G=G,
|
| 431 |
+
K=K,
|
| 432 |
+
V=V,
|
| 433 |
+
BT=BT,
|
| 434 |
+
BS=BS,
|
| 435 |
+
BK=BK,
|
| 436 |
+
BV=BV,
|
| 437 |
+
)
|
| 438 |
+
return o, lse
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
def parallel_attn_bwd_preprocess(
|
| 442 |
+
o: torch.Tensor,
|
| 443 |
+
do: torch.Tensor
|
| 444 |
+
):
|
| 445 |
+
V = o.shape[-1]
|
| 446 |
+
delta = torch.empty_like(o[..., 0], dtype=torch.float32)
|
| 447 |
+
parallel_attn_bwd_kernel_preprocess[(delta.numel(),)](
|
| 448 |
+
o=o,
|
| 449 |
+
do=do,
|
| 450 |
+
delta=delta,
|
| 451 |
+
B=triton.next_power_of_2(V),
|
| 452 |
+
V=V,
|
| 453 |
+
)
|
| 454 |
+
return delta
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def parallel_attn_bwd(
|
| 458 |
+
q: torch.Tensor,
|
| 459 |
+
k: torch.Tensor,
|
| 460 |
+
v: torch.Tensor,
|
| 461 |
+
o: torch.Tensor,
|
| 462 |
+
lse: torch.Tensor,
|
| 463 |
+
do: torch.Tensor,
|
| 464 |
+
scale: float = None,
|
| 465 |
+
chunk_size: int = 128,
|
| 466 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 467 |
+
indices: Optional[torch.LongTensor] = None,
|
| 468 |
+
):
|
| 469 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
| 470 |
+
HQ = q.shape[2]
|
| 471 |
+
G = HQ // H
|
| 472 |
+
BT = chunk_size
|
| 473 |
+
BS = max(16, triton.next_power_of_2(T))
|
| 474 |
+
BS = min(32, BS) if check_shared_mem('ampere') else min(16, BS)
|
| 475 |
+
BK = max(16, triton.next_power_of_2(K))
|
| 476 |
+
BV = max(16, triton.next_power_of_2(V))
|
| 477 |
+
NV = triton.cdiv(V, BV)
|
| 478 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
| 479 |
+
|
| 480 |
+
delta = parallel_attn_bwd_preprocess(o, do)
|
| 481 |
+
|
| 482 |
+
dq = torch.empty(B, T, HQ, K, dtype=k.dtype if H == HQ else torch.float, device=q.device)
|
| 483 |
+
dk = torch.empty(B, T, HQ, K, dtype=k.dtype if H == HQ else torch.float, device=q.device)
|
| 484 |
+
dv = torch.empty(B, T, HQ, V, dtype=v.dtype if H == HQ else torch.float, device=q.device)
|
| 485 |
+
grid = (NV, NT, B * HQ)
|
| 486 |
+
parallel_attn_bwd_kernel_dq[grid](
|
| 487 |
+
q=q,
|
| 488 |
+
k=k,
|
| 489 |
+
v=v,
|
| 490 |
+
lse=lse,
|
| 491 |
+
delta=delta,
|
| 492 |
+
do=do,
|
| 493 |
+
dq=dq,
|
| 494 |
+
offsets=offsets,
|
| 495 |
+
indices=indices,
|
| 496 |
+
scale=scale,
|
| 497 |
+
T=T,
|
| 498 |
+
B=B,
|
| 499 |
+
H=H,
|
| 500 |
+
HQ=HQ,
|
| 501 |
+
G=G,
|
| 502 |
+
K=K,
|
| 503 |
+
V=V,
|
| 504 |
+
BT=BT,
|
| 505 |
+
BS=BS,
|
| 506 |
+
BK=BK,
|
| 507 |
+
BV=BV
|
| 508 |
+
)
|
| 509 |
+
parallel_attn_bwd_kernel_dkv[grid](
|
| 510 |
+
q=q,
|
| 511 |
+
k=k,
|
| 512 |
+
v=v,
|
| 513 |
+
lse=lse,
|
| 514 |
+
delta=delta,
|
| 515 |
+
do=do,
|
| 516 |
+
dk=dk,
|
| 517 |
+
dv=dv,
|
| 518 |
+
offsets=offsets,
|
| 519 |
+
indices=indices,
|
| 520 |
+
scale=scale,
|
| 521 |
+
T=T,
|
| 522 |
+
B=B,
|
| 523 |
+
H=H,
|
| 524 |
+
HQ=HQ,
|
| 525 |
+
G=G,
|
| 526 |
+
K=K,
|
| 527 |
+
V=V,
|
| 528 |
+
BT=BT,
|
| 529 |
+
BS=BS,
|
| 530 |
+
BK=BK,
|
| 531 |
+
BV=BV
|
| 532 |
+
)
|
| 533 |
+
dk = reduce(dk, 'b t (h g) k -> b t h k', g=G, reduction='sum')
|
| 534 |
+
dv = reduce(dv, 'b t (h g) v -> b t h v', g=G, reduction='sum')
|
| 535 |
+
return dq, dk, dv
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
@torch.compile
|
| 539 |
+
class ParallelAttentionFunction(torch.autograd.Function):
|
| 540 |
+
|
| 541 |
+
@staticmethod
|
| 542 |
+
@contiguous
|
| 543 |
+
@autocast_custom_fwd
|
| 544 |
+
def forward(ctx, q, k, v, scale, offsets):
|
| 545 |
+
ctx.dtype = q.dtype
|
| 546 |
+
|
| 547 |
+
chunk_size = min(128, max(16, triton.next_power_of_2(q.shape[1])))
|
| 548 |
+
# 2-d indices denoting the offsets of chunks in each sequence
|
| 549 |
+
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
|
| 550 |
+
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
|
| 551 |
+
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
|
| 552 |
+
indices = prepare_chunk_indices(offsets, chunk_size) if offsets is not None else None
|
| 553 |
+
|
| 554 |
+
o, lse = parallel_attn_fwd(
|
| 555 |
+
q=q,
|
| 556 |
+
k=k,
|
| 557 |
+
v=v,
|
| 558 |
+
scale=scale,
|
| 559 |
+
chunk_size=chunk_size,
|
| 560 |
+
offsets=offsets,
|
| 561 |
+
indices=indices
|
| 562 |
+
)
|
| 563 |
+
ctx.save_for_backward(q, k, v, o, lse)
|
| 564 |
+
ctx.chunk_size = chunk_size
|
| 565 |
+
ctx.offsets = offsets
|
| 566 |
+
ctx.indices = indices
|
| 567 |
+
ctx.scale = scale
|
| 568 |
+
return o.to(q.dtype)
|
| 569 |
+
|
| 570 |
+
@staticmethod
|
| 571 |
+
@contiguous
|
| 572 |
+
@autocast_custom_bwd
|
| 573 |
+
def backward(ctx, do):
|
| 574 |
+
q, k, v, o, lse = ctx.saved_tensors
|
| 575 |
+
dq, dk, dv = parallel_attn_bwd(
|
| 576 |
+
q=q,
|
| 577 |
+
k=k,
|
| 578 |
+
v=v,
|
| 579 |
+
o=o,
|
| 580 |
+
lse=lse,
|
| 581 |
+
do=do,
|
| 582 |
+
scale=ctx.scale,
|
| 583 |
+
chunk_size=ctx.chunk_size,
|
| 584 |
+
offsets=ctx.offsets,
|
| 585 |
+
indices=ctx.indices
|
| 586 |
+
)
|
| 587 |
+
return dq.to(q), dk.to(k), dv.to(v), None, None, None, None, None, None, None, None
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
def parallel_attn(
|
| 591 |
+
q: torch.Tensor,
|
| 592 |
+
k: torch.Tensor,
|
| 593 |
+
v: torch.Tensor,
|
| 594 |
+
scale: Optional[float] = None,
|
| 595 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
| 596 |
+
head_first: bool = False
|
| 597 |
+
) -> torch.Tensor:
|
| 598 |
+
r"""
|
| 599 |
+
Args:
|
| 600 |
+
q (torch.Tensor):
|
| 601 |
+
queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
|
| 602 |
+
k (torch.Tensor):
|
| 603 |
+
keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
|
| 604 |
+
GQA will be applied if HQ is divisible by H.
|
| 605 |
+
v (torch.Tensor):
|
| 606 |
+
values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
|
| 607 |
+
scale (Optional[int]):
|
| 608 |
+
Scale factor for attention scores.
|
| 609 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
| 610 |
+
cu_seqlens (torch.LongTensor):
|
| 611 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
| 612 |
+
consistent with the FlashAttention API.
|
| 613 |
+
head_first (Optional[bool]):
|
| 614 |
+
Whether the inputs are in the head-first format. Default: `False`.
|
| 615 |
+
|
| 616 |
+
Returns:
|
| 617 |
+
o (torch.Tensor):
|
| 618 |
+
Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
|
| 619 |
+
"""
|
| 620 |
+
if scale is None:
|
| 621 |
+
scale = k.shape[-1] ** -0.5
|
| 622 |
+
if cu_seqlens is not None:
|
| 623 |
+
assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
|
| 624 |
+
if head_first:
|
| 625 |
+
q, k, v = map(lambda x: rearrange(x, 'b h t d -> b t h d'), (q, k, v))
|
| 626 |
+
o = ParallelAttentionFunction.apply(q, k, v, scale, cu_seqlens)
|
| 627 |
+
if head_first:
|
| 628 |
+
o = rearrange(o, 'b t h d -> b h t d')
|
| 629 |
+
return o
|
fla/ops/based/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (286 Bytes). View file
|
|
|
fla/ops/common/__pycache__/chunk_delta_h.cpython-312.pyc
ADDED
|
Binary file (23.9 kB). View file
|
|
|
fla/ops/common/chunk_delta_h.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.common.utils import prepare_chunk_offsets
|
| 11 |
+
from fla.ops.utils.op import exp
|
| 12 |
+
from fla.utils import check_shared_mem, is_nvidia_hopper, use_cuda_graph
|
| 13 |
+
|
| 14 |
+
NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8, 16]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@triton.heuristics({
|
| 18 |
+
'USE_G': lambda args: args['g'] is not None,
|
| 19 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
| 20 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
| 21 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
| 22 |
+
})
|
| 23 |
+
@triton.autotune(
|
| 24 |
+
configs=[
|
| 25 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 26 |
+
for num_warps in NUM_WARPS
|
| 27 |
+
for num_stages in [2, 3, 4]
|
| 28 |
+
],
|
| 29 |
+
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G'],
|
| 30 |
+
use_cuda_graph=use_cuda_graph,
|
| 31 |
+
)
|
| 32 |
+
@triton.jit(do_not_specialize=['T'])
|
| 33 |
+
def chunk_gated_delta_rule_fwd_kernel_h(
|
| 34 |
+
k,
|
| 35 |
+
v,
|
| 36 |
+
d,
|
| 37 |
+
v_new,
|
| 38 |
+
g,
|
| 39 |
+
h,
|
| 40 |
+
h0,
|
| 41 |
+
ht,
|
| 42 |
+
offsets,
|
| 43 |
+
chunk_offsets,
|
| 44 |
+
T,
|
| 45 |
+
H: tl.constexpr,
|
| 46 |
+
K: tl.constexpr,
|
| 47 |
+
V: tl.constexpr,
|
| 48 |
+
BT: tl.constexpr,
|
| 49 |
+
BC: tl.constexpr,
|
| 50 |
+
BK: tl.constexpr,
|
| 51 |
+
BV: tl.constexpr,
|
| 52 |
+
NT: tl.constexpr,
|
| 53 |
+
USE_G: tl.constexpr,
|
| 54 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 55 |
+
STORE_FINAL_STATE: tl.constexpr,
|
| 56 |
+
USE_OFFSETS: tl.constexpr,
|
| 57 |
+
HEAD_FIRST: tl.constexpr,
|
| 58 |
+
):
|
| 59 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 60 |
+
i_n, i_h = i_nh // H, i_nh % H
|
| 61 |
+
if USE_OFFSETS:
|
| 62 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 63 |
+
T = eos - bos
|
| 64 |
+
NT = tl.cdiv(T, BT)
|
| 65 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
| 66 |
+
else:
|
| 67 |
+
bos, eos = i_n * T, i_n * T + T
|
| 68 |
+
NT = tl.cdiv(T, BT)
|
| 69 |
+
boh = i_n * NT
|
| 70 |
+
|
| 71 |
+
# [BK, BV]
|
| 72 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
| 73 |
+
if USE_INITIAL_STATE:
|
| 74 |
+
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 75 |
+
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
| 76 |
+
|
| 77 |
+
for i_t in range(NT):
|
| 78 |
+
if HEAD_FIRST:
|
| 79 |
+
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 80 |
+
else:
|
| 81 |
+
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 82 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
| 83 |
+
b_hc = tl.zeros([BK, BV], dtype=tl.float32)
|
| 84 |
+
if USE_G:
|
| 85 |
+
last_idx = min((i_t + 1) * BT, T) - 1
|
| 86 |
+
if HEAD_FIRST:
|
| 87 |
+
b_g_last = tl.load(g + i_nh * T + last_idx)
|
| 88 |
+
else:
|
| 89 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
| 90 |
+
else:
|
| 91 |
+
b_g_last = None
|
| 92 |
+
last_idx = None
|
| 93 |
+
# since we need to make all DK in the SRAM. we face serve SRAM memory burden. By subchunking we allievate such burden
|
| 94 |
+
for i_c in range(tl.cdiv(min(BT, T - i_t * BT), BC)):
|
| 95 |
+
if HEAD_FIRST:
|
| 96 |
+
p_k = tl.make_block_ptr(k + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 97 |
+
p_d = tl.make_block_ptr(d + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
| 98 |
+
p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 99 |
+
p_v_new = tl.make_block_ptr(v_new+i_nh*T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 100 |
+
p_g = tl.make_block_ptr(g + i_nh * T, (T,), (1,), (i_t * BT + i_c * BC,), (BC,), (0,)) if USE_G else None
|
| 101 |
+
else:
|
| 102 |
+
p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 103 |
+
p_d = tl.make_block_ptr(d+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
| 104 |
+
p_v = tl.make_block_ptr(v+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 105 |
+
p_v_new = tl.make_block_ptr(v_new+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT+i_c*BC, i_v * BV), (BC, BV), (1, 0))
|
| 106 |
+
p_g = tl.make_block_ptr(g+bos*H+i_h, (T,), (H,), (i_t*BT+i_c*BC, ), (BC,), (0,)) if USE_G else None
|
| 107 |
+
b_g = tl.load(p_g, boundary_check=(0, )) if USE_G else None
|
| 108 |
+
# [BK, BC]
|
| 109 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 110 |
+
b_k = (b_k * exp(b_g_last - b_g)[None, :]).to(b_k.dtype) if USE_G else b_k
|
| 111 |
+
# [BC, BK]
|
| 112 |
+
b_d = tl.load(p_d, boundary_check=(0, 1))
|
| 113 |
+
b_d = (b_d * exp(b_g)[:, None]).to(b_d.dtype) if USE_G else b_d
|
| 114 |
+
# [BC, BV]
|
| 115 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 116 |
+
b_v2 = b_v - tl.dot(b_d, b_h.to(b_d.dtype))
|
| 117 |
+
# [BK, BV]
|
| 118 |
+
tl.store(p_v_new, b_v2.to(p_v_new.dtype.element_ty), boundary_check=(0, 1))
|
| 119 |
+
b_hc += tl.dot(b_k, b_v2.to(b_k.dtype), allow_tf32=False)
|
| 120 |
+
b_h *= exp(b_g_last) if USE_G else 1
|
| 121 |
+
b_h += b_hc
|
| 122 |
+
|
| 123 |
+
if STORE_FINAL_STATE:
|
| 124 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 125 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
@triton.heuristics({
|
| 129 |
+
'USE_G': lambda args: args['g'] is not None,
|
| 130 |
+
'USE_INITIAL_STATE': lambda args: args['dh0'] is not None,
|
| 131 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
| 132 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
| 133 |
+
})
|
| 134 |
+
@triton.autotune(
|
| 135 |
+
configs=[
|
| 136 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 137 |
+
for num_warps in NUM_WARPS
|
| 138 |
+
for num_stages in [2, 3, 4]
|
| 139 |
+
],
|
| 140 |
+
key=['BT', 'BK', 'BV', 'USE_G'],
|
| 141 |
+
use_cuda_graph=use_cuda_graph,
|
| 142 |
+
)
|
| 143 |
+
@triton.jit(do_not_specialize=['T'])
|
| 144 |
+
def chunk_gated_delta_rule_bwd_kernel_dhu(
|
| 145 |
+
q,
|
| 146 |
+
k,
|
| 147 |
+
d,
|
| 148 |
+
g,
|
| 149 |
+
dht,
|
| 150 |
+
dh0,
|
| 151 |
+
do,
|
| 152 |
+
dh,
|
| 153 |
+
dv,
|
| 154 |
+
dv2,
|
| 155 |
+
offsets,
|
| 156 |
+
chunk_offsets,
|
| 157 |
+
scale,
|
| 158 |
+
T,
|
| 159 |
+
H: tl.constexpr,
|
| 160 |
+
K: tl.constexpr,
|
| 161 |
+
V: tl.constexpr,
|
| 162 |
+
BT: tl.constexpr,
|
| 163 |
+
BC: tl.constexpr,
|
| 164 |
+
BK: tl.constexpr,
|
| 165 |
+
BV: tl.constexpr,
|
| 166 |
+
USE_G: tl.constexpr,
|
| 167 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 168 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
| 169 |
+
USE_OFFSETS: tl.constexpr,
|
| 170 |
+
HEAD_FIRST: tl.constexpr
|
| 171 |
+
):
|
| 172 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 173 |
+
i_n, i_h = i_nh // H, i_nh % H
|
| 174 |
+
if USE_OFFSETS:
|
| 175 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 176 |
+
T = eos - bos
|
| 177 |
+
NT = tl.cdiv(T, BT)
|
| 178 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
| 179 |
+
else:
|
| 180 |
+
bos, eos = i_n * T, i_n * T + T
|
| 181 |
+
NT = tl.cdiv(T, BT)
|
| 182 |
+
boh = i_n * NT
|
| 183 |
+
|
| 184 |
+
# [BK, BV]
|
| 185 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
| 186 |
+
if USE_FINAL_STATE_GRADIENT:
|
| 187 |
+
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 188 |
+
b_dh += tl.load(p_dht, boundary_check=(0, 1))
|
| 189 |
+
|
| 190 |
+
for i_t in range(NT - 1, -1, -1):
|
| 191 |
+
if HEAD_FIRST:
|
| 192 |
+
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 193 |
+
else:
|
| 194 |
+
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 195 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
| 196 |
+
b_dh_tmp = tl.zeros([BK, BV], dtype=tl.float32)
|
| 197 |
+
if USE_G:
|
| 198 |
+
last_idx = min((i_t + 1) * BT, T) - 1
|
| 199 |
+
if HEAD_FIRST:
|
| 200 |
+
bg_last = tl.load(g + i_nh * T + last_idx)
|
| 201 |
+
else:
|
| 202 |
+
bg_last = tl.load(g + (bos + last_idx) * H + i_h)
|
| 203 |
+
else:
|
| 204 |
+
bg_last = None
|
| 205 |
+
last_idx = None
|
| 206 |
+
for i_c in range(tl.cdiv(BT, BC) - 1, -1, -1):
|
| 207 |
+
if HEAD_FIRST:
|
| 208 |
+
p_q = tl.make_block_ptr(q + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 209 |
+
p_k = tl.make_block_ptr(k + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
| 210 |
+
p_d = tl.make_block_ptr(d + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 211 |
+
p_dv = tl.make_block_ptr(dv + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 212 |
+
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 213 |
+
p_g = tl.make_block_ptr(g + i_nh * T, (T,), (1,), (i_t * BT + i_c * BC,), (BC,), (0,)) if USE_G else None
|
| 214 |
+
p_dv2 = tl.make_block_ptr(dv2 + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 215 |
+
else:
|
| 216 |
+
p_q = tl.make_block_ptr(q+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 217 |
+
p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
| 218 |
+
p_d = tl.make_block_ptr(d+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 219 |
+
p_dv = tl.make_block_ptr(dv+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 220 |
+
p_do = tl.make_block_ptr(do+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 221 |
+
p_g = tl.make_block_ptr(g+bos*H+i_h, (T,), (H,), (i_t*BT + i_c * BC,), (BC,), (0,)) if USE_G else None
|
| 222 |
+
p_dv2 = tl.make_block_ptr(dv2+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 223 |
+
b_g = tl.load(p_g, boundary_check=(0,)) if USE_G else None
|
| 224 |
+
# [BK, BT]
|
| 225 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 226 |
+
b_q = (b_q * scale * exp(b_g)[None, :]).to(b_q.dtype) if USE_G else (b_q * scale).to(b_q.dtype)
|
| 227 |
+
# [BT, BK]
|
| 228 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 229 |
+
b_d = tl.load(p_d, boundary_check=(0, 1))
|
| 230 |
+
b_k = (b_k * exp(bg_last - b_g)[:, None]).to(b_k.dtype) if USE_G else b_k
|
| 231 |
+
b_d = (b_d * exp(b_g)[None, :]).to(b_d.dtype) if USE_G else b_d
|
| 232 |
+
# [BT, V]
|
| 233 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
| 234 |
+
b_dv = tl.load(p_dv, boundary_check=(0, 1))
|
| 235 |
+
b_dv2 = b_dv + tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False)
|
| 236 |
+
tl.store(p_dv2, b_dv2.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
| 237 |
+
# [BK, BV]
|
| 238 |
+
b_dh_tmp += tl.dot(b_q, b_do.to(b_q.dtype), allow_tf32=False)
|
| 239 |
+
b_dh_tmp -= tl.dot(b_d, b_dv2.to(b_q.dtype), allow_tf32=False)
|
| 240 |
+
b_dh *= exp(bg_last) if USE_G else 1
|
| 241 |
+
b_dh += b_dh_tmp
|
| 242 |
+
|
| 243 |
+
if USE_INITIAL_STATE:
|
| 244 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 245 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def chunk_gated_delta_rule_fwd_h(
|
| 249 |
+
k: torch.Tensor,
|
| 250 |
+
w: torch.Tensor,
|
| 251 |
+
u: torch.Tensor,
|
| 252 |
+
g: Optional[torch.Tensor] = None,
|
| 253 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 254 |
+
output_final_state: bool = False,
|
| 255 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 256 |
+
indices: Optional[torch.LongTensor] = None,
|
| 257 |
+
head_first: bool = True,
|
| 258 |
+
chunk_size: int = 64
|
| 259 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 260 |
+
if head_first:
|
| 261 |
+
B, H, T, K, V = *k.shape, u.shape[-1]
|
| 262 |
+
else:
|
| 263 |
+
B, T, H, K, V = *k.shape, u.shape[-1]
|
| 264 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
| 265 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
| 266 |
+
if offsets is None:
|
| 267 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
| 268 |
+
else:
|
| 269 |
+
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT)
|
| 270 |
+
BK = triton.next_power_of_2(K)
|
| 271 |
+
assert BK <= 256, "current kernel does not support head dimension larger than 256."
|
| 272 |
+
# H100 can have larger block size
|
| 273 |
+
if check_shared_mem('hopper', k.device.index):
|
| 274 |
+
BV = 64
|
| 275 |
+
BC = 64 if K <= 128 else 32
|
| 276 |
+
# A100
|
| 277 |
+
elif check_shared_mem('ampere', k.device.index):
|
| 278 |
+
BV = 32
|
| 279 |
+
BC = 64
|
| 280 |
+
else:
|
| 281 |
+
BV = 32
|
| 282 |
+
BC = 32 if K <= 128 else 16
|
| 283 |
+
BC = min(BT, BC)
|
| 284 |
+
NK = triton.cdiv(K, BK)
|
| 285 |
+
NV = triton.cdiv(V, BV)
|
| 286 |
+
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization'
|
| 287 |
+
|
| 288 |
+
if head_first:
|
| 289 |
+
h = k.new_empty(B, H, NT, K, V)
|
| 290 |
+
else:
|
| 291 |
+
h = k.new_empty(B, NT, H, K, V)
|
| 292 |
+
final_state = k.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None
|
| 293 |
+
|
| 294 |
+
v_new = torch.empty_like(u)
|
| 295 |
+
grid = (NK, NV, N * H)
|
| 296 |
+
|
| 297 |
+
chunk_gated_delta_rule_fwd_kernel_h[grid](
|
| 298 |
+
k=k,
|
| 299 |
+
v=u,
|
| 300 |
+
d=w,
|
| 301 |
+
v_new=v_new,
|
| 302 |
+
g=g,
|
| 303 |
+
h=h,
|
| 304 |
+
h0=initial_state,
|
| 305 |
+
ht=final_state,
|
| 306 |
+
offsets=offsets,
|
| 307 |
+
chunk_offsets=chunk_offsets,
|
| 308 |
+
T=T,
|
| 309 |
+
H=H,
|
| 310 |
+
K=K,
|
| 311 |
+
V=V,
|
| 312 |
+
BT=BT,
|
| 313 |
+
BC=BC,
|
| 314 |
+
BK=BK,
|
| 315 |
+
BV=BV,
|
| 316 |
+
NT=NT,
|
| 317 |
+
HEAD_FIRST=head_first
|
| 318 |
+
)
|
| 319 |
+
return h, v_new, final_state
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
def chunk_gated_delta_rule_bwd_dhu(
|
| 323 |
+
q: torch.Tensor,
|
| 324 |
+
k: torch.Tensor,
|
| 325 |
+
w: torch.Tensor,
|
| 326 |
+
g: torch.Tensor,
|
| 327 |
+
h0: torch.Tensor,
|
| 328 |
+
dht: Optional[torch.Tensor],
|
| 329 |
+
do: torch.Tensor,
|
| 330 |
+
dv: torch.Tensor,
|
| 331 |
+
scale: float,
|
| 332 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 333 |
+
indices: Optional[torch.LongTensor] = None,
|
| 334 |
+
head_first: bool = True,
|
| 335 |
+
chunk_size: int = 64
|
| 336 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 337 |
+
if head_first:
|
| 338 |
+
B, H, T, K, V = *q.shape, do.shape[-1]
|
| 339 |
+
else:
|
| 340 |
+
B, T, H, K, V = *q.shape, do.shape[-1]
|
| 341 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
| 342 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
| 343 |
+
if offsets is None:
|
| 344 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
| 345 |
+
else:
|
| 346 |
+
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT)
|
| 347 |
+
|
| 348 |
+
BK = triton.next_power_of_2(K)
|
| 349 |
+
assert BK <= 256, "current kernel does not support head dimension being larger than 256."
|
| 350 |
+
|
| 351 |
+
# H100
|
| 352 |
+
if check_shared_mem('hopper', q.device.index):
|
| 353 |
+
BV = 64
|
| 354 |
+
BC = 64 if K <= 128 else 32
|
| 355 |
+
# A100
|
| 356 |
+
elif check_shared_mem('ampere', q.device.index):
|
| 357 |
+
BV = 32
|
| 358 |
+
BC = 64 if K <= 128 else 32
|
| 359 |
+
else:
|
| 360 |
+
BV = 32 if K <= 128 else 16
|
| 361 |
+
BC = 16
|
| 362 |
+
|
| 363 |
+
BC = min(BT, BC)
|
| 364 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
| 365 |
+
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization'
|
| 366 |
+
|
| 367 |
+
if head_first:
|
| 368 |
+
dh = q.new_empty(B, H, NT, K, V)
|
| 369 |
+
else:
|
| 370 |
+
dh = q.new_empty(B, NT, H, K, V)
|
| 371 |
+
dh0 = torch.empty_like(h0, dtype=torch.float32) if h0 is not None else None
|
| 372 |
+
dv2 = torch.empty_like(dv)
|
| 373 |
+
|
| 374 |
+
grid = (NK, NV, N * H)
|
| 375 |
+
chunk_gated_delta_rule_bwd_kernel_dhu[grid](
|
| 376 |
+
q=q,
|
| 377 |
+
k=k,
|
| 378 |
+
d=w,
|
| 379 |
+
g=g,
|
| 380 |
+
dht=dht,
|
| 381 |
+
dh0=dh0,
|
| 382 |
+
do=do,
|
| 383 |
+
dh=dh,
|
| 384 |
+
dv=dv,
|
| 385 |
+
dv2=dv2,
|
| 386 |
+
offsets=offsets,
|
| 387 |
+
chunk_offsets=chunk_offsets,
|
| 388 |
+
scale=scale,
|
| 389 |
+
T=T,
|
| 390 |
+
H=H,
|
| 391 |
+
K=K,
|
| 392 |
+
V=V,
|
| 393 |
+
BT=BT,
|
| 394 |
+
BC=BC,
|
| 395 |
+
BK=BK,
|
| 396 |
+
BV=BV,
|
| 397 |
+
HEAD_FIRST=head_first
|
| 398 |
+
)
|
| 399 |
+
return dh, dh0, dv2
|
fla/ops/common/chunk_h_parallel.py
ADDED
|
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
Fully parallelized state passing.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import Optional, Tuple
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import triton
|
| 12 |
+
import triton.language as tl
|
| 13 |
+
|
| 14 |
+
from fla.ops.utils.op import exp
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@triton.heuristics({
|
| 18 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
| 19 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
| 20 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 21 |
+
})
|
| 22 |
+
@triton.autotune(
|
| 23 |
+
configs=[
|
| 24 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
| 25 |
+
for BK in [32, 64, 128]
|
| 26 |
+
for BV in [32, 64, 128]
|
| 27 |
+
for num_warps in [2, 4, 8]
|
| 28 |
+
for num_stages in [2, 3, 4]
|
| 29 |
+
],
|
| 30 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
| 31 |
+
)
|
| 32 |
+
@triton.jit(do_not_specialize=['T'])
|
| 33 |
+
def chunk_fwd_kernel_h_parallel(
|
| 34 |
+
k,
|
| 35 |
+
v,
|
| 36 |
+
h,
|
| 37 |
+
g,
|
| 38 |
+
gk,
|
| 39 |
+
gv,
|
| 40 |
+
h0,
|
| 41 |
+
ht,
|
| 42 |
+
offsets,
|
| 43 |
+
indices,
|
| 44 |
+
T,
|
| 45 |
+
H: tl.constexpr,
|
| 46 |
+
K: tl.constexpr,
|
| 47 |
+
V: tl.constexpr,
|
| 48 |
+
BT: tl.constexpr,
|
| 49 |
+
BK: tl.constexpr,
|
| 50 |
+
BV: tl.constexpr,
|
| 51 |
+
USE_G: tl.constexpr,
|
| 52 |
+
USE_GK: tl.constexpr,
|
| 53 |
+
USE_GV: tl.constexpr,
|
| 54 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 55 |
+
STORE_FINAL_STATE: tl.constexpr,
|
| 56 |
+
USE_OFFSETS: tl.constexpr,
|
| 57 |
+
HEAD_FIRST: tl.constexpr
|
| 58 |
+
):
|
| 59 |
+
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 60 |
+
|
| 61 |
+
NV = tl.cdiv(V, BV)
|
| 62 |
+
# i_b: batch index
|
| 63 |
+
# i_h: head index
|
| 64 |
+
# i_n: sequence index
|
| 65 |
+
# i_t: chunk index within current sequence
|
| 66 |
+
# i_tg: (global) chunk index across all sequences
|
| 67 |
+
i_k, i_v = i_kv // NV, i_kv % NV
|
| 68 |
+
i_b, i_h = i_bh // H, i_bh % H
|
| 69 |
+
if USE_OFFSETS:
|
| 70 |
+
i_tg = i_t
|
| 71 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 72 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 73 |
+
T = eos - bos
|
| 74 |
+
NT = tl.cdiv(T, BT)
|
| 75 |
+
else:
|
| 76 |
+
bos, eos = i_b * T, i_b * T + T
|
| 77 |
+
NT = tl.cdiv(T, BT)
|
| 78 |
+
i_n, i_tg = i_b, i_b * NT + i_t
|
| 79 |
+
i_nh = i_n * H + i_h
|
| 80 |
+
|
| 81 |
+
if HEAD_FIRST:
|
| 82 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 83 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 84 |
+
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 85 |
+
else:
|
| 86 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 87 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 88 |
+
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 89 |
+
|
| 90 |
+
if i_t == 0:
|
| 91 |
+
if USE_INITIAL_STATE:
|
| 92 |
+
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 93 |
+
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
| 94 |
+
else:
|
| 95 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
| 96 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
| 97 |
+
|
| 98 |
+
# [BK, BT]
|
| 99 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 100 |
+
# [BT, BV]
|
| 101 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 102 |
+
|
| 103 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
| 104 |
+
# scalar decay
|
| 105 |
+
if USE_G:
|
| 106 |
+
if HEAD_FIRST:
|
| 107 |
+
b_g_last = tl.load(g + i_bh * T + last_idx)
|
| 108 |
+
p_g = g + i_bh * T + i_t * BT + tl.arange(0, BT)
|
| 109 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
| 110 |
+
else:
|
| 111 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
| 112 |
+
p_g = g + bos*H + (i_t * BT + tl.arange(0, BT)) * H + i_h
|
| 113 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
| 114 |
+
b_v = (b_v * exp(b_g_last - b_g)[:, None]).to(b_v.dtype)
|
| 115 |
+
|
| 116 |
+
# vector decay, h = Diag(gk) @ h
|
| 117 |
+
if USE_GK:
|
| 118 |
+
if HEAD_FIRST:
|
| 119 |
+
p_gk = tl.make_block_ptr(gk + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 120 |
+
p_gk_last = gk + i_bh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
| 121 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
| 122 |
+
else:
|
| 123 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 124 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 125 |
+
|
| 126 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
| 127 |
+
|
| 128 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
| 129 |
+
b_k = (b_k * exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype)
|
| 130 |
+
|
| 131 |
+
# vector decay, h = h @ Diag(gv)
|
| 132 |
+
if USE_GV:
|
| 133 |
+
if HEAD_FIRST:
|
| 134 |
+
p_gv = tl.make_block_ptr(gv + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 135 |
+
p_gv_last = gv + i_bh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
| 136 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
| 137 |
+
else:
|
| 138 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 139 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 140 |
+
|
| 141 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
| 142 |
+
|
| 143 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
| 144 |
+
b_v = (b_v * exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype)
|
| 145 |
+
|
| 146 |
+
b_h = tl.dot(b_k, b_v)
|
| 147 |
+
if i_t < NT - 1:
|
| 148 |
+
if HEAD_FIRST:
|
| 149 |
+
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t + 1) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 150 |
+
else:
|
| 151 |
+
p_h = tl.make_block_ptr(h + ((i_tg + 1) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 152 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
| 153 |
+
elif STORE_FINAL_STATE:
|
| 154 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 155 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
@triton.heuristics({
|
| 159 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
| 160 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 161 |
+
})
|
| 162 |
+
@triton.autotune(
|
| 163 |
+
configs=[
|
| 164 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
| 165 |
+
for BK in [32, 64, 128]
|
| 166 |
+
for BV in [32, 64, 128]
|
| 167 |
+
for num_warps in [2, 4, 8, 16]
|
| 168 |
+
for num_stages in [2, 3]
|
| 169 |
+
],
|
| 170 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
| 171 |
+
)
|
| 172 |
+
@triton.jit(do_not_specialize=['T'])
|
| 173 |
+
def chunk_fwd_kernel_h_reduction(
|
| 174 |
+
h,
|
| 175 |
+
g,
|
| 176 |
+
gk,
|
| 177 |
+
gv,
|
| 178 |
+
kvt,
|
| 179 |
+
ht,
|
| 180 |
+
offsets,
|
| 181 |
+
chunk_offsets,
|
| 182 |
+
T,
|
| 183 |
+
H: tl.constexpr,
|
| 184 |
+
K: tl.constexpr,
|
| 185 |
+
V: tl.constexpr,
|
| 186 |
+
BT: tl.constexpr,
|
| 187 |
+
BK: tl.constexpr,
|
| 188 |
+
BV: tl.constexpr,
|
| 189 |
+
USE_G: tl.constexpr,
|
| 190 |
+
USE_GK: tl.constexpr,
|
| 191 |
+
USE_GV: tl.constexpr,
|
| 192 |
+
STORE_FINAL_STATE: tl.constexpr,
|
| 193 |
+
USE_OFFSETS: tl.constexpr,
|
| 194 |
+
HEAD_FIRST: tl.constexpr
|
| 195 |
+
):
|
| 196 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 197 |
+
i_n, i_h = i_nh // H, i_nh % H
|
| 198 |
+
if USE_OFFSETS:
|
| 199 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 200 |
+
T = eos - bos
|
| 201 |
+
NT = tl.cdiv(T, BT)
|
| 202 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
| 203 |
+
else:
|
| 204 |
+
bos, eos = i_n * T, i_n * T + T
|
| 205 |
+
NT = tl.cdiv(T, BT)
|
| 206 |
+
boh = i_n * NT
|
| 207 |
+
|
| 208 |
+
# [BK, BV]
|
| 209 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
| 210 |
+
for i_t in range(NT):
|
| 211 |
+
if HEAD_FIRST:
|
| 212 |
+
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 213 |
+
else:
|
| 214 |
+
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 215 |
+
b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
| 216 |
+
if i_t > 0:
|
| 217 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
| 218 |
+
|
| 219 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
| 220 |
+
# scalar decay
|
| 221 |
+
if USE_G:
|
| 222 |
+
if HEAD_FIRST:
|
| 223 |
+
b_g_last = tl.load(g + i_nh * T + last_idx)
|
| 224 |
+
else:
|
| 225 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
| 226 |
+
b_h *= exp(b_g_last)
|
| 227 |
+
|
| 228 |
+
# vector decay, h = Diag(gk) @ h
|
| 229 |
+
if USE_GK:
|
| 230 |
+
if HEAD_FIRST:
|
| 231 |
+
p_gk_last = gk + i_nh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
| 232 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
| 233 |
+
else:
|
| 234 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 235 |
+
|
| 236 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
| 237 |
+
b_h *= exp(b_gk_last)[:, None]
|
| 238 |
+
|
| 239 |
+
# vector decay, h = h @ Diag(gv)
|
| 240 |
+
if USE_GV:
|
| 241 |
+
if HEAD_FIRST:
|
| 242 |
+
p_gv_last = gv + i_nh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
| 243 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
| 244 |
+
else:
|
| 245 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 246 |
+
|
| 247 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
| 248 |
+
b_h *= exp(b_gv_last)[None, :]
|
| 249 |
+
|
| 250 |
+
if STORE_FINAL_STATE:
|
| 251 |
+
p_kvt = tl.make_block_ptr(kvt + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 252 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 253 |
+
b_h += tl.load(p_kvt, boundary_check=(0, 1)).to(tl.float32)
|
| 254 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
@triton.heuristics({
|
| 258 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
| 259 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
| 260 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 261 |
+
})
|
| 262 |
+
@triton.autotune(
|
| 263 |
+
configs=[
|
| 264 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
| 265 |
+
for BK in [32, 64, 128]
|
| 266 |
+
for BV in [32, 64, 128]
|
| 267 |
+
for num_warps in [2, 4, 8]
|
| 268 |
+
for num_stages in [2, 3, 4]
|
| 269 |
+
],
|
| 270 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
| 271 |
+
)
|
| 272 |
+
@triton.jit(do_not_specialize=['T'])
|
| 273 |
+
def chunk_bwd_kernel_dh_parallel(
|
| 274 |
+
q,
|
| 275 |
+
g,
|
| 276 |
+
gk,
|
| 277 |
+
gv,
|
| 278 |
+
do,
|
| 279 |
+
dh,
|
| 280 |
+
dht,
|
| 281 |
+
dh0,
|
| 282 |
+
offsets,
|
| 283 |
+
indices,
|
| 284 |
+
scale,
|
| 285 |
+
T,
|
| 286 |
+
HQ: tl.constexpr,
|
| 287 |
+
H: tl.constexpr,
|
| 288 |
+
K: tl.constexpr,
|
| 289 |
+
V: tl.constexpr,
|
| 290 |
+
BT: tl.constexpr,
|
| 291 |
+
BK: tl.constexpr,
|
| 292 |
+
BV: tl.constexpr,
|
| 293 |
+
NG: tl.constexpr,
|
| 294 |
+
USE_G: tl.constexpr,
|
| 295 |
+
USE_GK: tl.constexpr,
|
| 296 |
+
USE_GV: tl.constexpr,
|
| 297 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
| 298 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
| 299 |
+
USE_OFFSETS: tl.constexpr,
|
| 300 |
+
HEAD_FIRST: tl.constexpr
|
| 301 |
+
):
|
| 302 |
+
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 303 |
+
|
| 304 |
+
NV = tl.cdiv(V, BV)
|
| 305 |
+
i_k, i_v = i_kv // NV, i_kv % NV
|
| 306 |
+
i_b, i_hq, i_bg = i_bh // HQ, i_bh % HQ, i_bh // NG
|
| 307 |
+
i_h = i_hq // NG
|
| 308 |
+
if USE_OFFSETS:
|
| 309 |
+
i_tg = i_t
|
| 310 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 311 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 312 |
+
T = eos - bos
|
| 313 |
+
NT = tl.cdiv(T, BT)
|
| 314 |
+
else:
|
| 315 |
+
bos, eos = i_b * T, i_b * T + T
|
| 316 |
+
NT = tl.cdiv(T, BT)
|
| 317 |
+
i_n, i_tg = i_b, i_b * NT + i_t
|
| 318 |
+
i_nh = i_n * HQ + i_hq
|
| 319 |
+
|
| 320 |
+
if HEAD_FIRST:
|
| 321 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 322 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 323 |
+
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 324 |
+
else:
|
| 325 |
+
p_q = tl.make_block_ptr(q + (bos*HQ + i_hq) * K, (K, T), (1, HQ*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 326 |
+
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 327 |
+
p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 328 |
+
|
| 329 |
+
if i_t == NT - 1:
|
| 330 |
+
if USE_FINAL_STATE_GRADIENT:
|
| 331 |
+
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 332 |
+
b_dh = tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
|
| 333 |
+
else:
|
| 334 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
| 335 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
| 336 |
+
|
| 337 |
+
# [BK, BT]
|
| 338 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 339 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
| 340 |
+
# [BT, BV]
|
| 341 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
| 342 |
+
|
| 343 |
+
if USE_G:
|
| 344 |
+
if HEAD_FIRST:
|
| 345 |
+
p_g = g + i_bg * T + i_t * BT + tl.arange(0, BT)
|
| 346 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
| 347 |
+
else:
|
| 348 |
+
p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h
|
| 349 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
| 350 |
+
b_q = (b_q * exp(b_g)[None, :]).to(b_q.dtype)
|
| 351 |
+
|
| 352 |
+
if USE_GK:
|
| 353 |
+
if HEAD_FIRST:
|
| 354 |
+
p_gk = tl.make_block_ptr(gk + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 355 |
+
else:
|
| 356 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 357 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
| 358 |
+
b_q = (b_q * exp(b_gk)).to(b_q.dtype)
|
| 359 |
+
|
| 360 |
+
if USE_GV:
|
| 361 |
+
if HEAD_FIRST:
|
| 362 |
+
p_gv = tl.make_block_ptr(gv + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 363 |
+
else:
|
| 364 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 365 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
| 366 |
+
b_do = (b_do * exp(b_gv)).to(b_do.dtype)
|
| 367 |
+
|
| 368 |
+
b_dh = tl.dot(b_q, b_do)
|
| 369 |
+
if i_t > 0:
|
| 370 |
+
if HEAD_FIRST:
|
| 371 |
+
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t - 1) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 372 |
+
else:
|
| 373 |
+
p_dh = tl.make_block_ptr(dh + ((i_tg - 1) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 374 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
| 375 |
+
elif STORE_INITIAL_STATE_GRADIENT:
|
| 376 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 377 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
@triton.heuristics({
|
| 381 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
| 382 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 383 |
+
})
|
| 384 |
+
@triton.autotune(
|
| 385 |
+
configs=[
|
| 386 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
| 387 |
+
for BK in [32, 64, 128]
|
| 388 |
+
for BV in [32, 64, 128]
|
| 389 |
+
for num_warps in [2, 4, 8, 16]
|
| 390 |
+
for num_stages in [2, 3]
|
| 391 |
+
],
|
| 392 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
| 393 |
+
)
|
| 394 |
+
@triton.jit(do_not_specialize=['T'])
|
| 395 |
+
def chunk_bwd_kernel_dh_reduction(
|
| 396 |
+
g,
|
| 397 |
+
gk,
|
| 398 |
+
gv,
|
| 399 |
+
dh,
|
| 400 |
+
doq0,
|
| 401 |
+
dh0,
|
| 402 |
+
offsets,
|
| 403 |
+
chunk_offsets,
|
| 404 |
+
T,
|
| 405 |
+
HQ: tl.constexpr,
|
| 406 |
+
H: tl.constexpr,
|
| 407 |
+
K: tl.constexpr,
|
| 408 |
+
V: tl.constexpr,
|
| 409 |
+
BT: tl.constexpr,
|
| 410 |
+
BK: tl.constexpr,
|
| 411 |
+
BV: tl.constexpr,
|
| 412 |
+
NG: tl.constexpr,
|
| 413 |
+
USE_G: tl.constexpr,
|
| 414 |
+
USE_GK: tl.constexpr,
|
| 415 |
+
USE_GV: tl.constexpr,
|
| 416 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
| 417 |
+
USE_OFFSETS: tl.constexpr,
|
| 418 |
+
HEAD_FIRST: tl.constexpr
|
| 419 |
+
):
|
| 420 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 421 |
+
i_bg = i_nh // NG
|
| 422 |
+
i_n, i_hq = i_nh // HQ, i_nh % HQ
|
| 423 |
+
i_h = i_hq // NG
|
| 424 |
+
if USE_OFFSETS:
|
| 425 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 426 |
+
T = eos - bos
|
| 427 |
+
NT = tl.cdiv(T, BT)
|
| 428 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
| 429 |
+
else:
|
| 430 |
+
bos, eos = i_n * T, i_n * T + T
|
| 431 |
+
NT = tl.cdiv(T, BT)
|
| 432 |
+
boh = i_n * NT
|
| 433 |
+
|
| 434 |
+
# [BK, BV]
|
| 435 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
| 436 |
+
for i_t in range(NT - 1, -1, -1):
|
| 437 |
+
if HEAD_FIRST:
|
| 438 |
+
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 439 |
+
else:
|
| 440 |
+
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 441 |
+
b_dh += tl.load(p_dh, boundary_check=(0, 1)).to(tl.float32)
|
| 442 |
+
if i_t < NT - 1:
|
| 443 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
| 444 |
+
|
| 445 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
| 446 |
+
if USE_G:
|
| 447 |
+
if HEAD_FIRST:
|
| 448 |
+
b_g_last = tl.load(g + i_bg * T + last_idx)
|
| 449 |
+
else:
|
| 450 |
+
b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
|
| 451 |
+
b_dh *= exp(b_g_last)
|
| 452 |
+
|
| 453 |
+
if USE_GK:
|
| 454 |
+
if HEAD_FIRST:
|
| 455 |
+
p_gk_last = gk + (i_bg * T + last_idx) * K + i_k * BK + tl.arange(0, BK)
|
| 456 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
| 457 |
+
else:
|
| 458 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 459 |
+
|
| 460 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
| 461 |
+
b_dh *= exp(b_gk_last)[:, None]
|
| 462 |
+
|
| 463 |
+
if USE_GV:
|
| 464 |
+
if HEAD_FIRST:
|
| 465 |
+
p_gv_last = gv + (i_bg * T + last_idx) * V + i_v * BV + tl.arange(0, BV)
|
| 466 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
| 467 |
+
else:
|
| 468 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 469 |
+
|
| 470 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
| 471 |
+
b_dh *= exp(b_gv_last)[None, :]
|
| 472 |
+
|
| 473 |
+
if STORE_INITIAL_STATE_GRADIENT:
|
| 474 |
+
p_doq0 = tl.make_block_ptr(doq0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 475 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 476 |
+
b_dh += tl.load(p_doq0, boundary_check=(0, 1)).to(tl.float32)
|
| 477 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
def chunk_fwd_h(
|
| 481 |
+
k: torch.Tensor,
|
| 482 |
+
v: torch.Tensor,
|
| 483 |
+
g: torch.Tensor,
|
| 484 |
+
gk: torch.Tensor,
|
| 485 |
+
gv: torch.Tensor,
|
| 486 |
+
h0: torch.Tensor,
|
| 487 |
+
output_final_state: bool,
|
| 488 |
+
states_in_fp32: bool = False,
|
| 489 |
+
offsets: Optional[torch.Tensor] = None,
|
| 490 |
+
indices: Optional[torch.Tensor] = None,
|
| 491 |
+
head_first: bool = True,
|
| 492 |
+
chunk_size: int = 64
|
| 493 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 494 |
+
if head_first:
|
| 495 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
| 496 |
+
else:
|
| 497 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
| 498 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
| 499 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
| 500 |
+
if offsets is None:
|
| 501 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
| 502 |
+
else:
|
| 503 |
+
if indices is None:
|
| 504 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()])
|
| 505 |
+
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
|
| 506 |
+
N, NT = len(offsets) - 1, len(indices)
|
| 507 |
+
chunk_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
|
| 508 |
+
|
| 509 |
+
h = k.new_empty(B, H, NT, K, V, dtype=torch.float) if head_first else k.new_empty(B, NT, H, K, V, dtype=torch.float)
|
| 510 |
+
ht = k.new_empty(N, H, K, V, dtype=torch.float) if output_final_state else None
|
| 511 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']) * triton.cdiv(V, meta['BV']), NT, B * H)
|
| 512 |
+
chunk_fwd_kernel_h_parallel[grid](
|
| 513 |
+
k=k,
|
| 514 |
+
v=v,
|
| 515 |
+
h=h,
|
| 516 |
+
g=g,
|
| 517 |
+
gk=gk,
|
| 518 |
+
gv=gv,
|
| 519 |
+
h0=h0,
|
| 520 |
+
ht=ht,
|
| 521 |
+
offsets=offsets,
|
| 522 |
+
indices=indices,
|
| 523 |
+
T=T,
|
| 524 |
+
H=H,
|
| 525 |
+
K=K,
|
| 526 |
+
V=V,
|
| 527 |
+
BT=BT,
|
| 528 |
+
USE_G=g is not None,
|
| 529 |
+
USE_GK=gk is not None,
|
| 530 |
+
USE_GV=gv is not None,
|
| 531 |
+
HEAD_FIRST=head_first
|
| 532 |
+
)
|
| 533 |
+
kvt, ht = ht, (torch.empty_like(ht) if output_final_state else None)
|
| 534 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
|
| 535 |
+
chunk_fwd_kernel_h_reduction[grid](
|
| 536 |
+
h=h,
|
| 537 |
+
g=g,
|
| 538 |
+
gk=gk,
|
| 539 |
+
gv=gv,
|
| 540 |
+
kvt=kvt,
|
| 541 |
+
ht=ht,
|
| 542 |
+
offsets=offsets,
|
| 543 |
+
chunk_offsets=chunk_offsets,
|
| 544 |
+
T=T,
|
| 545 |
+
H=H,
|
| 546 |
+
K=K,
|
| 547 |
+
V=V,
|
| 548 |
+
BT=BT,
|
| 549 |
+
USE_G=g is not None,
|
| 550 |
+
USE_GK=gk is not None,
|
| 551 |
+
USE_GV=gv is not None,
|
| 552 |
+
HEAD_FIRST=head_first
|
| 553 |
+
)
|
| 554 |
+
h = h.to(k.dtype) if not states_in_fp32 else h
|
| 555 |
+
return h, ht
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
def chunk_bwd_dh(
|
| 559 |
+
q: torch.Tensor,
|
| 560 |
+
k: torch.Tensor,
|
| 561 |
+
v: torch.Tensor,
|
| 562 |
+
g: torch.Tensor,
|
| 563 |
+
gk: torch.Tensor,
|
| 564 |
+
gv: torch.Tensor,
|
| 565 |
+
do: torch.Tensor,
|
| 566 |
+
h0: torch.Tensor,
|
| 567 |
+
dht: torch.Tensor,
|
| 568 |
+
scale: float,
|
| 569 |
+
states_in_fp32: bool = False,
|
| 570 |
+
offsets: Optional[torch.Tensor] = None,
|
| 571 |
+
indices: Optional[torch.Tensor] = None,
|
| 572 |
+
head_first: bool = True,
|
| 573 |
+
chunk_size: int = 64
|
| 574 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 575 |
+
if head_first:
|
| 576 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
| 577 |
+
HQ = q.shape[1]
|
| 578 |
+
else:
|
| 579 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
| 580 |
+
HQ = q.shape[2]
|
| 581 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
| 582 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
| 583 |
+
# NG: number of groups in GQA
|
| 584 |
+
if offsets is None:
|
| 585 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
| 586 |
+
else:
|
| 587 |
+
if indices is None:
|
| 588 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()])
|
| 589 |
+
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
|
| 590 |
+
N, NT = len(offsets) - 1, len(indices)
|
| 591 |
+
chunk_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
|
| 592 |
+
NG = HQ // H
|
| 593 |
+
|
| 594 |
+
if head_first:
|
| 595 |
+
dh = k.new_empty(B, HQ, NT, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
| 596 |
+
else:
|
| 597 |
+
dh = k.new_empty(B, NT, HQ, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
| 598 |
+
dh0 = torch.empty_like(h0, dtype=torch.float) if h0 is not None else None
|
| 599 |
+
|
| 600 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']) * triton.cdiv(V, meta['BV']), NT, B * HQ)
|
| 601 |
+
chunk_bwd_kernel_dh_parallel[grid](
|
| 602 |
+
q=q,
|
| 603 |
+
g=g,
|
| 604 |
+
gk=gk,
|
| 605 |
+
gv=gv,
|
| 606 |
+
do=do,
|
| 607 |
+
dh=dh,
|
| 608 |
+
dht=dht,
|
| 609 |
+
dh0=dh0,
|
| 610 |
+
offsets=offsets,
|
| 611 |
+
indices=indices,
|
| 612 |
+
scale=scale,
|
| 613 |
+
T=T,
|
| 614 |
+
HQ=HQ,
|
| 615 |
+
H=H,
|
| 616 |
+
K=K,
|
| 617 |
+
V=V,
|
| 618 |
+
BT=BT,
|
| 619 |
+
NG=NG,
|
| 620 |
+
USE_G=g is not None,
|
| 621 |
+
USE_GK=gk is not None,
|
| 622 |
+
USE_GV=gv is not None,
|
| 623 |
+
HEAD_FIRST=head_first
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
doq0, dh0 = dh0, (torch.empty_like(dh0) if dh0 is not None else None)
|
| 627 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * HQ)
|
| 628 |
+
chunk_bwd_kernel_dh_reduction[grid](
|
| 629 |
+
g=g,
|
| 630 |
+
gk=gk,
|
| 631 |
+
gv=gv,
|
| 632 |
+
dh=dh,
|
| 633 |
+
doq0=doq0,
|
| 634 |
+
dh0=dh0,
|
| 635 |
+
offsets=offsets,
|
| 636 |
+
chunk_offsets=chunk_offsets,
|
| 637 |
+
T=T,
|
| 638 |
+
HQ=HQ,
|
| 639 |
+
H=H,
|
| 640 |
+
K=K,
|
| 641 |
+
V=V,
|
| 642 |
+
BT=BT,
|
| 643 |
+
NG=NG,
|
| 644 |
+
USE_G=g is not None,
|
| 645 |
+
USE_GK=gk is not None,
|
| 646 |
+
USE_GV=gv is not None,
|
| 647 |
+
HEAD_FIRST=head_first
|
| 648 |
+
)
|
| 649 |
+
dh = dh.to(q.dtype) if not states_in_fp32 else dh
|
| 650 |
+
return dh, dh0
|
fla/ops/common/fused_recurrent.py
ADDED
|
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.utils import chunk_global_cumsum
|
| 11 |
+
from fla.ops.utils.op import exp
|
| 12 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@triton.heuristics({
|
| 16 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
| 17 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
| 18 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 19 |
+
})
|
| 20 |
+
@triton.autotune(
|
| 21 |
+
configs=[
|
| 22 |
+
triton.Config({}, num_warps=num_warps)
|
| 23 |
+
for num_warps in [1, 2, 4]
|
| 24 |
+
],
|
| 25 |
+
key=["BK", "BV", "USE_GK", "USE_GV", "USE_G"],
|
| 26 |
+
)
|
| 27 |
+
@triton.jit(do_not_specialize=['T'])
|
| 28 |
+
def fused_recurrent_fwd_kernel(
|
| 29 |
+
q,
|
| 30 |
+
k,
|
| 31 |
+
v,
|
| 32 |
+
g,
|
| 33 |
+
gk,
|
| 34 |
+
gv,
|
| 35 |
+
o,
|
| 36 |
+
h0,
|
| 37 |
+
ht,
|
| 38 |
+
offsets,
|
| 39 |
+
scale,
|
| 40 |
+
T,
|
| 41 |
+
B: tl.constexpr,
|
| 42 |
+
H: tl.constexpr,
|
| 43 |
+
K: tl.constexpr,
|
| 44 |
+
V: tl.constexpr,
|
| 45 |
+
BK: tl.constexpr,
|
| 46 |
+
BV: tl.constexpr,
|
| 47 |
+
REVERSE: tl.constexpr,
|
| 48 |
+
USE_G: tl.constexpr,
|
| 49 |
+
USE_GK: tl.constexpr,
|
| 50 |
+
USE_GV: tl.constexpr,
|
| 51 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 52 |
+
STORE_FINAL_STATE: tl.constexpr,
|
| 53 |
+
USE_OFFSETS: tl.constexpr,
|
| 54 |
+
HEAD_FIRST: tl.constexpr
|
| 55 |
+
):
|
| 56 |
+
# indices
|
| 57 |
+
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64)
|
| 58 |
+
i_n, i_h = i_nh // H, i_nh % H
|
| 59 |
+
if USE_OFFSETS:
|
| 60 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
| 61 |
+
all = T
|
| 62 |
+
T = eos - bos
|
| 63 |
+
else:
|
| 64 |
+
bos, eos = i_n * T, i_n * T + T
|
| 65 |
+
all = B * T
|
| 66 |
+
|
| 67 |
+
if HEAD_FIRST:
|
| 68 |
+
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 69 |
+
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 70 |
+
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 71 |
+
p_o = o + (i_k * B*H + i_nh) * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 72 |
+
if USE_G:
|
| 73 |
+
p_g = g + i_nh * T + ((T-1) if REVERSE else 0)
|
| 74 |
+
if USE_GK:
|
| 75 |
+
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 76 |
+
if USE_GV:
|
| 77 |
+
p_gv = gv + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 78 |
+
else:
|
| 79 |
+
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 80 |
+
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 81 |
+
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 82 |
+
p_o = o + ((i_k * all + bos) + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 83 |
+
if USE_G:
|
| 84 |
+
p_g = g + (bos + ((T-1) if REVERSE else 0)) * H + i_h
|
| 85 |
+
if USE_GK:
|
| 86 |
+
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 87 |
+
if USE_GV:
|
| 88 |
+
p_gv = gv + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 89 |
+
|
| 90 |
+
mask_k = (i_k * BK + tl.arange(0, BK)) < K
|
| 91 |
+
mask_v = (i_v * BV + tl.arange(0, BV)) < V
|
| 92 |
+
mask_h = mask_k[None, :] & mask_v[:, None]
|
| 93 |
+
b_h = tl.zeros([BV, BK], dtype=tl.float32)
|
| 94 |
+
|
| 95 |
+
if USE_INITIAL_STATE:
|
| 96 |
+
p_h0 = h0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
| 97 |
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
| 98 |
+
|
| 99 |
+
for _ in range(0, T):
|
| 100 |
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
|
| 101 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
| 102 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
| 103 |
+
if USE_GK:
|
| 104 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
| 105 |
+
b_h = b_h * exp(b_gk[None, :])
|
| 106 |
+
if USE_GV:
|
| 107 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
| 108 |
+
b_h = b_h * exp(b_gv[:, None])
|
| 109 |
+
if USE_G:
|
| 110 |
+
b_g = tl.load(p_g).to(tl.float32)
|
| 111 |
+
b_h = b_h * exp(b_g)
|
| 112 |
+
b_h += b_k[None, :] * b_v[:, None]
|
| 113 |
+
b_o = b_h * b_q[None, :]
|
| 114 |
+
b_o = tl.sum(b_o, axis=1)
|
| 115 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
| 116 |
+
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 117 |
+
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 118 |
+
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
| 119 |
+
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
| 120 |
+
if USE_GK:
|
| 121 |
+
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 122 |
+
if USE_GV:
|
| 123 |
+
p_gv += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
| 124 |
+
if USE_G:
|
| 125 |
+
p_g += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H)
|
| 126 |
+
|
| 127 |
+
if STORE_FINAL_STATE:
|
| 128 |
+
p_ht = ht + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
| 129 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
@triton.heuristics({
|
| 133 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
| 134 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
| 135 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
| 136 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 137 |
+
})
|
| 138 |
+
@triton.autotune(
|
| 139 |
+
configs=[
|
| 140 |
+
triton.Config({}, num_warps=num_warps)
|
| 141 |
+
for num_warps in [1, 2, 4]
|
| 142 |
+
],
|
| 143 |
+
key=['BK', 'BV', 'USE_GK', 'USE_GV', 'USE_G'],
|
| 144 |
+
)
|
| 145 |
+
@triton.jit(do_not_specialize=['T'])
|
| 146 |
+
def fused_recurrent_bwd_kernel(
|
| 147 |
+
q,
|
| 148 |
+
k,
|
| 149 |
+
v,
|
| 150 |
+
g,
|
| 151 |
+
gk,
|
| 152 |
+
gv,
|
| 153 |
+
h0,
|
| 154 |
+
do,
|
| 155 |
+
dq,
|
| 156 |
+
dk,
|
| 157 |
+
dv,
|
| 158 |
+
dht,
|
| 159 |
+
dh0,
|
| 160 |
+
offsets,
|
| 161 |
+
scale,
|
| 162 |
+
T,
|
| 163 |
+
B: tl.constexpr,
|
| 164 |
+
H: tl.constexpr,
|
| 165 |
+
K: tl.constexpr,
|
| 166 |
+
V: tl.constexpr,
|
| 167 |
+
BK: tl.constexpr,
|
| 168 |
+
BV: tl.constexpr,
|
| 169 |
+
REVERSE: tl.constexpr,
|
| 170 |
+
USE_G: tl.constexpr,
|
| 171 |
+
USE_GK: tl.constexpr,
|
| 172 |
+
USE_GV: tl.constexpr,
|
| 173 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 174 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
| 175 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
| 176 |
+
USE_OFFSETS: tl.constexpr,
|
| 177 |
+
HEAD_FIRST: tl.constexpr
|
| 178 |
+
):
|
| 179 |
+
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64)
|
| 180 |
+
i_n, i_h = i_nh // H, i_nh % H
|
| 181 |
+
if USE_OFFSETS:
|
| 182 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
| 183 |
+
all = T
|
| 184 |
+
T = eos - bos
|
| 185 |
+
else:
|
| 186 |
+
bos, eos = i_n * T, i_n * T + T
|
| 187 |
+
all = B * T
|
| 188 |
+
|
| 189 |
+
if HEAD_FIRST:
|
| 190 |
+
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 191 |
+
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 192 |
+
p_do = do + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 193 |
+
p_dq = dq + (i_v * B*H + i_nh) * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 194 |
+
if USE_G:
|
| 195 |
+
p_g = g + i_nh * T + ((T-1) if REVERSE else 0)
|
| 196 |
+
if USE_GK:
|
| 197 |
+
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 198 |
+
if USE_GV:
|
| 199 |
+
p_gv = gv + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 200 |
+
else:
|
| 201 |
+
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 202 |
+
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 203 |
+
p_do = do + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 204 |
+
p_dq = dq + ((i_v * all + bos) + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 205 |
+
if USE_G:
|
| 206 |
+
p_g = g + (bos + ((T-1) if REVERSE else 0)) * H + i_h
|
| 207 |
+
if USE_GK:
|
| 208 |
+
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 209 |
+
if USE_GV:
|
| 210 |
+
p_gv = gv + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 211 |
+
|
| 212 |
+
mask_k = i_k * BK + tl.arange(0, BK) < K
|
| 213 |
+
mask_v = i_v * BV + tl.arange(0, BV) < V
|
| 214 |
+
mask_h = mask_k[:, None] & mask_v[None, :]
|
| 215 |
+
|
| 216 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
| 217 |
+
if USE_INITIAL_STATE:
|
| 218 |
+
p_h0 = h0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
| 219 |
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
| 220 |
+
|
| 221 |
+
for _ in range(0, T):
|
| 222 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
| 223 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
| 224 |
+
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32)
|
| 225 |
+
if USE_G:
|
| 226 |
+
b_g = tl.load(p_g).to(tl.float32)
|
| 227 |
+
b_h = b_h * exp(b_g)
|
| 228 |
+
if USE_GK:
|
| 229 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
| 230 |
+
b_h = b_h * exp(b_gk[:, None])
|
| 231 |
+
if USE_GV:
|
| 232 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
| 233 |
+
b_h = b_h * exp(b_gv[None, :])
|
| 234 |
+
b_h += b_k[:, None] * b_v[None, :]
|
| 235 |
+
b_dq = b_h * b_do[None, :]
|
| 236 |
+
b_dq = tl.sum(b_dq, axis=1) * scale
|
| 237 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_k)
|
| 238 |
+
|
| 239 |
+
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 240 |
+
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
| 241 |
+
p_do += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
| 242 |
+
p_dq += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 243 |
+
if USE_G:
|
| 244 |
+
p_g += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H)
|
| 245 |
+
if USE_GK:
|
| 246 |
+
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 247 |
+
if USE_GV:
|
| 248 |
+
p_gv += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
| 249 |
+
|
| 250 |
+
# sync threads
|
| 251 |
+
tl.debug_barrier()
|
| 252 |
+
|
| 253 |
+
if HEAD_FIRST:
|
| 254 |
+
p_q = q + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 255 |
+
p_k = k + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 256 |
+
p_v = v + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 257 |
+
p_do = do + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 258 |
+
p_dk = dk + (i_v * B*H + i_nh) * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 259 |
+
p_dv = dv + (i_k * B*H + i_nh) * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 260 |
+
if USE_G:
|
| 261 |
+
p_g = g + i_nh * T + ((T - 1) if not REVERSE else 0)
|
| 262 |
+
if USE_GK:
|
| 263 |
+
p_gk = gk + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
| 264 |
+
if USE_GV:
|
| 265 |
+
p_gv = gv + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
| 266 |
+
else:
|
| 267 |
+
p_q = q + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 268 |
+
p_k = k + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 269 |
+
p_v = v + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 270 |
+
p_do = do + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 271 |
+
p_dk = dk + ((i_v * all + bos) + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 272 |
+
p_dv = dv + ((i_k * all + bos) + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 273 |
+
if USE_G:
|
| 274 |
+
p_g = g + (bos + ((T - 1) if not REVERSE else 0)) * H + i_h
|
| 275 |
+
if USE_GK:
|
| 276 |
+
p_gk = gk + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
| 277 |
+
if USE_GV:
|
| 278 |
+
p_gv = gv + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
| 279 |
+
|
| 280 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
| 281 |
+
if USE_FINAL_STATE_GRADIENT:
|
| 282 |
+
p_dht = dht + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
| 283 |
+
b_dh += tl.load(p_dht, mask=mask_h, other=0).to(tl.float32)
|
| 284 |
+
|
| 285 |
+
for _ in range(T):
|
| 286 |
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
|
| 287 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
| 288 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
| 289 |
+
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32)
|
| 290 |
+
b_dh += b_q[:, None] * b_do[None, :]
|
| 291 |
+
b_dk = tl.sum(b_dh * b_v[None, :], axis=1)
|
| 292 |
+
b_dv = tl.sum(b_dh * b_k[:, None], axis=0)
|
| 293 |
+
if USE_G:
|
| 294 |
+
b_g = tl.load(p_g).to(tl.float32)
|
| 295 |
+
b_dh *= exp(b_g)
|
| 296 |
+
if USE_GK:
|
| 297 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
| 298 |
+
b_dh *= exp(b_gk)[:, None]
|
| 299 |
+
if USE_GV:
|
| 300 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
| 301 |
+
b_dh *= exp(b_gv)[None, :]
|
| 302 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k)
|
| 303 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v)
|
| 304 |
+
|
| 305 |
+
p_q += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
| 306 |
+
p_k += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
| 307 |
+
p_v += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
| 308 |
+
p_do += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
| 309 |
+
p_dk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
| 310 |
+
p_dv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
| 311 |
+
if USE_G:
|
| 312 |
+
p_g += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H)
|
| 313 |
+
if USE_GK:
|
| 314 |
+
p_gk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
| 315 |
+
if USE_GV:
|
| 316 |
+
p_gv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
| 317 |
+
|
| 318 |
+
if STORE_INITIAL_STATE_GRADIENT:
|
| 319 |
+
p_dh0 = dh0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
| 320 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_h)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def fused_recurrent_fwd(
|
| 324 |
+
q: torch.Tensor,
|
| 325 |
+
k: torch.Tensor,
|
| 326 |
+
v: torch.Tensor,
|
| 327 |
+
g: Optional[torch.Tensor] = None,
|
| 328 |
+
gk: Optional[torch.Tensor] = None,
|
| 329 |
+
gv: Optional[torch.Tensor] = None,
|
| 330 |
+
scale: Optional[float] = None,
|
| 331 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 332 |
+
output_final_state: bool = False,
|
| 333 |
+
reverse: bool = False,
|
| 334 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 335 |
+
head_first: bool = True
|
| 336 |
+
):
|
| 337 |
+
if head_first:
|
| 338 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
| 339 |
+
else:
|
| 340 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
| 341 |
+
N = B if offsets is None else len(offsets) - 1
|
| 342 |
+
BK, BV = min(K, 64), min(V, 64)
|
| 343 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
| 344 |
+
|
| 345 |
+
h0 = initial_state
|
| 346 |
+
if output_final_state:
|
| 347 |
+
ht = q.new_empty(N, H, K, V, dtype=torch.float32)
|
| 348 |
+
else:
|
| 349 |
+
ht = None
|
| 350 |
+
o = q.new_empty(NK, *v.shape, dtype=torch.float32)
|
| 351 |
+
|
| 352 |
+
grid = (NV, NK, N * H)
|
| 353 |
+
fused_recurrent_fwd_kernel[grid](
|
| 354 |
+
q,
|
| 355 |
+
k,
|
| 356 |
+
v,
|
| 357 |
+
g,
|
| 358 |
+
gk,
|
| 359 |
+
gv,
|
| 360 |
+
o,
|
| 361 |
+
h0,
|
| 362 |
+
ht,
|
| 363 |
+
offsets,
|
| 364 |
+
scale,
|
| 365 |
+
T=T,
|
| 366 |
+
B=B,
|
| 367 |
+
H=H,
|
| 368 |
+
K=K,
|
| 369 |
+
V=V,
|
| 370 |
+
BK=BK,
|
| 371 |
+
BV=BV,
|
| 372 |
+
USE_G=g is not None,
|
| 373 |
+
USE_GK=gk is not None,
|
| 374 |
+
USE_GV=gv is not None,
|
| 375 |
+
REVERSE=reverse,
|
| 376 |
+
HEAD_FIRST=head_first
|
| 377 |
+
)
|
| 378 |
+
o = o.sum(0)
|
| 379 |
+
return o, ht
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
def fused_recurrent_bwd(
|
| 383 |
+
q: torch.Tensor,
|
| 384 |
+
k: torch.Tensor,
|
| 385 |
+
v: torch.Tensor,
|
| 386 |
+
g: Optional[torch.Tensor] = None,
|
| 387 |
+
gk: Optional[torch.Tensor] = None,
|
| 388 |
+
gv: Optional[torch.Tensor] = None,
|
| 389 |
+
o: Optional[torch.Tensor] = None,
|
| 390 |
+
do: Optional[torch.Tensor] = None,
|
| 391 |
+
dht: Optional[torch.Tensor] = None,
|
| 392 |
+
scale: Optional[float] = None,
|
| 393 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 394 |
+
reverse: bool = False,
|
| 395 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 396 |
+
head_first: bool = True
|
| 397 |
+
):
|
| 398 |
+
if head_first:
|
| 399 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
| 400 |
+
else:
|
| 401 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
| 402 |
+
N = B if offsets is None else len(offsets) - 1
|
| 403 |
+
|
| 404 |
+
BK, BV = min(K, 64), min(V, 64)
|
| 405 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
| 406 |
+
|
| 407 |
+
dq = q.new_empty(NV, *q.shape, dtype=torch.float32)
|
| 408 |
+
dk = q.new_empty(NV, *k.shape, dtype=torch.float32)
|
| 409 |
+
dv = q.new_empty(NK, *v.shape, dtype=torch.float32)
|
| 410 |
+
h0 = initial_state
|
| 411 |
+
dh0 = torch.empty_like(initial_state) if initial_state is not None else None
|
| 412 |
+
|
| 413 |
+
grid = (NV, NK, N * H)
|
| 414 |
+
fused_recurrent_bwd_kernel[grid](
|
| 415 |
+
q,
|
| 416 |
+
k,
|
| 417 |
+
v,
|
| 418 |
+
g,
|
| 419 |
+
gk,
|
| 420 |
+
gv,
|
| 421 |
+
h0,
|
| 422 |
+
do,
|
| 423 |
+
dq,
|
| 424 |
+
dk,
|
| 425 |
+
dv,
|
| 426 |
+
dht,
|
| 427 |
+
dh0,
|
| 428 |
+
offsets,
|
| 429 |
+
scale,
|
| 430 |
+
B=B,
|
| 431 |
+
T=T,
|
| 432 |
+
H=H,
|
| 433 |
+
K=K,
|
| 434 |
+
V=V,
|
| 435 |
+
BK=BK,
|
| 436 |
+
BV=BV,
|
| 437 |
+
USE_G=g is not None,
|
| 438 |
+
USE_GK=gk is not None,
|
| 439 |
+
USE_GV=gv is not None,
|
| 440 |
+
REVERSE=reverse,
|
| 441 |
+
HEAD_FIRST=head_first
|
| 442 |
+
)
|
| 443 |
+
dq = dq.sum(0)
|
| 444 |
+
dk = dk.sum(0)
|
| 445 |
+
dv = dv.sum(0)
|
| 446 |
+
dg, dgk, dgv = None, None, None
|
| 447 |
+
if g is not None:
|
| 448 |
+
dg = chunk_global_cumsum(
|
| 449 |
+
(dq * q.float() - dk * k.float()).sum(-1),
|
| 450 |
+
reverse=not reverse,
|
| 451 |
+
offsets=offsets,
|
| 452 |
+
head_first=head_first
|
| 453 |
+
)
|
| 454 |
+
if gk is not None:
|
| 455 |
+
dgk = chunk_global_cumsum(
|
| 456 |
+
dq * q.float() - dk * k.float(),
|
| 457 |
+
reverse=not reverse,
|
| 458 |
+
offsets=offsets,
|
| 459 |
+
head_first=head_first
|
| 460 |
+
)
|
| 461 |
+
if gv is not None:
|
| 462 |
+
dgv = chunk_global_cumsum(
|
| 463 |
+
do.float() * o.float() - dv * v.float(),
|
| 464 |
+
reverse=not reverse,
|
| 465 |
+
offsets=offsets,
|
| 466 |
+
head_first=head_first
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
return dq, dk, dv, dg, dgk, dgv, dh0
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
class FusedRecurrentFunction(torch.autograd.Function):
|
| 473 |
+
|
| 474 |
+
@staticmethod
|
| 475 |
+
@input_guard
|
| 476 |
+
@autocast_custom_fwd
|
| 477 |
+
def forward(
|
| 478 |
+
ctx,
|
| 479 |
+
q: torch.Tensor,
|
| 480 |
+
k: torch.Tensor,
|
| 481 |
+
v: torch.Tensor,
|
| 482 |
+
g: Optional[torch.Tensor] = None,
|
| 483 |
+
gk: Optional[torch.Tensor] = None,
|
| 484 |
+
gv: Optional[torch.Tensor] = None,
|
| 485 |
+
scale: Optional[float] = None,
|
| 486 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 487 |
+
output_final_state: bool = False,
|
| 488 |
+
reverse: bool = False,
|
| 489 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 490 |
+
head_first: bool = True
|
| 491 |
+
):
|
| 492 |
+
o, ht = fused_recurrent_fwd(
|
| 493 |
+
q=q,
|
| 494 |
+
k=k,
|
| 495 |
+
v=v,
|
| 496 |
+
g=g,
|
| 497 |
+
gk=gk,
|
| 498 |
+
gv=gv,
|
| 499 |
+
scale=scale,
|
| 500 |
+
initial_state=initial_state,
|
| 501 |
+
output_final_state=output_final_state,
|
| 502 |
+
reverse=reverse,
|
| 503 |
+
offsets=offsets,
|
| 504 |
+
head_first=head_first
|
| 505 |
+
)
|
| 506 |
+
ctx.save_for_backward(q, k, v, g, gk, gv, initial_state, o)
|
| 507 |
+
ctx.scale = scale
|
| 508 |
+
ctx.reverse = reverse
|
| 509 |
+
ctx.offsets = offsets
|
| 510 |
+
ctx.head_first = head_first
|
| 511 |
+
return o.to(q.dtype), ht
|
| 512 |
+
|
| 513 |
+
@staticmethod
|
| 514 |
+
@input_guard
|
| 515 |
+
@autocast_custom_bwd
|
| 516 |
+
def backward(ctx, do, dht):
|
| 517 |
+
q, k, v, g, gk, gv, initial_state, o = ctx.saved_tensors
|
| 518 |
+
# not supported yet.
|
| 519 |
+
if dht is not None:
|
| 520 |
+
if not dht.eq(0).all():
|
| 521 |
+
if g is not None:
|
| 522 |
+
assert g.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
| 523 |
+
if gk is not None:
|
| 524 |
+
assert gk.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
| 525 |
+
if gv is not None:
|
| 526 |
+
assert gv.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
| 527 |
+
dq, dk, dv, dg, dgk, dgv, dh0 = fused_recurrent_bwd(
|
| 528 |
+
q=q,
|
| 529 |
+
k=k,
|
| 530 |
+
v=v,
|
| 531 |
+
g=g,
|
| 532 |
+
gk=gk,
|
| 533 |
+
gv=gv,
|
| 534 |
+
o=o,
|
| 535 |
+
do=do,
|
| 536 |
+
dht=dht,
|
| 537 |
+
scale=ctx.scale,
|
| 538 |
+
initial_state=initial_state,
|
| 539 |
+
reverse=ctx.reverse,
|
| 540 |
+
offsets=ctx.offsets,
|
| 541 |
+
head_first=ctx.head_first
|
| 542 |
+
)
|
| 543 |
+
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), dg, dgk, dgv, None, dh0, None, None, None, None
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
def fused_recurrent(
|
| 547 |
+
q: torch.Tensor,
|
| 548 |
+
k: torch.Tensor,
|
| 549 |
+
v: torch.Tensor,
|
| 550 |
+
g: Optional[torch.Tensor] = None,
|
| 551 |
+
gk: Optional[torch.Tensor] = None,
|
| 552 |
+
gv: Optional[torch.Tensor] = None,
|
| 553 |
+
scale: Optional[float] = None,
|
| 554 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 555 |
+
output_final_state: bool = False,
|
| 556 |
+
reverse: bool = False,
|
| 557 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
| 558 |
+
head_first: bool = True
|
| 559 |
+
):
|
| 560 |
+
if scale is None:
|
| 561 |
+
scale = k.shape[-1] ** -0.5
|
| 562 |
+
return FusedRecurrentFunction.apply(
|
| 563 |
+
q,
|
| 564 |
+
k,
|
| 565 |
+
v,
|
| 566 |
+
g,
|
| 567 |
+
gk,
|
| 568 |
+
gv,
|
| 569 |
+
scale,
|
| 570 |
+
initial_state,
|
| 571 |
+
output_final_state,
|
| 572 |
+
reverse,
|
| 573 |
+
cu_seqlens,
|
| 574 |
+
head_first
|
| 575 |
+
)
|
fla/ops/common/utils.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import triton
|
| 6 |
+
import triton.language as tl
|
| 7 |
+
|
| 8 |
+
from fla.utils import tensor_cache
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@triton.autotune(
|
| 12 |
+
configs=[
|
| 13 |
+
triton.Config({}, num_warps=num_warps)
|
| 14 |
+
for num_warps in [4, 8, 16, 32]
|
| 15 |
+
],
|
| 16 |
+
key=['B'],
|
| 17 |
+
)
|
| 18 |
+
@triton.jit
|
| 19 |
+
def prepare_position_ids_kernel(
|
| 20 |
+
y,
|
| 21 |
+
offsets,
|
| 22 |
+
B: tl.constexpr
|
| 23 |
+
):
|
| 24 |
+
i_n = tl.program_id(0)
|
| 25 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 26 |
+
T = eos - bos
|
| 27 |
+
|
| 28 |
+
o = tl.arange(0, B)
|
| 29 |
+
for i in range(0, tl.cdiv(T, B) * B, B):
|
| 30 |
+
o_i = o + i
|
| 31 |
+
tl.store(y + bos + o_i, o_i, o_i < T)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@tensor_cache
|
| 35 |
+
def prepare_lens(offsets: torch.LongTensor) -> torch.LongTensor:
|
| 36 |
+
return offsets[1:] - offsets[:-1]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@tensor_cache
|
| 40 |
+
def prepare_position_ids(offsets: torch.LongTensor) -> torch.LongTensor:
|
| 41 |
+
return torch.cat([torch.arange(n, dtype=offsets.dtype, device=offsets.device) for n in prepare_lens(offsets).unbind()])
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@tensor_cache
|
| 45 |
+
def prepare_sequence_ids(position_ids: torch.LongTensor) -> torch.LongTensor:
|
| 46 |
+
return position_ids.eq(0).cumsum(0) - 1
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@tensor_cache
|
| 50 |
+
def prepare_token_indices(offsets: torch.LongTensor) -> torch.LongTensor:
|
| 51 |
+
position_ids = prepare_position_ids(offsets)
|
| 52 |
+
return torch.stack([prepare_sequence_ids(position_ids), position_ids], 1).to(offsets)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@tensor_cache
|
| 56 |
+
def prepare_chunk_indices(
|
| 57 |
+
offsets: torch.LongTensor,
|
| 58 |
+
chunk_size: int
|
| 59 |
+
) -> torch.LongTensor:
|
| 60 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(prepare_lens(offsets), chunk_size).tolist()])
|
| 61 |
+
return torch.stack([prepare_sequence_ids(indices), indices], 1).to(offsets)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@tensor_cache
|
| 65 |
+
def prepare_chunk_offsets(
|
| 66 |
+
offsets: torch.LongTensor,
|
| 67 |
+
chunk_size: int
|
| 68 |
+
) -> torch.LongTensor:
|
| 69 |
+
return torch.cat([offsets.new_tensor([0]), triton.cdiv(prepare_lens(offsets), chunk_size)]).cumsum(-1)
|
fla/ops/delta_rule/README.md
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Chunkwise-form Parallelism of DeltaNet
|
| 2 |
+
|
| 3 |
+
This section expands on the formulation presented in Appendix B of the DeltaNet paper.[^1]
|
| 4 |
+
|
| 5 |
+
To reduce notational clutter, we focus on the first chunk, denoting $\mathbf{S}^r=\mathbf{S}_{[1]}^r$. By partially expanding the recurrence, we have:
|
| 6 |
+
```math
|
| 7 |
+
\begin{equation}
|
| 8 |
+
\begin{aligned}
|
| 9 |
+
\mathbf{S}^r &= \underbrace{\left(\prod_{i=1}^r \mathbf{I} - \beta^i \boldsymbol{k}^i \boldsymbol{k}^{i\top} \right)}_{:= \mathbf{P}^r} \cdot\mathbf{S}^{0} + \overbrace{\sum_{i=1}^{r} \underbrace{\left(\prod_{j=i+1}^r \mathbf{I} - \beta^j \boldsymbol{k}^j \boldsymbol{k}^{j\top} \right)}_{:= \mathbf{P}_{i+1}^r}\beta^i \boldsymbol{k}^i\boldsymbol{v}^{i\top}}^{:=\mathbf{H}^r} \\
|
| 10 |
+
&=\mathbf{P}^r \cdot \mathbf{S}^{0} + \mathbf{H}^r
|
| 11 |
+
\end{aligned}
|
| 12 |
+
\end{equation}
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
where $\mathbf{P}_i^r$ involves cumulative products of generalized Householder matrices.
|
| 16 |
+
We abbreviate $\mathbf{P}_1^r$ as $\mathbf{P}^r$.
|
| 17 |
+
This can be optimized using the classical WY representation:
|
| 18 |
+
```math
|
| 19 |
+
\begin{equation}
|
| 20 |
+
\mathbf{P}^{r} = \mathbf{I} - \sum_{i=1}^{r}\boldsymbol{k}^i\boldsymbol{w}^{i\top} \in \mathbb{R}^{d_k \times d_k};\qquad
|
| 21 |
+
\boldsymbol{w}^r = \beta^r \left(\boldsymbol{k}^r - \sum_{i=1}^{r-1} \left(\boldsymbol{k}^{r\top}\boldsymbol{k}^i \right)\boldsymbol{w}^i \right) \in \mathbb{R}^{d_k}
|
| 22 |
+
\end{equation}
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
We prove this by induction:
|
| 26 |
+
```math
|
| 27 |
+
\begin{align*}
|
| 28 |
+
\mathbf{P}^{r} &= \prod_{i=1}^r \mathbf{I} - \beta^i \boldsymbol{k}^i \boldsymbol{k}^{i\top} \\
|
| 29 |
+
&= \left(\mathbf{I} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top}\right)\mathbf{P}^{r-1} \\
|
| 30 |
+
&= \left(\mathbf{I} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top}\right)\left(\mathbf{I} - \sum_{i=1}^{r-1}\boldsymbol{k}^i\boldsymbol{w}^{i\top}\right) \\
|
| 31 |
+
&= \mathbf{I} - \sum_{i=1}^{r-1}\boldsymbol{k}^i\boldsymbol{w}^{i\top} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top} + \beta^r\boldsymbol{k}^r \boldsymbol{k}^{r\top} \left(\sum_{i=1}^{r-1}\boldsymbol{k}^i\boldsymbol{w}^{i\top}\right) \\
|
| 32 |
+
&= \mathbf{I} - \sum_{i=1}^{r-1}\boldsymbol{k}^i\boldsymbol{w}^{i\top} - \beta^r \boldsymbol{k}^r \left(\boldsymbol{k}^{r} - \left(\sum_{i=1}^{r-1}\left(\boldsymbol{k}^{r\top} \boldsymbol{k}^i\right)\boldsymbol{w}^{i}\right) \right)^\top \\
|
| 33 |
+
&= \mathbf{I} - \sum_{i=1}^{r}\boldsymbol{k}^i\boldsymbol{w}^{i\top}
|
| 34 |
+
\end{align*}
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
Similarly, $\mathbf{H}^r$ can be represented as:
|
| 38 |
+
```math
|
| 39 |
+
\begin{equation}
|
| 40 |
+
\mathbf{H}^{r} = \sum_{i=1}^{r} \boldsymbol{k}^i \boldsymbol{u}^{i\top} \in \mathbb{R}^{d_k \times d_v};\qquad \boldsymbol{u}^r = \beta^r \left(\boldsymbol{v}^r - \sum_{i=1}^{r-1} \left(\boldsymbol{k}^{r\top}\boldsymbol{k}^i\right) \boldsymbol{u}^i \right)\in \mathbb{R}^{d_v}
|
| 41 |
+
\end{equation}
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
This can also be proven by induction:
|
| 45 |
+
```math
|
| 46 |
+
\begin{align*}
|
| 47 |
+
\mathbf{H}^{r} &= \sum_{i=1}^{r} \mathbf{P}_{i+1}^r \beta^i \boldsymbol{k}^i \boldsymbol{v}^{i\top}\\
|
| 48 |
+
&= \left(\mathbf{I} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top}\right) \mathbf{H}^{r-1} + \beta^r \boldsymbol{k}^r \boldsymbol{v}^{r\top}\\
|
| 49 |
+
&= \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top} \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top} +\beta^r \boldsymbol{k}^r \boldsymbol{v}^{r\top}\\
|
| 50 |
+
&= \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top} + \boldsymbol{k}^r \left(\beta^r \boldsymbol{v}^{r\top}-\beta^r \boldsymbol{k}^{r\top} \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top}\right) \\
|
| 51 |
+
&= \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top} + \boldsymbol{k}^r \beta^r\left(\boldsymbol{v}^{r}-\sum_{i=1}^{r-1}\left(\boldsymbol{k}^{r\top}\boldsymbol{k}^{i}\right)\boldsymbol{u}^{i} \right)^\top \\
|
| 52 |
+
&=\sum_{i=1}^{r} \boldsymbol{k}^i \boldsymbol{u}^{i\top}
|
| 53 |
+
\end{align*}
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
In matrix form, $\mathbf{P}$ and $\mathbf{H}$ can be written as:
|
| 57 |
+
```math
|
| 58 |
+
\begin{equation}
|
| 59 |
+
\mathbf{P}=\mathbf{I}-\mathbf{K}^\top\mathbf{W} \in \mathbb{R}^{d_k \times d_k}, \qquad\mathbf{H}=\mathbf{K}^\top\mathbf{U} \in \mathbb{R}^{d_k\times d_v}
|
| 60 |
+
\end{equation}
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
Now we can derive the matrix form of $\mathbf{W}$ and $\mathbf{U}$:
|
| 64 |
+
```math
|
| 65 |
+
\begin{align*}
|
| 66 |
+
\mathbf{W} &= \mathrm{diag}(\beta) \mathbf{K} - \mathrm{tril}(\mathrm{diag}(\beta) \mathbf{K}\mathbf{K}^\top, -1)\mathbf{W}\\
|
| 67 |
+
\left(\mathbf{I} + \mathrm{tril}(\mathrm{diag}(\beta) \mathbf{K}\mathbf{K}^\top, -1)\right) \mathbf{W} &= \mathrm{diag}(\beta) \mathbf{K}
|
| 68 |
+
\end{align*}
|
| 69 |
+
```
|
| 70 |
+
A similar process holds for $\mathbf{U}$. We can further write $\mathbf{W}$ and $\mathbf{U}$ in matrix form:
|
| 71 |
+
```math
|
| 72 |
+
\begin{align*}
|
| 73 |
+
\mathbf{T} &= \left(\mathbf{I} + \mathrm{tril}\left(\mathrm{diag}(\beta)\mathbf{K} \mathbf{K}^\top,-1\right)\right)^{-1}\mathrm{diag}\left(\beta\right)\in \mathbb{R}^{C \times C}\\
|
| 74 |
+
\mathbf{W} &= \mathbf{T} \mathbf{K}\in \mathbb{R}^{C \times d_k}\\
|
| 75 |
+
\mathbf{U} &= \mathbf{T}\mathbf{V}\in \mathbb{R}^{C \times d_v}
|
| 76 |
+
\end{align*}
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
Substituting these back into the original equations yields a hardware-efficient chunkwise algorithm for DeltaNet that leverages matrix multiplications, enabling tensor core based GPU optimization:
|
| 80 |
+
```math
|
| 81 |
+
\begin{equation}
|
| 82 |
+
\begin{aligned}
|
| 83 |
+
\mathbf{S} &= \mathbf{P}\cdot\mathbf{S}^0 + \mathbf{H} \\
|
| 84 |
+
&= \mathbf{S}^0 + \mathbf{K}^\top (\mathbf{U} -\mathbf{W} \mathbf{S}^0) \in \mathbb{R}^{d_k \times d_v}\\
|
| 85 |
+
\mathbf{O} &= \mathbf{Q} \mathbf{S}^0 + (\mathbf{Q} \mathbf{K}^{\top} \odot \mathbf{M}) \left(\mathbf{U} - \mathbf{W} \mathbf{S}^0\right) \in \mathbb{R}^{C \times d_v}
|
| 86 |
+
\end{aligned}
|
| 87 |
+
\end{equation}
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
[^1]: https://arxiv.org/abs/2406.06484
|
fla/ops/delta_rule/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from .chunk import chunk_delta_rule
|
| 4 |
+
from .fused_chunk import fused_chunk_delta_rule
|
| 5 |
+
from .fused_recurrent import fused_recurrent_delta_rule
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
'fused_chunk_delta_rule',
|
| 9 |
+
'fused_recurrent_delta_rule',
|
| 10 |
+
'chunk_delta_rule'
|
| 11 |
+
]
|
fla/ops/delta_rule/parallel.py
ADDED
|
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
|
| 11 |
+
from fla.ops.delta_rule.wy_fast import fwd_prepare_T
|
| 12 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@triton.autotune(
|
| 16 |
+
configs=[
|
| 17 |
+
triton.Config({}, num_warps=num_warps)
|
| 18 |
+
for num_warps in [1, 2, 4]
|
| 19 |
+
],
|
| 20 |
+
key=['BT', 'K', 'V'],
|
| 21 |
+
)
|
| 22 |
+
@triton.jit(do_not_specialize=['T'])
|
| 23 |
+
def chunk_transform_qk_fwd_kernel(
|
| 24 |
+
q,
|
| 25 |
+
k,
|
| 26 |
+
v,
|
| 27 |
+
beta,
|
| 28 |
+
o,
|
| 29 |
+
A,
|
| 30 |
+
q_new,
|
| 31 |
+
k_new,
|
| 32 |
+
A_local,
|
| 33 |
+
scale,
|
| 34 |
+
T,
|
| 35 |
+
K: tl.constexpr,
|
| 36 |
+
V: tl.constexpr,
|
| 37 |
+
BK: tl.constexpr,
|
| 38 |
+
BV: tl.constexpr,
|
| 39 |
+
BT: tl.constexpr,
|
| 40 |
+
OUTPUT_ATTENTIONS: tl.constexpr
|
| 41 |
+
):
|
| 42 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
| 43 |
+
|
| 44 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 45 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 46 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, 0), (BT, BV), (1, 0))
|
| 47 |
+
b_q = (tl.load(p_q, boundary_check=(0, 1)) * scale).to(p_q.dtype.element_ty)
|
| 48 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 49 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 50 |
+
|
| 51 |
+
p_T = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
| 52 |
+
b_T = tl.load(p_T, boundary_check=(0, 1))
|
| 53 |
+
|
| 54 |
+
o_i = tl.arange(0, BT)
|
| 55 |
+
m_t = o_i[:, None] >= o_i[None, :]
|
| 56 |
+
b_qk = tl.where(m_t, tl.dot(b_q, tl.trans(b_k), allow_tf32=False), 0).to(b_q.dtype)
|
| 57 |
+
m_t = o_i[:, None] > o_i[None, :]
|
| 58 |
+
b_kk = tl.where(m_t, tl.dot(b_k, tl.trans(b_k), allow_tf32=False), 0).to(b_k.dtype)
|
| 59 |
+
|
| 60 |
+
p_beta = tl.make_block_ptr(beta + i_bh * T, (T, ), (1, ), (i_t * BT, ), (BT, ), (0, ))
|
| 61 |
+
b_beta = tl.load(p_beta, boundary_check=(0, ))
|
| 62 |
+
b_k_beta = (b_k * b_beta[:, None]).to(b_k.dtype)
|
| 63 |
+
|
| 64 |
+
b_qkT = tl.dot(b_qk, b_T, allow_tf32=False).to(b_k.dtype)
|
| 65 |
+
|
| 66 |
+
if OUTPUT_ATTENTIONS:
|
| 67 |
+
p_a = tl.make_block_ptr(A_local + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
| 68 |
+
tl.store(p_a, b_qkT.to(p_a.dtype.element_ty), boundary_check=(0, 1))
|
| 69 |
+
|
| 70 |
+
b_kkT = tl.dot(b_kk, b_T, allow_tf32=False).to(b_k.dtype)
|
| 71 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, 0), (BT, BV), (1, 0))
|
| 72 |
+
tl.store(p_o, tl.dot(b_qkT, b_v).to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
| 73 |
+
|
| 74 |
+
p_q_new = tl.make_block_ptr(q_new + i_bh * T*K, (T, K), (K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 75 |
+
tl.store(p_q_new, (b_q - tl.dot(b_qkT, b_k_beta, allow_tf32=False)).to(p_q_new.dtype.element_ty), boundary_check=(0, 1))
|
| 76 |
+
|
| 77 |
+
p_k_new = tl.make_block_ptr(k_new + i_bh * T*K, (T, K), (K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 78 |
+
b_k_new = b_k - tl.dot(tl.trans(b_kkT), b_k_beta, allow_tf32=False)
|
| 79 |
+
tl.store(p_k_new, b_k_new.to(p_k_new.dtype.element_ty), boundary_check=(0, 1))
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def chunk_transform_qk_fwd(
|
| 83 |
+
q: torch.Tensor,
|
| 84 |
+
k: torch.Tensor,
|
| 85 |
+
v: torch.Tensor,
|
| 86 |
+
beta: torch.Tensor,
|
| 87 |
+
A: torch.Tensor,
|
| 88 |
+
scale: float,
|
| 89 |
+
chunk_size: int,
|
| 90 |
+
output_attentions: bool
|
| 91 |
+
):
|
| 92 |
+
B, H, T, K = k.shape
|
| 93 |
+
BT = chunk_size
|
| 94 |
+
q_new = torch.empty_like(q)
|
| 95 |
+
k_new = torch.empty_like(k)
|
| 96 |
+
o = torch.empty_like(v)
|
| 97 |
+
grid = (triton.cdiv(T, BT), B*H)
|
| 98 |
+
V = v.shape[-1]
|
| 99 |
+
A_local = torch.empty_like(A) if output_attentions else None
|
| 100 |
+
chunk_transform_qk_fwd_kernel[grid](
|
| 101 |
+
q,
|
| 102 |
+
k,
|
| 103 |
+
v,
|
| 104 |
+
beta,
|
| 105 |
+
o,
|
| 106 |
+
A,
|
| 107 |
+
q_new,
|
| 108 |
+
k_new,
|
| 109 |
+
A_local,
|
| 110 |
+
scale=scale,
|
| 111 |
+
T=T,
|
| 112 |
+
K=K,
|
| 113 |
+
V=V,
|
| 114 |
+
BT=BT,
|
| 115 |
+
BK=triton.next_power_of_2(K),
|
| 116 |
+
BV=triton.next_power_of_2(V),
|
| 117 |
+
OUTPUT_ATTENTIONS=output_attentions
|
| 118 |
+
)
|
| 119 |
+
return q_new, k_new, o, A_local
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@triton.autotune(
|
| 123 |
+
configs=[
|
| 124 |
+
triton.Config({}, num_warps=1),
|
| 125 |
+
triton.Config({}, num_warps=2),
|
| 126 |
+
],
|
| 127 |
+
key=['BT'],
|
| 128 |
+
)
|
| 129 |
+
@triton.jit(do_not_specialize=['T'])
|
| 130 |
+
def save_intra_chunk_attn(
|
| 131 |
+
A,
|
| 132 |
+
A_local,
|
| 133 |
+
T,
|
| 134 |
+
BT: tl.constexpr,
|
| 135 |
+
):
|
| 136 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
| 137 |
+
p_A = tl.make_block_ptr(A + i_bh * T * T, (T, T), (T, 1), (i_t * BT, i_t * BT), (BT, BT), (1, 0))
|
| 138 |
+
p_A_local = tl.make_block_ptr(A_local + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
| 139 |
+
b_A_local = tl.load(p_A_local, boundary_check=(0, 1))
|
| 140 |
+
tl.store(p_A, b_A_local.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
@triton.heuristics({
|
| 144 |
+
'OUTPUT_ATTENTIONS': lambda args: args['attn'] is not None
|
| 145 |
+
})
|
| 146 |
+
@triton.jit(do_not_specialize=['T'])
|
| 147 |
+
def parallel_delta_rule_fwd_kernel(
|
| 148 |
+
q,
|
| 149 |
+
k,
|
| 150 |
+
k2, # original k
|
| 151 |
+
v,
|
| 152 |
+
beta,
|
| 153 |
+
o,
|
| 154 |
+
o_new,
|
| 155 |
+
attn,
|
| 156 |
+
T,
|
| 157 |
+
K: tl.constexpr,
|
| 158 |
+
V: tl.constexpr,
|
| 159 |
+
BT: tl.constexpr,
|
| 160 |
+
BS: tl.constexpr,
|
| 161 |
+
BK: tl.constexpr,
|
| 162 |
+
BV: tl.constexpr,
|
| 163 |
+
OUTPUT_ATTENTIONS: tl.constexpr
|
| 164 |
+
):
|
| 165 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
| 166 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
| 167 |
+
|
| 168 |
+
# the Q block is kept in the shared memory throughout the whole kernel
|
| 169 |
+
# [BT, BK]
|
| 170 |
+
b_q = tl.zeros([BT, BK], dtype=tl.float32)
|
| 171 |
+
b_q += tl.load(p_q, boundary_check=(0, 1))
|
| 172 |
+
|
| 173 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
| 174 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, 0), (BT, BV), (1, 0))
|
| 175 |
+
b_o += tl.load(p_o, boundary_check=(0, 1))
|
| 176 |
+
|
| 177 |
+
# As opposed to Flashattention, this kernel requires scanning the KV blocks from right to left
|
| 178 |
+
# Q block and K block have overlap.
|
| 179 |
+
# masks required
|
| 180 |
+
for offset in range((i_t + 1) * BT - 2 * BS, i_t * BT - BS, -BS):
|
| 181 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (0, offset), (BK, BS), (0, 1))
|
| 182 |
+
p_k2 = tl.make_block_ptr(k2 + i_bh * T*K, (T, K), (K, 1), (offset, 0), (BS, BK), (1, 0))
|
| 183 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (offset, 0), (BS, BV), (1, 0))
|
| 184 |
+
p_beta = tl.make_block_ptr(beta + i_bh * T, (T, ), (1, ), (offset, ), (BS, ), (0,))
|
| 185 |
+
# [BK, BS]
|
| 186 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 187 |
+
# [BS, BV]
|
| 188 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 189 |
+
# [BS]
|
| 190 |
+
b_beta = tl.load(p_beta, boundary_check=(0,))
|
| 191 |
+
# [BT, BS]
|
| 192 |
+
m_s = tl.arange(0, BT) >= (offset - i_t*BT + BS)
|
| 193 |
+
b_s = tl.dot(b_q.to(b_k.dtype), b_k, allow_tf32=False)
|
| 194 |
+
b_s = tl.where(m_s[:, None], b_s, 0)
|
| 195 |
+
|
| 196 |
+
b_o += tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)
|
| 197 |
+
b_k2 = (tl.load(p_k2, boundary_check=(0, 1)) * b_beta[:, None]).to(b_v.dtype)
|
| 198 |
+
b_q -= tl.dot(b_s.to(b_v.dtype), b_k2, allow_tf32=False)
|
| 199 |
+
|
| 200 |
+
if OUTPUT_ATTENTIONS:
|
| 201 |
+
p_a = tl.make_block_ptr(attn + i_bh * T * T, (T, T), (T, 1), (i_t * BT, offset), (BT, BS), (1, 0))
|
| 202 |
+
tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1))
|
| 203 |
+
|
| 204 |
+
# Q block and K block have no overlap
|
| 205 |
+
# no need for mask, thereby saving flops
|
| 206 |
+
for offset in range(i_t * BT - BS, -BS, -BS):
|
| 207 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (0, offset), (BK, BS), (0, 1))
|
| 208 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (offset, 0), (BS, BV), (1, 0))
|
| 209 |
+
p_beta = tl.make_block_ptr(beta + i_bh * T, (T, ), (1, ), (offset, ), (BS, ), (0,))
|
| 210 |
+
p_k2 = tl.make_block_ptr(k2 + i_bh * T*K, (T, K), (K, 1), (offset, 0), (BS, BK), (1, 0))
|
| 211 |
+
|
| 212 |
+
# [BK, BS]
|
| 213 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 214 |
+
# [BS, BV]
|
| 215 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 216 |
+
# [BS]
|
| 217 |
+
b_beta = tl.load(p_beta, boundary_check=(0,))
|
| 218 |
+
# [BT, BS]
|
| 219 |
+
b_s = (tl.dot(b_q.to(b_k.dtype), b_k, allow_tf32=False))
|
| 220 |
+
# [BT, BV]
|
| 221 |
+
b_o += tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)
|
| 222 |
+
b_k2 = (tl.load(p_k2, boundary_check=(0, 1)) * b_beta[:, None]).to(b_v.dtype)
|
| 223 |
+
b_q -= tl.dot(b_s.to(b_v.dtype), b_k2, allow_tf32=False).to(b_q.dtype)
|
| 224 |
+
|
| 225 |
+
if OUTPUT_ATTENTIONS:
|
| 226 |
+
p_a = tl.make_block_ptr(attn + i_bh * T * T, (T, T), (T, 1), (i_t * BT, offset), (BT, BS), (1, 0))
|
| 227 |
+
tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1))
|
| 228 |
+
|
| 229 |
+
p_o_new = tl.make_block_ptr(o_new + i_bh * T*V, (T, V), (V, 1), (i_t*BT, 0), (BT, BV), (1, 0))
|
| 230 |
+
tl.store(p_o_new, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class ParallelDeltaRuleFunction(torch.autograd.Function):
|
| 234 |
+
|
| 235 |
+
@staticmethod
|
| 236 |
+
@input_guard
|
| 237 |
+
@autocast_custom_fwd
|
| 238 |
+
def forward(ctx, q, k, v, beta, scale, output_attentions):
|
| 239 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
| 240 |
+
assert q.shape[-1] <= 128, 'The maximum supported sequence length is 128.'
|
| 241 |
+
BT, BS = 128, 32
|
| 242 |
+
BK = triton.next_power_of_2(k.shape[-1])
|
| 243 |
+
BV = triton.next_power_of_2(v.shape[-1])
|
| 244 |
+
assert BT % BS == 0
|
| 245 |
+
|
| 246 |
+
A = fwd_prepare_T(k, beta, BS)
|
| 247 |
+
attn = q.new_zeros(B, H, T, T) if output_attentions else None
|
| 248 |
+
q_new, k_new, o, A_local = chunk_transform_qk_fwd(
|
| 249 |
+
q,
|
| 250 |
+
k,
|
| 251 |
+
v,
|
| 252 |
+
beta,
|
| 253 |
+
A,
|
| 254 |
+
scale,
|
| 255 |
+
BS,
|
| 256 |
+
output_attentions
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
num_stages = 3 if K <= 64 else 2
|
| 260 |
+
num_warps = 4
|
| 261 |
+
grid = (triton.cdiv(T, BT), B * H)
|
| 262 |
+
o_new = torch.empty_like(o)
|
| 263 |
+
|
| 264 |
+
parallel_delta_rule_fwd_kernel[grid](
|
| 265 |
+
q=q_new,
|
| 266 |
+
k=k_new,
|
| 267 |
+
k2=k,
|
| 268 |
+
v=v,
|
| 269 |
+
beta=beta,
|
| 270 |
+
o=o,
|
| 271 |
+
o_new=o_new,
|
| 272 |
+
attn=attn,
|
| 273 |
+
T=T,
|
| 274 |
+
K=K,
|
| 275 |
+
V=V,
|
| 276 |
+
BT=BT,
|
| 277 |
+
BS=BS,
|
| 278 |
+
BK=BK,
|
| 279 |
+
BV=BV,
|
| 280 |
+
num_stages=num_stages,
|
| 281 |
+
num_warps=num_warps
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
if output_attentions:
|
| 285 |
+
grid = (triton.cdiv(T, BS), B * H)
|
| 286 |
+
save_intra_chunk_attn[grid](
|
| 287 |
+
A=attn,
|
| 288 |
+
A_local=A_local,
|
| 289 |
+
T=T,
|
| 290 |
+
BT=BS
|
| 291 |
+
)
|
| 292 |
+
return o_new.to(q.dtype), attn
|
| 293 |
+
|
| 294 |
+
@staticmethod
|
| 295 |
+
@input_guard
|
| 296 |
+
@autocast_custom_bwd
|
| 297 |
+
def backward(ctx, do, d_attn=None):
|
| 298 |
+
raise NotImplementedError('Backward pass is not implemented. Stay tuned!')
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def parallel_delta_rule(
|
| 302 |
+
q: torch.Tensor,
|
| 303 |
+
k: torch.Tensor,
|
| 304 |
+
v: torch.Tensor,
|
| 305 |
+
beta: torch.Tensor,
|
| 306 |
+
scale: float = None,
|
| 307 |
+
output_attentions: bool = False,
|
| 308 |
+
head_first: bool = True
|
| 309 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 310 |
+
r"""
|
| 311 |
+
Args:
|
| 312 |
+
q (torch.Tensor):
|
| 313 |
+
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
| 314 |
+
k (torch.Tensor):
|
| 315 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
| 316 |
+
v (torch.Tensor):
|
| 317 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
| 318 |
+
beta (torch.Tensor):
|
| 319 |
+
betas of shape `[B, H, T]` if `head_first=True` else `[B, T, H]`.
|
| 320 |
+
scale (Optional[int]):
|
| 321 |
+
Scale factor for attention scores.
|
| 322 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
| 323 |
+
output_attentions (bool):
|
| 324 |
+
Whether to output the materialized attention scores of shape [B, H, T, T]. Default: `False`.
|
| 325 |
+
head_first (Optional[bool]):
|
| 326 |
+
Whether the inputs are in the head-first format.
|
| 327 |
+
Default: `True`.
|
| 328 |
+
|
| 329 |
+
Returns:
|
| 330 |
+
o (torch.Tensor):
|
| 331 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
| 332 |
+
attn (torch.Tensor):
|
| 333 |
+
Attention scores of shape `[B, H, T, T]` if `output_attentions=True` else `None`.
|
| 334 |
+
"""
|
| 335 |
+
if not head_first:
|
| 336 |
+
q, k, v, beta = map(lambda x: x.transpose(1, 2), (q, k, v, beta))
|
| 337 |
+
o, attn = ParallelDeltaRuleFunction.apply(q, k, v, beta, scale, output_attentions)
|
| 338 |
+
if not head_first:
|
| 339 |
+
o = o.transpose(1, 2)
|
| 340 |
+
return o, attn
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def naive_delta_rule_parallel(q, k, v, beta, BM=128, BN=32):
|
| 344 |
+
b, h, l, d_k = q.shape
|
| 345 |
+
q = q * (d_k ** -0.5)
|
| 346 |
+
v = v * beta[..., None]
|
| 347 |
+
k_beta = k * beta[..., None]
|
| 348 |
+
# compute (I - tri(diag(beta) KK^T))^{-1}
|
| 349 |
+
q, k, v, k_beta = map(lambda x: rearrange(x, 'b h (n c) d -> b h n c d', c=BN), [q, k, v, k_beta])
|
| 350 |
+
mask = torch.triu(torch.ones(BN, BN, dtype=torch.bool, device=q.device), diagonal=0)
|
| 351 |
+
T = -(k_beta @ k.transpose(-1, -2)).masked_fill(mask, 0)
|
| 352 |
+
for i in range(1, BN):
|
| 353 |
+
T[..., i, :i] = T[..., i, :i].clone() + (T[..., i, :, None].clone() * T[..., :, :i].clone()).sum(-2)
|
| 354 |
+
T = T + torch.eye(BN, dtype=q.dtype, device=q.device)
|
| 355 |
+
|
| 356 |
+
mask2 = torch.triu(torch.ones(BN, BN, dtype=torch.bool, device=q.device), diagonal=1)
|
| 357 |
+
A_local = (q @ k.transpose(-1, -2)).masked_fill(mask2, 0) @ T
|
| 358 |
+
o_intra = A_local @ v
|
| 359 |
+
|
| 360 |
+
# apply cumprod transition matrices on k to the last position within the chunk
|
| 361 |
+
k = k - ((k @ k.transpose(-1, -2)).masked_fill(mask, 0) @ T).transpose(-1, -2) @ k_beta
|
| 362 |
+
# apply cumprod transition matrices on q to the first position within the chunk
|
| 363 |
+
q = q - A_local @ k_beta
|
| 364 |
+
o_intra = A_local @ v
|
| 365 |
+
|
| 366 |
+
A = torch.zeros(b, h, l, l, device=q.device)
|
| 367 |
+
|
| 368 |
+
q, k, v, k_beta, o_intra = map(lambda x: rearrange(x, 'b h n c d -> b h (n c) d'), [q, k, v, k_beta, o_intra])
|
| 369 |
+
o = torch.empty_like(v)
|
| 370 |
+
for i in range(0, l, BM):
|
| 371 |
+
q_i = q[:, :, i:i+BM]
|
| 372 |
+
o_i = o_intra[:, :, i:i+BM]
|
| 373 |
+
# intra block
|
| 374 |
+
for j in range(i + BM - 2 * BN, i-BN, -BN):
|
| 375 |
+
k_j = k[:, :, j:j+BN]
|
| 376 |
+
A_ij = q_i @ k_j.transpose(-1, -2)
|
| 377 |
+
mask = torch.arange(i, i+BM) >= (j + BN)
|
| 378 |
+
A_ij = A_ij.masked_fill_(~mask[:, None].to(A_ij.device), 0)
|
| 379 |
+
A[:, :, i:i+BM, j:j+BN] = A_ij
|
| 380 |
+
q_i = q_i - A_ij @ k_beta[:, :, j:j+BN]
|
| 381 |
+
o_i += A_ij @ v[:, :, j:j+BN]
|
| 382 |
+
# inter block
|
| 383 |
+
for j in range(i - BN, -BN, -BN):
|
| 384 |
+
k_j = k[:, :, j:j+BN]
|
| 385 |
+
A_ij = q_i @ k_j.transpose(-1, -2)
|
| 386 |
+
A[:, :, i:i+BM, j:j+BN] = A_ij
|
| 387 |
+
q_i = q_i - A_ij @ k_beta[:, :, j:j+BN]
|
| 388 |
+
o_i += A_ij @ v[:, :, j:j+BN]
|
| 389 |
+
o[:, :, i:i+BM] = o_i
|
| 390 |
+
|
| 391 |
+
for i in range(0, l//BN):
|
| 392 |
+
A[:, :, i*BN:i*BN+BN, i*BN:i*BN+BN] = A_local[:, :, i]
|
| 393 |
+
|
| 394 |
+
return o, A
|
fla/ops/gated_delta_rule/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .chunk import chunk_gated_delta_rule
|
| 2 |
+
from .fused_recurrent import fused_recurrent_gated_delta_rule
|
| 3 |
+
|
| 4 |
+
__all__ = [
|
| 5 |
+
"chunk_gated_delta_rule",
|
| 6 |
+
"fused_recurrent_gated_delta_rule"
|
| 7 |
+
]
|
fla/ops/gated_delta_rule/__pycache__/chunk.cpython-312.pyc
ADDED
|
Binary file (14.4 kB). View file
|
|
|
fla/ops/gated_delta_rule/__pycache__/fused_recurrent.cpython-312.pyc
ADDED
|
Binary file (15.1 kB). View file
|
|
|
fla/ops/generalized_delta_rule/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .dplr import chunk_dplr_delta_rule, fused_recurrent_dplr_delta_rule
|
| 2 |
+
from .iplr import chunk_iplr_delta_rule, fused_recurrent_iplr_delta_rule
|
| 3 |
+
|
| 4 |
+
__all__ = [
|
| 5 |
+
'chunk_dplr_delta_rule',
|
| 6 |
+
'fused_recurrent_dplr_delta_rule',
|
| 7 |
+
'chunk_iplr_delta_rule',
|
| 8 |
+
'fused_recurrent_iplr_delta_rule'
|
| 9 |
+
]
|
fla/ops/generalized_delta_rule/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (389 Bytes). View file
|
|
|
fla/ops/generalized_delta_rule/dplr/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .chunk import chunk_dplr_delta_rule
|
| 2 |
+
from .fused_recurrent import fused_recurrent_dplr_delta_rule
|
| 3 |
+
|
| 4 |
+
__all__ = [
|
| 5 |
+
'chunk_dplr_delta_rule',
|
| 6 |
+
'fused_recurrent_dplr_delta_rule'
|
| 7 |
+
]
|
fla/ops/generalized_delta_rule/dplr/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (328 Bytes). View file
|
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_A_bwd.cpython-312.pyc
ADDED
|
Binary file (30.6 kB). View file
|
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_h_bwd.cpython-312.pyc
ADDED
|
Binary file (12.2 kB). View file
|
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/wy_fast_fwd.cpython-312.pyc
ADDED
|
Binary file (21.3 kB). View file
|
|
|
fla/ops/generalized_delta_rule/dplr/chunk_A_bwd.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.utils.op import exp, gather
|
| 11 |
+
from fla.utils import check_shared_mem, is_gather_supported, use_cuda_graph
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@triton.heuristics({
|
| 15 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 16 |
+
})
|
| 17 |
+
@triton.autotune(
|
| 18 |
+
configs=[
|
| 19 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 20 |
+
for num_warps in [2, 4, 8, 16, 32]
|
| 21 |
+
for num_stages in [2, 3, 4]
|
| 22 |
+
],
|
| 23 |
+
key=['BK', 'NC', 'BT', 'K'],
|
| 24 |
+
use_cuda_graph=use_cuda_graph,
|
| 25 |
+
)
|
| 26 |
+
@triton.jit(do_not_specialize=['T'])
|
| 27 |
+
def chunk_dplr_bwd_kernel_intra(
|
| 28 |
+
q,
|
| 29 |
+
k,
|
| 30 |
+
a,
|
| 31 |
+
b,
|
| 32 |
+
gi,
|
| 33 |
+
ge,
|
| 34 |
+
dAqk,
|
| 35 |
+
dAqb,
|
| 36 |
+
dAak,
|
| 37 |
+
dAab,
|
| 38 |
+
dq,
|
| 39 |
+
dk,
|
| 40 |
+
da,
|
| 41 |
+
db,
|
| 42 |
+
dqg,
|
| 43 |
+
dkg,
|
| 44 |
+
dag,
|
| 45 |
+
dbg,
|
| 46 |
+
dgk,
|
| 47 |
+
dgk_offset,
|
| 48 |
+
offsets,
|
| 49 |
+
indices,
|
| 50 |
+
scale: tl.constexpr,
|
| 51 |
+
T,
|
| 52 |
+
H: tl.constexpr,
|
| 53 |
+
K: tl.constexpr,
|
| 54 |
+
BT: tl.constexpr,
|
| 55 |
+
BC: tl.constexpr,
|
| 56 |
+
BK: tl.constexpr,
|
| 57 |
+
NC: tl.constexpr,
|
| 58 |
+
USE_OFFSETS: tl.constexpr,
|
| 59 |
+
HEAD_FIRST: tl.constexpr,
|
| 60 |
+
GATHER_SUPPORTED: tl.constexpr
|
| 61 |
+
):
|
| 62 |
+
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 63 |
+
i_b, i_h = i_bh // H, i_bh % H
|
| 64 |
+
i_t, i_i = i_c // NC, i_c % NC
|
| 65 |
+
if USE_OFFSETS:
|
| 66 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 67 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 68 |
+
else:
|
| 69 |
+
bos, eos = i_b * T, i_b * T + T
|
| 70 |
+
T = eos - bos
|
| 71 |
+
if i_t * BT + i_i * BC >= T:
|
| 72 |
+
return
|
| 73 |
+
|
| 74 |
+
# offset calculation
|
| 75 |
+
ge += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 76 |
+
gi += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 77 |
+
q += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 78 |
+
a += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 79 |
+
b += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 80 |
+
k += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 81 |
+
dq += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 82 |
+
dk += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 83 |
+
da += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 84 |
+
db += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 85 |
+
dqg += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 86 |
+
dag += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 87 |
+
dkg += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 88 |
+
dbg += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 89 |
+
dgk += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 90 |
+
dgk_offset += i_bh * T * K if HEAD_FIRST else (bos*H + i_h) * K
|
| 91 |
+
dAqk += i_bh * T * BT if HEAD_FIRST else (bos*H + i_h) * BT
|
| 92 |
+
dAqb += i_bh * T * BT if HEAD_FIRST else (bos*H + i_h) * BT
|
| 93 |
+
dAak += i_bh * T * BT if HEAD_FIRST else (bos*H + i_h) * BT
|
| 94 |
+
dAab += i_bh * T * BT if HEAD_FIRST else (bos*H + i_h) * BT
|
| 95 |
+
|
| 96 |
+
stride_qk = K if HEAD_FIRST else H*K
|
| 97 |
+
stride_A = BT if HEAD_FIRST else H*BT
|
| 98 |
+
|
| 99 |
+
p_ge = tl.make_block_ptr(ge, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 100 |
+
p_gi = tl.make_block_ptr(gi, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 101 |
+
# [BC, BK]
|
| 102 |
+
b_ge = tl.load(p_ge, boundary_check=(0, 1))
|
| 103 |
+
b_gi = tl.load(p_gi, boundary_check=(0, 1))
|
| 104 |
+
b_dq = tl.zeros([BC, BK], dtype=tl.float32)
|
| 105 |
+
b_da = tl.zeros([BC, BK], dtype=tl.float32)
|
| 106 |
+
b_dk = tl.zeros([BC, BK], dtype=tl.float32)
|
| 107 |
+
b_db = tl.zeros([BC, BK], dtype=tl.float32)
|
| 108 |
+
# intra chunk gradient calculation
|
| 109 |
+
p_dAqk = tl.make_block_ptr(dAqk, (T, BT), (stride_A, 1), (i_t*BT + i_i*BC, i_i*BC), (BC, BC), (1, 0))
|
| 110 |
+
p_dAab = tl.make_block_ptr(dAab, (T, BT), (stride_A, 1), (i_t*BT + i_i*BC, i_i*BC), (BC, BC), (1, 0))
|
| 111 |
+
p_dAqb = tl.make_block_ptr(dAqb, (T, BT), (stride_A, 1), (i_t*BT + i_i*BC, i_i*BC), (BC, BC), (1, 0))
|
| 112 |
+
p_dAak = tl.make_block_ptr(dAak, (T, BT), (stride_A, 1), (i_t*BT + i_i*BC, i_i*BC), (BC, BC), (1, 0))
|
| 113 |
+
o_i = tl.arange(0, BC)
|
| 114 |
+
p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_t*BT + i_i*BC, i_k*BK), (BC, BK), (1, 0))
|
| 115 |
+
p_b = tl.make_block_ptr(b, (T, K), (stride_qk, 1), (i_t*BT + i_i*BC, i_k*BK), (BC, BK), (1, 0))
|
| 116 |
+
p_a = tl.make_block_ptr(a, (T, K), (stride_qk, 1), (i_t*BT + i_i*BC, i_k*BK), (BC, BK), (1, 0))
|
| 117 |
+
p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_t*BT + i_i*BC, i_k*BK), (BC, BK), (1, 0))
|
| 118 |
+
b_k = tl.load(p_k, boundary_check=(0, 1)).to(tl.float32)
|
| 119 |
+
b_b = tl.load(p_b, boundary_check=(0, 1)).to(tl.float32)
|
| 120 |
+
b_q = tl.load(p_q, boundary_check=(0, 1)).to(tl.float32)
|
| 121 |
+
b_a = tl.load(p_a, boundary_check=(0, 1)).to(tl.float32)
|
| 122 |
+
b_dAqk = tl.load(p_dAqk, boundary_check=(0, 1)).to(tl.float32)
|
| 123 |
+
b_dAab = tl.load(p_dAab, boundary_check=(0, 1)).to(tl.float32)
|
| 124 |
+
b_dAqb = tl.load(p_dAqb, boundary_check=(0, 1)).to(tl.float32)
|
| 125 |
+
b_dAak = tl.load(p_dAak, boundary_check=(0, 1)).to(tl.float32)
|
| 126 |
+
|
| 127 |
+
# inter chunk gradient calculation
|
| 128 |
+
o_k = i_k * BK + tl.arange(0, BK)
|
| 129 |
+
m_k = o_k < K
|
| 130 |
+
if i_i > 0:
|
| 131 |
+
p_gn = gi + (i_t * BT + i_i * BC - 1) * stride_qk + o_k
|
| 132 |
+
p_gn = tl.max_contiguous(tl.multiple_of(p_gn, BK), BK)
|
| 133 |
+
# [BK,]
|
| 134 |
+
b_gn = tl.load(p_gn, mask=m_k, other=0)
|
| 135 |
+
# [BK,]
|
| 136 |
+
for i_j in range(0, i_i):
|
| 137 |
+
p_kj = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
| 138 |
+
p_bj = tl.make_block_ptr(b, (T, K), (stride_qk, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
| 139 |
+
p_gkj = tl.make_block_ptr(gi, (T, K), (stride_qk, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
| 140 |
+
p_dAqikj = tl.make_block_ptr(dAqk, (T, BT), (stride_A, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 141 |
+
p_dAaibj = tl.make_block_ptr(dAab, (T, BT), (stride_A, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 142 |
+
p_dAqibj = tl.make_block_ptr(dAqb, (T, BT), (stride_A, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 143 |
+
p_dAaikj = tl.make_block_ptr(dAak, (T, BT), (stride_A, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 144 |
+
# [BC, BK]
|
| 145 |
+
b_kj = tl.load(p_kj, boundary_check=(0, 1))
|
| 146 |
+
b_bj = tl.load(p_bj, boundary_check=(0, 1))
|
| 147 |
+
b_gkj = tl.load(p_gkj, boundary_check=(0, 1))
|
| 148 |
+
tmp = exp(b_gn[None, :] - b_gkj)
|
| 149 |
+
b_kjg = b_kj * tmp
|
| 150 |
+
b_bjg = b_bj * tmp
|
| 151 |
+
# [BC, BC]
|
| 152 |
+
b_dAqikj = tl.load(p_dAqikj, boundary_check=(0, 1))
|
| 153 |
+
b_dAaibj = tl.load(p_dAaibj, boundary_check=(0, 1))
|
| 154 |
+
b_dAqibj = tl.load(p_dAqibj, boundary_check=(0, 1))
|
| 155 |
+
b_dAaikj = tl.load(p_dAaikj, boundary_check=(0, 1))
|
| 156 |
+
# [BC, BK]
|
| 157 |
+
b_dq += tl.dot(b_dAqikj, b_kjg)
|
| 158 |
+
b_dq += tl.dot(b_dAqibj, b_bjg)
|
| 159 |
+
# [BC, BC]
|
| 160 |
+
b_da += tl.dot(b_dAaibj, b_bjg)
|
| 161 |
+
b_da += tl.dot(b_dAaikj, b_kjg)
|
| 162 |
+
b_dq *= exp(b_gi - b_gn[None, :])
|
| 163 |
+
b_da *= exp(b_ge - b_gn[None, :])
|
| 164 |
+
|
| 165 |
+
NC = min(NC, tl.cdiv(T - i_t * BT, BC))
|
| 166 |
+
if i_i < NC - 1:
|
| 167 |
+
p_gn = gi + (min(i_t * BT + i_i * BC + BC, T) - 1)*stride_qk + o_k
|
| 168 |
+
p_gn = tl.max_contiguous(tl.multiple_of(p_gn, BK), BK)
|
| 169 |
+
# [BK,]
|
| 170 |
+
b_gn = tl.load(p_gn, mask=m_k, other=0)
|
| 171 |
+
for i_j in range(i_i + 1, NC):
|
| 172 |
+
m_j = (i_t * BT + i_j * BC + tl.arange(0, BC)) < T
|
| 173 |
+
p_qj = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
| 174 |
+
p_aj = tl.make_block_ptr(a, (T, K), (stride_qk, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
| 175 |
+
p_gij = tl.make_block_ptr(gi, (T, K), (stride_qk, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
| 176 |
+
p_gej = tl.make_block_ptr(ge, (T, K), (stride_qk, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
| 177 |
+
p_dAqjki = tl.make_block_ptr(dAqk, (BT, T), (1, stride_A), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1))
|
| 178 |
+
p_dAajbi = tl.make_block_ptr(dAab, (BT, T), (1, stride_A), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1))
|
| 179 |
+
p_dAqjbi = tl.make_block_ptr(dAqb, (BT, T), (1, stride_A), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1))
|
| 180 |
+
p_dAajki = tl.make_block_ptr(dAak, (BT, T), (1, stride_A), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1))
|
| 181 |
+
b_qj = tl.load(p_qj, boundary_check=(0, 1))
|
| 182 |
+
b_aj = tl.load(p_aj, boundary_check=(0, 1))
|
| 183 |
+
b_gij = tl.load(p_gij, boundary_check=(0, 1))
|
| 184 |
+
b_gej = tl.load(p_gej, boundary_check=(0, 1))
|
| 185 |
+
b_gij = tl.where(m_j[:, None] & m_k, b_gij, float('-inf'))
|
| 186 |
+
b_gej = tl.where(m_j[:, None] & m_k, b_gej, float('-inf'))
|
| 187 |
+
b_qjg = b_qj * exp(b_gij - b_gn[None, :])
|
| 188 |
+
b_ajg = b_aj * exp(b_gej - b_gn[None, :])
|
| 189 |
+
# [BC, BC]
|
| 190 |
+
b_dAqjki = tl.load(p_dAqjki, boundary_check=(0, 1))
|
| 191 |
+
b_dAajbi = tl.load(p_dAajbi, boundary_check=(0, 1))
|
| 192 |
+
b_dAqjbi = tl.load(p_dAqjbi, boundary_check=(0, 1))
|
| 193 |
+
b_dAajki = tl.load(p_dAajki, boundary_check=(0, 1))
|
| 194 |
+
b_dk += tl.dot(b_dAqjki, b_qjg)
|
| 195 |
+
b_dk += tl.dot(b_dAajki, b_ajg)
|
| 196 |
+
b_db += tl.dot(b_dAqjbi, b_qjg)
|
| 197 |
+
b_db += tl.dot(b_dAajbi, b_ajg)
|
| 198 |
+
tmp = exp(b_gn[None, :] - b_gi)
|
| 199 |
+
b_dk *= tmp
|
| 200 |
+
b_db *= tmp
|
| 201 |
+
|
| 202 |
+
# intra chunk gradient calculation
|
| 203 |
+
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
|
| 204 |
+
# trick to index the block
|
| 205 |
+
if GATHER_SUPPORTED:
|
| 206 |
+
row_idx = tl.full([1, BK], j, dtype=tl.int16)
|
| 207 |
+
col_idx = tl.full([BC, 1], j, dtype=tl.int16)
|
| 208 |
+
row_idx_bc = tl.full([1, BC], j, dtype=tl.int16)
|
| 209 |
+
# [1, BK]
|
| 210 |
+
b_kj = gather(b_k, row_idx, axis=0)
|
| 211 |
+
b_bj = gather(b_b, row_idx, axis=0)
|
| 212 |
+
b_gij = gather(b_gi, row_idx, axis=0)
|
| 213 |
+
b_gej = gather(b_ge, row_idx, axis=0)
|
| 214 |
+
b_qj = gather(b_q, row_idx, axis=0)
|
| 215 |
+
b_aj = gather(b_a, row_idx, axis=0)
|
| 216 |
+
# [BC, 1]
|
| 217 |
+
b_dAqk_j = gather(b_dAqk, col_idx, axis=1)
|
| 218 |
+
b_dAab_j = gather(b_dAab, col_idx, axis=1)
|
| 219 |
+
b_dAqb_j = gather(b_dAqb, col_idx, axis=1)
|
| 220 |
+
b_dAak_j = gather(b_dAak, col_idx, axis=1)
|
| 221 |
+
# [1, BC] -> [BC, 1]
|
| 222 |
+
b_dA_qk_j = tl.sum(gather(b_dAqk, row_idx_bc, axis=0), 0)[:, None]
|
| 223 |
+
b_dA_qk_j = tl.sum(gather(b_dAqk, row_idx_bc, axis=0), 0)[:, None]
|
| 224 |
+
b_dA_ab_j = tl.sum(gather(b_dAab, row_idx_bc, axis=0), 0)[:, None]
|
| 225 |
+
b_dA_qb_j = tl.sum(gather(b_dAqb, row_idx_bc, axis=0), 0)[:, None]
|
| 226 |
+
b_dA_ak_j = tl.sum(gather(b_dAak, row_idx_bc, axis=0), 0)[:, None]
|
| 227 |
+
else:
|
| 228 |
+
mask_idx = tl.arange(0, BC) == j
|
| 229 |
+
b_kj = tl.sum(tl.where(mask_idx[:, None], b_k, 0), 0)[None, :]
|
| 230 |
+
b_bj = tl.sum(tl.where(mask_idx[:, None], b_b, 0), 0)[None, :]
|
| 231 |
+
b_gij = tl.sum(tl.where(mask_idx[:, None], b_gi, 0), 0)[None, :]
|
| 232 |
+
b_gej = tl.sum(tl.where(mask_idx[:, None], b_ge, 0), 0)[None, :]
|
| 233 |
+
b_dAqk_j = tl.sum(tl.where(mask_idx[None, :], b_dAqk, 0), 1)[:, None]
|
| 234 |
+
b_dAab_j = tl.sum(tl.where(mask_idx[None, :], b_dAab, 0), 1)[:, None]
|
| 235 |
+
b_dAqb_j = tl.sum(tl.where(mask_idx[None, :], b_dAqb, 0), 1)[:, None]
|
| 236 |
+
b_dAak_j = tl.sum(tl.where(mask_idx[None, :], b_dAak, 0), 1)[:, None]
|
| 237 |
+
b_dA_qk_j = tl.sum(tl.where(mask_idx[:, None], b_dAqk, 0), 0)[:, None]
|
| 238 |
+
b_dA_ab_j = tl.sum(tl.where(mask_idx[:, None], b_dAab, 0), 0)[:, None]
|
| 239 |
+
b_dA_qb_j = tl.sum(tl.where(mask_idx[:, None], b_dAqb, 0), 0)[:, None]
|
| 240 |
+
b_dA_ak_j = tl.sum(tl.where(mask_idx[:, None], b_dAak, 0), 0)[:, None]
|
| 241 |
+
# [1, BK] b_qj, b_aj
|
| 242 |
+
b_qj = tl.sum(tl.where(mask_idx[:, None], b_q, 0), 0)[None, :]
|
| 243 |
+
b_aj = tl.sum(tl.where(mask_idx[:, None], b_a, 0), 0)[None, :]
|
| 244 |
+
# tl.static_print(b_kj)
|
| 245 |
+
m_e = o_i[:, None] > j
|
| 246 |
+
m_i = o_i[:, None] >= j
|
| 247 |
+
tmp1 = exp(b_gi - b_gij)
|
| 248 |
+
tmp2 = exp(b_ge - b_gij)
|
| 249 |
+
b_dq += tl.where(m_i, b_dAqk_j * b_kj * tmp1, 0.)
|
| 250 |
+
b_dq += tl.where(m_i, b_dAqb_j * b_bj * tmp1, 0.)
|
| 251 |
+
b_da += tl.where(m_e, b_dAab_j * b_bj * tmp2, 0.)
|
| 252 |
+
b_da += tl.where(m_e, b_dAak_j * b_kj * tmp2, 0.)
|
| 253 |
+
|
| 254 |
+
m_i = o_i[:, None] <= j
|
| 255 |
+
m_e = o_i[:, None] < j
|
| 256 |
+
tmp1 = exp(b_gij - b_gi)
|
| 257 |
+
tmp2 = exp(b_gej - b_gi)
|
| 258 |
+
b_dk += tl.where(m_i, b_dA_qk_j * b_qj * tmp1, 0.)
|
| 259 |
+
b_dk += tl.where(m_e, b_dA_ak_j * b_aj * tmp2, 0.)
|
| 260 |
+
b_db += tl.where(m_i, b_dA_qb_j * b_qj * tmp1, 0.)
|
| 261 |
+
b_db += tl.where(m_e, b_dA_ab_j * b_aj * tmp2, 0.)
|
| 262 |
+
# post processing
|
| 263 |
+
p_dq = tl.make_block_ptr(dq, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 264 |
+
p_dk = tl.make_block_ptr(dk, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 265 |
+
p_da = tl.make_block_ptr(da, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 266 |
+
p_db = tl.make_block_ptr(db, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 267 |
+
p_dgk = tl.make_block_ptr(dgk, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 268 |
+
p_dgk_offset = tl.make_block_ptr(dgk_offset, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 269 |
+
p_dqg = tl.make_block_ptr(dqg, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 270 |
+
p_dkg = tl.make_block_ptr(dkg, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 271 |
+
p_dag = tl.make_block_ptr(dag, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 272 |
+
p_dbg = tl.make_block_ptr(dbg, (T, K), (stride_qk, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 273 |
+
p_gn = gi + (min(i_t * BT + BT, T) - 1)*stride_qk + o_k
|
| 274 |
+
p_gn = tl.max_contiguous(tl.multiple_of(p_gn, BK), BK)
|
| 275 |
+
b_gn = tl.load(p_gn, mask=m_k, other=0)
|
| 276 |
+
b_da += tl.load(p_dag, boundary_check=(0, 1)) * exp(b_ge)
|
| 277 |
+
b_dq += tl.load(p_dqg, boundary_check=(0, 1)) * exp(b_gi) * scale
|
| 278 |
+
tmp = exp(b_gn[None, :] - b_gi)
|
| 279 |
+
b_dk += tl.load(p_dkg, boundary_check=(0, 1)) * tmp
|
| 280 |
+
b_db += tl.load(p_dbg, boundary_check=(0, 1)) * tmp
|
| 281 |
+
tl.store(p_dq, (b_dq).to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
| 282 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
| 283 |
+
tl.store(p_da, b_da.to(p_da.dtype.element_ty), boundary_check=(0, 1))
|
| 284 |
+
tl.store(p_db, b_db.to(p_db.dtype.element_ty), boundary_check=(0, 1))
|
| 285 |
+
b_dgk = b_dq * b_q + b_da * b_a - b_dk * b_k - b_db * b_b
|
| 286 |
+
b_dgk_offset = b_da * b_a
|
| 287 |
+
tl.store(p_dgk, b_dgk.to(p_dgk.dtype.element_ty), boundary_check=(0, 1))
|
| 288 |
+
tl.store(p_dgk_offset, b_dgk_offset.to(p_dgk_offset.dtype.element_ty), boundary_check=(0, 1))
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
@triton.heuristics({
|
| 292 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
| 293 |
+
})
|
| 294 |
+
@triton.autotune(
|
| 295 |
+
configs=[
|
| 296 |
+
triton.Config({'BK': BK}, num_warps=num_warps, num_stages=num_stages)
|
| 297 |
+
for num_warps in [2, 4, 8, 16, 32]
|
| 298 |
+
for num_stages in [2, 3, 4]
|
| 299 |
+
for BK in [32, 64]
|
| 300 |
+
],
|
| 301 |
+
key=['BK', 'BT', 'K'],
|
| 302 |
+
use_cuda_graph=use_cuda_graph,
|
| 303 |
+
)
|
| 304 |
+
@triton.jit(do_not_specialize=['T'])
|
| 305 |
+
def chunk_dplr_bwd_dgk_kernel(
|
| 306 |
+
dgk,
|
| 307 |
+
dgk_offset,
|
| 308 |
+
dgk_last,
|
| 309 |
+
dgk_output,
|
| 310 |
+
offsets,
|
| 311 |
+
indices,
|
| 312 |
+
T,
|
| 313 |
+
H: tl.constexpr,
|
| 314 |
+
K: tl.constexpr,
|
| 315 |
+
BT: tl.constexpr,
|
| 316 |
+
BK: tl.constexpr,
|
| 317 |
+
USE_OFFSETS: tl.constexpr,
|
| 318 |
+
HEAD_FIRST: tl.constexpr,
|
| 319 |
+
):
|
| 320 |
+
i_t, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 321 |
+
i_b, i_h = i_bh // H, i_bh % H
|
| 322 |
+
if USE_OFFSETS:
|
| 323 |
+
i_tg = i_t
|
| 324 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 325 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 326 |
+
T = eos - bos
|
| 327 |
+
NT = tl.cdiv(T, BT)
|
| 328 |
+
else:
|
| 329 |
+
NT = tl.cdiv(T, BT)
|
| 330 |
+
i_tg = i_b * NT + i_t
|
| 331 |
+
bos, eos = i_b * T, i_b * T + T
|
| 332 |
+
T = eos - bos
|
| 333 |
+
stride_qk = K if HEAD_FIRST else H * K
|
| 334 |
+
dgk += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
| 335 |
+
dgk_offset += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
| 336 |
+
dgk_last += ((i_bh * NT + i_t) * K) if HEAD_FIRST else (i_tg * H + i_h) * K
|
| 337 |
+
dgk_output += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
| 338 |
+
p_dgk_last = dgk_last + tl.arange(0, BK) + i_k * BK
|
| 339 |
+
m_k = tl.arange(0, BK) + i_k * BK < K
|
| 340 |
+
b_dgk_last = tl.load(p_dgk_last, mask=m_k, other=0)
|
| 341 |
+
p_dgk_offset = tl.make_block_ptr(dgk_offset, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 342 |
+
p_dgk = tl.make_block_ptr(dgk, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 343 |
+
b_dgk = tl.load(p_dgk, boundary_check=(0, 1))
|
| 344 |
+
b_dgk_offset = tl.load(p_dgk_offset, boundary_check=(0, 1))
|
| 345 |
+
# m_inv_cumsum = (tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :]).to(tl.float32)
|
| 346 |
+
# b_dgk_cumsum = tl.dot(m_inv_cumsum, b_dgk, allow_tf32=False)
|
| 347 |
+
b_dgk_cumsum = tl.cumsum(b_dgk, 0, reverse=True)
|
| 348 |
+
b_dgk_cumsum += b_dgk_last[None, :]
|
| 349 |
+
b_dgk_cumsum -= b_dgk_offset
|
| 350 |
+
p_dgk_output = tl.make_block_ptr(dgk_output, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 351 |
+
tl.store(p_dgk_output, b_dgk_cumsum.to(p_dgk_output.dtype.element_ty), boundary_check=(0, 1))
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def chunk_dplr_bwd_dqk_intra(
|
| 355 |
+
q: torch.Tensor,
|
| 356 |
+
k: torch.Tensor,
|
| 357 |
+
a: torch.Tensor,
|
| 358 |
+
b: torch.Tensor,
|
| 359 |
+
gi: torch.Tensor,
|
| 360 |
+
ge: torch.Tensor,
|
| 361 |
+
dAqk: torch.Tensor,
|
| 362 |
+
dAqb: torch.Tensor,
|
| 363 |
+
dAak: torch.Tensor,
|
| 364 |
+
dAab: torch.Tensor,
|
| 365 |
+
dqg: torch.Tensor,
|
| 366 |
+
dkg: torch.Tensor,
|
| 367 |
+
dag: torch.Tensor,
|
| 368 |
+
dbg: torch.Tensor,
|
| 369 |
+
dgk_last: torch.Tensor,
|
| 370 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 371 |
+
indices: Optional[torch.LongTensor] = None,
|
| 372 |
+
head_first: bool = True,
|
| 373 |
+
scale: float = 1.0,
|
| 374 |
+
chunk_size: int = 64,
|
| 375 |
+
):
|
| 376 |
+
if head_first:
|
| 377 |
+
B, H, T, K = q.shape
|
| 378 |
+
else:
|
| 379 |
+
B, T, H, K = q.shape
|
| 380 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
| 381 |
+
BC = min(16, BT)
|
| 382 |
+
BK = min(64, triton.next_power_of_2(K)) if check_shared_mem() else min(32, triton.next_power_of_2(K))
|
| 383 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
| 384 |
+
NC = triton.cdiv(BT, BC)
|
| 385 |
+
NK = triton.cdiv(K, BK)
|
| 386 |
+
|
| 387 |
+
dq = torch.empty_like(q)
|
| 388 |
+
dk = torch.empty_like(k)
|
| 389 |
+
da = torch.empty_like(a)
|
| 390 |
+
db = torch.empty_like(b)
|
| 391 |
+
dgk = torch.empty_like(gi, dtype=torch.float)
|
| 392 |
+
dgk_offset = torch.empty_like(gi, dtype=torch.float)
|
| 393 |
+
|
| 394 |
+
grid = (NK, NT * NC, B * H)
|
| 395 |
+
chunk_dplr_bwd_kernel_intra[grid](
|
| 396 |
+
q=q,
|
| 397 |
+
k=k,
|
| 398 |
+
a=a,
|
| 399 |
+
b=b,
|
| 400 |
+
gi=gi,
|
| 401 |
+
ge=ge,
|
| 402 |
+
dAqk=dAqk,
|
| 403 |
+
dAqb=dAqb,
|
| 404 |
+
dAak=dAak,
|
| 405 |
+
dAab=dAab,
|
| 406 |
+
dq=dq,
|
| 407 |
+
dk=dk,
|
| 408 |
+
dgk=dgk,
|
| 409 |
+
dgk_offset=dgk_offset,
|
| 410 |
+
dqg=dqg,
|
| 411 |
+
dkg=dkg,
|
| 412 |
+
dag=dag,
|
| 413 |
+
dbg=dbg,
|
| 414 |
+
da=da,
|
| 415 |
+
db=db,
|
| 416 |
+
offsets=offsets,
|
| 417 |
+
indices=indices,
|
| 418 |
+
scale=scale,
|
| 419 |
+
T=T,
|
| 420 |
+
H=H,
|
| 421 |
+
K=K,
|
| 422 |
+
BT=BT,
|
| 423 |
+
BC=BC,
|
| 424 |
+
BK=BK,
|
| 425 |
+
NC=NC,
|
| 426 |
+
HEAD_FIRST=head_first,
|
| 427 |
+
GATHER_SUPPORTED=is_gather_supported
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
def grid2(meta): return (NT, triton.cdiv(K, meta['BK']), B * H)
|
| 431 |
+
dgk_output = torch.empty_like(dgk)
|
| 432 |
+
|
| 433 |
+
chunk_dplr_bwd_dgk_kernel[grid2](
|
| 434 |
+
dgk=dgk,
|
| 435 |
+
dgk_offset=dgk_offset,
|
| 436 |
+
dgk_last=dgk_last,
|
| 437 |
+
dgk_output=dgk_output,
|
| 438 |
+
offsets=offsets,
|
| 439 |
+
indices=indices,
|
| 440 |
+
T=T,
|
| 441 |
+
H=H,
|
| 442 |
+
K=K,
|
| 443 |
+
BT=BT,
|
| 444 |
+
HEAD_FIRST=head_first
|
| 445 |
+
)
|
| 446 |
+
return dq, dk, da, db, dgk_output
|
fla/ops/generalized_delta_rule/dplr/chunk_A_fwd.py
ADDED
|
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.utils.op import exp, gather
|
| 11 |
+
from fla.utils import is_gather_supported, use_cuda_graph
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@triton.heuristics({
|
| 15 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 16 |
+
})
|
| 17 |
+
@triton.autotune(
|
| 18 |
+
configs=[
|
| 19 |
+
triton.Config({'BK': BK}, num_warps=num_warps, num_stages=num_stages)
|
| 20 |
+
for BK in [32, 64]
|
| 21 |
+
for num_warps in [2, 4, 8, 16]
|
| 22 |
+
for num_stages in [2, 3, 4]
|
| 23 |
+
],
|
| 24 |
+
key=['BC', 'K'],
|
| 25 |
+
use_cuda_graph=use_cuda_graph,
|
| 26 |
+
)
|
| 27 |
+
@triton.jit(do_not_specialize=['T'])
|
| 28 |
+
def chunk_dplr_fwd_A_kernel_intra_sub_inter(
|
| 29 |
+
q,
|
| 30 |
+
k,
|
| 31 |
+
a,
|
| 32 |
+
b,
|
| 33 |
+
gi, # cumsum
|
| 34 |
+
ge, # before cumsum
|
| 35 |
+
Aqk,
|
| 36 |
+
Aqb,
|
| 37 |
+
Aab,
|
| 38 |
+
Aak,
|
| 39 |
+
offsets,
|
| 40 |
+
indices,
|
| 41 |
+
scale: tl.constexpr,
|
| 42 |
+
T,
|
| 43 |
+
H: tl.constexpr,
|
| 44 |
+
K: tl.constexpr,
|
| 45 |
+
BT: tl.constexpr,
|
| 46 |
+
BC: tl.constexpr,
|
| 47 |
+
BK: tl.constexpr,
|
| 48 |
+
NC: tl.constexpr,
|
| 49 |
+
USE_OFFSETS: tl.constexpr,
|
| 50 |
+
HEAD_FIRST: tl.constexpr,
|
| 51 |
+
):
|
| 52 |
+
i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 53 |
+
i_b, i_h = i_bh // H, i_bh % H
|
| 54 |
+
i_i, i_j = i_c // NC, i_c % NC
|
| 55 |
+
if USE_OFFSETS:
|
| 56 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 57 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 58 |
+
T = eos - bos
|
| 59 |
+
else:
|
| 60 |
+
bos, eos = i_b * T, i_b * T + T
|
| 61 |
+
|
| 62 |
+
if i_t * BT + i_i * BC >= T:
|
| 63 |
+
return
|
| 64 |
+
if i_i <= i_j:
|
| 65 |
+
return
|
| 66 |
+
|
| 67 |
+
b_Aqk = tl.zeros([BC, BC], dtype=tl.float32)
|
| 68 |
+
b_Aqb = tl.zeros([BC, BC], dtype=tl.float32)
|
| 69 |
+
b_Aab = tl.zeros([BC, BC], dtype=tl.float32)
|
| 70 |
+
b_Aak = tl.zeros([BC, BC], dtype=tl.float32)
|
| 71 |
+
for i_k in range(tl.cdiv(K, BK)):
|
| 72 |
+
o_k = i_k * BK + tl.arange(0, BK)
|
| 73 |
+
m_k = o_k < K
|
| 74 |
+
|
| 75 |
+
if HEAD_FIRST:
|
| 76 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 77 |
+
p_a = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 78 |
+
p_gq_i = tl.make_block_ptr(gi + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 79 |
+
p_gq_e = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 80 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
|
| 81 |
+
p_b = tl.make_block_ptr(b + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
|
| 82 |
+
p_gk = tl.make_block_ptr(gi + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
|
| 83 |
+
p_gn = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_i * BC - 1) * K + o_k, BK), BK)
|
| 84 |
+
else:
|
| 85 |
+
p_q = tl.make_block_ptr(q + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 86 |
+
p_a = tl.make_block_ptr(a + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 87 |
+
p_gq_i = tl.make_block_ptr(gi + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 88 |
+
p_gq_e = tl.make_block_ptr(ge + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
| 89 |
+
p_k = tl.make_block_ptr(k + (bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
|
| 90 |
+
p_b = tl.make_block_ptr(b + (bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
|
| 91 |
+
p_gk = tl.make_block_ptr(gi + (bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
|
| 92 |
+
p_gn = gi + (bos + i_t * BT + i_i * BC - 1) * H*K + i_h * K + o_k
|
| 93 |
+
# [BK,]
|
| 94 |
+
b_gn = tl.load(p_gn, mask=m_k, other=0).to(tl.float32)
|
| 95 |
+
# [BC, BK]
|
| 96 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 97 |
+
b_a = tl.load(p_a, boundary_check=(0, 1))
|
| 98 |
+
b_gq_i = tl.load(p_gq_i, boundary_check=(0, 1))
|
| 99 |
+
b_gq_e = tl.load(p_gq_e, boundary_check=(0, 1))
|
| 100 |
+
b_ag = b_a * exp(b_gq_e - b_gn[None, :])
|
| 101 |
+
b_qg = b_q * exp(b_gq_i - b_gn[None, :]) * scale
|
| 102 |
+
# [BK, BC]
|
| 103 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 104 |
+
b_b = tl.load(p_b, boundary_check=(0, 1))
|
| 105 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1)).to(tl.float32)
|
| 106 |
+
tmp = exp(b_gn[:, None] - b_gk)
|
| 107 |
+
b_kg = b_k * tmp
|
| 108 |
+
b_bg = b_b * tmp
|
| 109 |
+
# [BC, BC] using tf32 to improve precision here.
|
| 110 |
+
b_Aab += tl.dot(b_ag, b_bg)
|
| 111 |
+
b_Aak += tl.dot(b_ag, b_kg)
|
| 112 |
+
b_Aqk += tl.dot(b_qg, b_kg)
|
| 113 |
+
b_Aqb += tl.dot(b_qg, b_bg)
|
| 114 |
+
|
| 115 |
+
if HEAD_FIRST:
|
| 116 |
+
p_Aqk = tl.make_block_ptr(Aqk + i_bh*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 117 |
+
p_Aqb = tl.make_block_ptr(Aqb + i_bh*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 118 |
+
p_Aab = tl.make_block_ptr(Aab + i_bh*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 119 |
+
p_Aak = tl.make_block_ptr(Aak + i_bh*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 120 |
+
else:
|
| 121 |
+
p_Aqk = tl.make_block_ptr(Aqk + (bos*H+i_h)*BT, (T, BT), (H*BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 122 |
+
p_Aqb = tl.make_block_ptr(Aqb + (bos*H+i_h)*BT, (T, BT), (H*BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 123 |
+
p_Aab = tl.make_block_ptr(Aab + (bos*H+i_h)*BT, (T, BT), (H*BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 124 |
+
p_Aak = tl.make_block_ptr(Aak + (bos*H+i_h)*BT, (T, BT), (H*BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
| 125 |
+
tl.store(p_Aqk, b_Aqk.to(Aqk.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 126 |
+
tl.store(p_Aqb, b_Aqb.to(Aqb.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 127 |
+
tl.store(p_Aab, b_Aab.to(Aab.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 128 |
+
tl.store(p_Aak, b_Aak.to(Aak.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@triton.heuristics({
|
| 132 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 133 |
+
})
|
| 134 |
+
@triton.autotune(
|
| 135 |
+
configs=[
|
| 136 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 137 |
+
for num_warps in [2, 4, 8, 16, 32]
|
| 138 |
+
for num_stages in [2, 3, 4]
|
| 139 |
+
],
|
| 140 |
+
key=['BK', 'BT'],
|
| 141 |
+
use_cuda_graph=use_cuda_graph,
|
| 142 |
+
)
|
| 143 |
+
@triton.jit(do_not_specialize=['T'])
|
| 144 |
+
def chunk_dplr_fwd_A_kernel_intra_sub_intra(
|
| 145 |
+
q,
|
| 146 |
+
k,
|
| 147 |
+
a,
|
| 148 |
+
b,
|
| 149 |
+
gi,
|
| 150 |
+
ge,
|
| 151 |
+
qg,
|
| 152 |
+
kg,
|
| 153 |
+
ag,
|
| 154 |
+
bg,
|
| 155 |
+
Aqk,
|
| 156 |
+
Aqb,
|
| 157 |
+
Aab,
|
| 158 |
+
Aak,
|
| 159 |
+
offsets,
|
| 160 |
+
indices,
|
| 161 |
+
scale: tl.constexpr,
|
| 162 |
+
T,
|
| 163 |
+
H: tl.constexpr,
|
| 164 |
+
K: tl.constexpr,
|
| 165 |
+
BT: tl.constexpr,
|
| 166 |
+
BC: tl.constexpr,
|
| 167 |
+
BK: tl.constexpr,
|
| 168 |
+
NC: tl.constexpr,
|
| 169 |
+
USE_OFFSETS: tl.constexpr,
|
| 170 |
+
HEAD_FIRST: tl.constexpr,
|
| 171 |
+
GATHER_SUPPORTED: tl.constexpr
|
| 172 |
+
):
|
| 173 |
+
i_t, i_i, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 174 |
+
i_b, i_h = i_bh // H, i_bh % H
|
| 175 |
+
i_j = i_i
|
| 176 |
+
if USE_OFFSETS:
|
| 177 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 178 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 179 |
+
T = eos - bos
|
| 180 |
+
else:
|
| 181 |
+
bos, eos = i_b * T, i_b * T + T
|
| 182 |
+
|
| 183 |
+
if i_t * BT + i_i * BC >= T:
|
| 184 |
+
return
|
| 185 |
+
|
| 186 |
+
o_i = tl.arange(0, BC)
|
| 187 |
+
o_k = tl.arange(0, BK)
|
| 188 |
+
m_k = o_k < K
|
| 189 |
+
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
|
| 190 |
+
last_idx = min((i_t+1) * BT, T) - 1
|
| 191 |
+
if HEAD_FIRST:
|
| 192 |
+
o_A = i_bh * T*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_j * BC
|
| 193 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 194 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 195 |
+
p_a = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 196 |
+
p_b = tl.make_block_ptr(b + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 197 |
+
p_gi = tl.make_block_ptr(gi + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 198 |
+
p_ge = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 199 |
+
p_g_last = gi + i_bh * T*K + last_idx * K + tl.arange(0, BK)
|
| 200 |
+
b_g_last = tl.load(p_g_last, mask=m_k, other=0)
|
| 201 |
+
|
| 202 |
+
p_qg = tl.make_block_ptr(qg + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 203 |
+
p_kg = tl.make_block_ptr(kg + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 204 |
+
p_ag = tl.make_block_ptr(ag + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 205 |
+
p_bg = tl.make_block_ptr(bg + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 206 |
+
else:
|
| 207 |
+
o_A = (bos + i_t * BT + i_i * BC + tl.arange(0, BC)) * H*BT + i_h * BT + i_j * BC
|
| 208 |
+
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 209 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 210 |
+
p_a = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 211 |
+
p_b = tl.make_block_ptr(b + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 212 |
+
p_gi = tl.make_block_ptr(gi + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 213 |
+
p_ge = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 214 |
+
p_g_last = gi + (bos * H + i_h) * K + last_idx * H * K + tl.arange(0, BK)
|
| 215 |
+
b_g_last = tl.load(p_g_last, mask=m_k, other=0)
|
| 216 |
+
p_qg = tl.make_block_ptr(qg + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 217 |
+
p_kg = tl.make_block_ptr(kg + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 218 |
+
p_ag = tl.make_block_ptr(ag + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 219 |
+
p_bg = tl.make_block_ptr(bg + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
|
| 220 |
+
|
| 221 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 222 |
+
b_q = b_q * scale
|
| 223 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 224 |
+
b_a = tl.load(p_a, boundary_check=(0, 1))
|
| 225 |
+
b_b = tl.load(p_b, boundary_check=(0, 1))
|
| 226 |
+
b_gi = tl.load(p_gi, boundary_check=(0, 1)).to(tl.float32)
|
| 227 |
+
b_ge = tl.load(p_ge, boundary_check=(0, 1)).to(tl.float32)
|
| 228 |
+
|
| 229 |
+
# deal with decay term.
|
| 230 |
+
g_exp = exp(b_gi)
|
| 231 |
+
g_exp_inv = exp(-b_gi + b_g_last[None, :])
|
| 232 |
+
b_qg = b_q * g_exp
|
| 233 |
+
b_kg = b_k * g_exp_inv
|
| 234 |
+
b_bg = b_b * g_exp_inv
|
| 235 |
+
b_ag = b_a * exp(b_ge)
|
| 236 |
+
tl.store(p_qg, b_qg.to(p_qg.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 237 |
+
tl.store(p_bg, b_bg.to(p_bg.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 238 |
+
tl.store(p_ag, b_ag.to(p_ag.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 239 |
+
tl.store(p_kg, b_kg.to(p_kg.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 240 |
+
# tl.debug_barrier()
|
| 241 |
+
|
| 242 |
+
b_q = b_q.to(b_k.dtype)
|
| 243 |
+
# inner attn
|
| 244 |
+
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
|
| 245 |
+
# a trick to index the j-th row of b_k, b_g, b_b
|
| 246 |
+
if GATHER_SUPPORTED:
|
| 247 |
+
row_idx = tl.full([1, BK], j, dtype=tl.int16)
|
| 248 |
+
# [1, BK]
|
| 249 |
+
b_k_j = gather(b_k, row_idx, axis=0)
|
| 250 |
+
b_gk_j = gather(b_gi, row_idx, axis=0)
|
| 251 |
+
b_b_j = gather(b_b, row_idx, axis=0)
|
| 252 |
+
else:
|
| 253 |
+
mask = tl.arange(0, BC) == j
|
| 254 |
+
b_k_j = tl.sum(tl.where(mask[:, None], b_k, 0), 0)[None, :]
|
| 255 |
+
b_gk_j = tl.sum(tl.where(mask[:, None], b_gi, 0), 0)[None, :]
|
| 256 |
+
b_b_j = tl.sum(tl.where(mask[:, None], b_b, 0), 0)[None, :]
|
| 257 |
+
mask = tl.arange(0, BC) == j
|
| 258 |
+
tmp = exp(b_gi - b_gk_j)
|
| 259 |
+
b_A_qk = tl.sum(b_q * b_k_j * tmp, 1)
|
| 260 |
+
b_A_qk = tl.where(o_i >= j, b_A_qk, 0.)
|
| 261 |
+
b_A_qb = tl.sum(b_q * b_b_j * tmp, 1)
|
| 262 |
+
b_A_qb = tl.where(o_i >= j, b_A_qb, 0.)
|
| 263 |
+
tmp2 = exp(b_ge - b_gk_j)
|
| 264 |
+
b_A_ak = tl.sum(b_a * b_k_j * tmp2, 1)
|
| 265 |
+
b_A_ak = tl.where(o_i > j, b_A_ak, 0.)
|
| 266 |
+
b_A_ab = tl.sum(b_a * b_b_j * tmp2, 1)
|
| 267 |
+
b_A_ab = tl.where(o_i > j, b_A_ab, 0.)
|
| 268 |
+
tl.store(Aqk + o_A + j, b_A_qk.to(dtype=Aqk.dtype.element_ty, fp_downcast_rounding="rtne"), mask=m_A)
|
| 269 |
+
tl.store(Aqb + o_A + j, b_A_qb.to(dtype=Aqb.dtype.element_ty, fp_downcast_rounding="rtne"), mask=m_A)
|
| 270 |
+
tl.store(Aab + o_A + j, b_A_ab.to(dtype=Aqb.dtype.element_ty, fp_downcast_rounding="rtne"), mask=m_A)
|
| 271 |
+
tl.store(Aak + o_A + j, b_A_ak.to(dtype=Aqk.dtype.element_ty, fp_downcast_rounding="rtne"), mask=m_A)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def chunk_fwd_intra_dplr_fn(
|
| 275 |
+
q: torch.Tensor,
|
| 276 |
+
k: torch.Tensor,
|
| 277 |
+
a: torch.Tensor,
|
| 278 |
+
b: torch.Tensor,
|
| 279 |
+
gi: torch.Tensor,
|
| 280 |
+
ge: torch.Tensor,
|
| 281 |
+
scale: float,
|
| 282 |
+
chunk_size: int,
|
| 283 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 284 |
+
indices: Optional[torch.LongTensor] = None,
|
| 285 |
+
head_first: bool = True,
|
| 286 |
+
):
|
| 287 |
+
if head_first:
|
| 288 |
+
B, H, T, K = k.shape
|
| 289 |
+
else:
|
| 290 |
+
B, T, H, K = k.shape
|
| 291 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
| 292 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
| 293 |
+
BC = min(16, BT)
|
| 294 |
+
NC = triton.cdiv(BT, BC)
|
| 295 |
+
|
| 296 |
+
Aqk = q.new_empty(B, *((H, T) if head_first else (T, H)), BT, dtype=q.dtype)
|
| 297 |
+
Aqb = q.new_empty(B, *((H, T) if head_first else (T, H)), BT, dtype=q.dtype)
|
| 298 |
+
# involving matrix inverse and it'd be better to use float here.
|
| 299 |
+
Aab = q.new_empty(B, *((H, T) if head_first else (T, H)), BT, dtype=torch.float)
|
| 300 |
+
Aak = q.new_empty(B, *((H, T) if head_first else (T, H)), BT, dtype=torch.float)
|
| 301 |
+
grid = (NT, NC * NC, B * H)
|
| 302 |
+
|
| 303 |
+
chunk_dplr_fwd_A_kernel_intra_sub_inter[grid](
|
| 304 |
+
q=q, k=k, a=a, b=b, gi=gi, ge=ge, Aqk=Aqk, Aqb=Aqb, Aab=Aab, Aak=Aak,
|
| 305 |
+
offsets=offsets, indices=indices,
|
| 306 |
+
scale=scale,
|
| 307 |
+
T=T, H=H, K=K, BT=BT, BC=BC, NC=NC,
|
| 308 |
+
HEAD_FIRST=head_first
|
| 309 |
+
)
|
| 310 |
+
grid = (NT, NC, B * H)
|
| 311 |
+
BK = triton.next_power_of_2(K)
|
| 312 |
+
qg = torch.empty_like(q)
|
| 313 |
+
kg = torch.empty_like(k, dtype=q.dtype)
|
| 314 |
+
ag = torch.empty_like(a, dtype=q.dtype)
|
| 315 |
+
bg = torch.empty_like(b, dtype=q.dtype)
|
| 316 |
+
chunk_dplr_fwd_A_kernel_intra_sub_intra[grid](
|
| 317 |
+
q=q, k=k, a=a, b=b, gi=gi, ge=ge, Aqk=Aqk, Aqb=Aqb, Aab=Aab, Aak=Aak,
|
| 318 |
+
qg=qg, kg=kg, ag=ag, bg=bg,
|
| 319 |
+
offsets=offsets, indices=indices,
|
| 320 |
+
scale=scale,
|
| 321 |
+
T=T, H=H, K=K, BT=BT, BC=BC, BK=BK, HEAD_FIRST=head_first, NC=NC,
|
| 322 |
+
GATHER_SUPPORTED=is_gather_supported
|
| 323 |
+
)
|
| 324 |
+
return Aab, Aqk, Aak, Aqb, qg, kg, ag, bg
|
fla/ops/generalized_delta_rule/dplr/chunk_h_bwd.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.common.utils import prepare_chunk_offsets
|
| 11 |
+
from fla.ops.utils.op import exp
|
| 12 |
+
from fla.utils import check_shared_mem, use_cuda_graph
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@triton.heuristics({
|
| 16 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
| 17 |
+
'USE_INITIAL_STATE': lambda args: args['dh0'] is not None,
|
| 18 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
| 19 |
+
})
|
| 20 |
+
@triton.autotune(
|
| 21 |
+
configs=[
|
| 22 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 23 |
+
for num_warps in [2, 4, 8, 16, 32]
|
| 24 |
+
for num_stages in [2, 3, 4]
|
| 25 |
+
],
|
| 26 |
+
key=['BT', 'BK', 'BV', "V"],
|
| 27 |
+
use_cuda_graph=use_cuda_graph,
|
| 28 |
+
)
|
| 29 |
+
@triton.jit(do_not_specialize=['T'])
|
| 30 |
+
def chunk_dplr_bwd_kernel_dhu(
|
| 31 |
+
qg,
|
| 32 |
+
bg,
|
| 33 |
+
w,
|
| 34 |
+
gk,
|
| 35 |
+
dht,
|
| 36 |
+
dh0,
|
| 37 |
+
do,
|
| 38 |
+
dh,
|
| 39 |
+
dv,
|
| 40 |
+
dv2,
|
| 41 |
+
offsets,
|
| 42 |
+
chunk_offsets,
|
| 43 |
+
T,
|
| 44 |
+
H: tl.constexpr,
|
| 45 |
+
K: tl.constexpr,
|
| 46 |
+
V: tl.constexpr,
|
| 47 |
+
BT: tl.constexpr,
|
| 48 |
+
BC: tl.constexpr,
|
| 49 |
+
BK: tl.constexpr,
|
| 50 |
+
BV: tl.constexpr,
|
| 51 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
| 52 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 53 |
+
USE_OFFSETS: tl.constexpr,
|
| 54 |
+
HEAD_FIRST: tl.constexpr
|
| 55 |
+
):
|
| 56 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 57 |
+
i_n, i_h = i_nh // H, i_nh % H
|
| 58 |
+
if USE_OFFSETS:
|
| 59 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 60 |
+
T = eos - bos
|
| 61 |
+
NT = tl.cdiv(T, BT)
|
| 62 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
| 63 |
+
else:
|
| 64 |
+
bos, eos = i_n * T, i_n * T + T
|
| 65 |
+
NT = tl.cdiv(T, BT)
|
| 66 |
+
boh = i_n * NT
|
| 67 |
+
|
| 68 |
+
# [BK, BV]
|
| 69 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
| 70 |
+
if USE_FINAL_STATE_GRADIENT:
|
| 71 |
+
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 72 |
+
b_dh += tl.load(p_dht, boundary_check=(0, 1))
|
| 73 |
+
|
| 74 |
+
mask_k = tl.arange(0, BK) < K
|
| 75 |
+
for i_t in range(NT - 1, -1, -1):
|
| 76 |
+
if HEAD_FIRST:
|
| 77 |
+
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 78 |
+
else:
|
| 79 |
+
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 80 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
| 81 |
+
b_dh_tmp = tl.zeros([BK, BV], dtype=tl.float32)
|
| 82 |
+
for i_c in range(tl.cdiv(BT, BC) - 1, -1, -1):
|
| 83 |
+
if HEAD_FIRST:
|
| 84 |
+
p_qg = tl.make_block_ptr(qg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 85 |
+
p_bg = tl.make_block_ptr(bg + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
| 86 |
+
p_w = tl.make_block_ptr(w + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 87 |
+
p_dv = tl.make_block_ptr(dv + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 88 |
+
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 89 |
+
p_dv2 = tl.make_block_ptr(dv2 + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 90 |
+
else:
|
| 91 |
+
p_qg = tl.make_block_ptr(qg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 92 |
+
p_bg = tl.make_block_ptr(bg+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
| 93 |
+
p_w = tl.make_block_ptr(w+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 94 |
+
p_dv = tl.make_block_ptr(dv+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 95 |
+
p_do = tl.make_block_ptr(do+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 96 |
+
p_dv2 = tl.make_block_ptr(dv2+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 97 |
+
# [BK, BT]
|
| 98 |
+
b_qg = tl.load(p_qg, boundary_check=(0, 1))
|
| 99 |
+
# [BT, BK]
|
| 100 |
+
b_bg = tl.load(p_bg, boundary_check=(0, 1))
|
| 101 |
+
b_w = tl.load(p_w, boundary_check=(0, 1))
|
| 102 |
+
# [BT, V]
|
| 103 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
| 104 |
+
b_dv = tl.load(p_dv, boundary_check=(0, 1))
|
| 105 |
+
b_dv2 = b_dv + tl.dot(b_bg, b_dh.to(b_bg.dtype))
|
| 106 |
+
tl.store(p_dv2, b_dv2.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
| 107 |
+
# [BK, BV]
|
| 108 |
+
b_dh_tmp += tl.dot(b_qg, b_do.to(b_qg.dtype))
|
| 109 |
+
b_dh_tmp += tl.dot(b_w, b_dv2.to(b_qg.dtype))
|
| 110 |
+
last_idx = min((i_t + 1) * BT, T) - 1
|
| 111 |
+
if HEAD_FIRST:
|
| 112 |
+
bg_last = tl.load(gk + (i_nh * T + last_idx) * K + tl.arange(0, BK), mask=mask_k)
|
| 113 |
+
else:
|
| 114 |
+
bg_last = tl.load(gk + ((bos + last_idx) * H + i_h) * K + tl.arange(0, BK), mask=mask_k)
|
| 115 |
+
b_dh *= exp(bg_last)[:, None]
|
| 116 |
+
b_dh += b_dh_tmp
|
| 117 |
+
|
| 118 |
+
if USE_INITIAL_STATE:
|
| 119 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 120 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def chunk_dplr_bwd_dhu(
|
| 124 |
+
qg: torch.Tensor,
|
| 125 |
+
bg: torch.Tensor,
|
| 126 |
+
w: torch.Tensor,
|
| 127 |
+
gk: torch.Tensor,
|
| 128 |
+
h0: torch.Tensor,
|
| 129 |
+
dht: Optional[torch.Tensor],
|
| 130 |
+
do: torch.Tensor,
|
| 131 |
+
dv: torch.Tensor,
|
| 132 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 133 |
+
indices: Optional[torch.LongTensor] = None,
|
| 134 |
+
head_first: bool = True,
|
| 135 |
+
chunk_size: int = 64
|
| 136 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 137 |
+
if head_first:
|
| 138 |
+
B, H, T, K, V = *qg.shape, do.shape[-1]
|
| 139 |
+
else:
|
| 140 |
+
B, T, H, K, V = *qg.shape, do.shape[-1]
|
| 141 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
| 142 |
+
BK = triton.next_power_of_2(K)
|
| 143 |
+
assert BK <= 256, "current kernel does not support head dimension being larger than 256."
|
| 144 |
+
# H100
|
| 145 |
+
if check_shared_mem('hopper', qg.device.index):
|
| 146 |
+
BV = 64
|
| 147 |
+
BC = 64 if K <= 128 else 32
|
| 148 |
+
elif check_shared_mem('ampere', qg.device.index): # A100
|
| 149 |
+
BV = 32
|
| 150 |
+
BC = 32
|
| 151 |
+
else: # Etc: 4090
|
| 152 |
+
BV = 16
|
| 153 |
+
BC = 16
|
| 154 |
+
|
| 155 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
| 156 |
+
if offsets is None:
|
| 157 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
| 158 |
+
else:
|
| 159 |
+
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT)
|
| 160 |
+
|
| 161 |
+
BC = min(BT, BC)
|
| 162 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
| 163 |
+
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization'
|
| 164 |
+
|
| 165 |
+
if head_first:
|
| 166 |
+
dh = qg.new_empty(B, H, NT, K, V)
|
| 167 |
+
else:
|
| 168 |
+
dh = qg.new_empty(B, NT, H, K, V)
|
| 169 |
+
dh0 = torch.empty_like(h0, dtype=torch.float32) if h0 is not None else None
|
| 170 |
+
dv2 = torch.zeros_like(dv)
|
| 171 |
+
|
| 172 |
+
grid = (NK, NV, N * H)
|
| 173 |
+
chunk_dplr_bwd_kernel_dhu[grid](
|
| 174 |
+
qg=qg,
|
| 175 |
+
bg=bg,
|
| 176 |
+
w=w,
|
| 177 |
+
gk=gk,
|
| 178 |
+
dht=dht,
|
| 179 |
+
dh0=dh0,
|
| 180 |
+
do=do,
|
| 181 |
+
dh=dh,
|
| 182 |
+
dv=dv,
|
| 183 |
+
dv2=dv2,
|
| 184 |
+
offsets=offsets,
|
| 185 |
+
chunk_offsets=chunk_offsets,
|
| 186 |
+
T=T,
|
| 187 |
+
H=H,
|
| 188 |
+
K=K,
|
| 189 |
+
V=V,
|
| 190 |
+
BT=BT,
|
| 191 |
+
BC=BC,
|
| 192 |
+
BK=BK,
|
| 193 |
+
BV=BV,
|
| 194 |
+
HEAD_FIRST=head_first
|
| 195 |
+
)
|
| 196 |
+
return dh, dh0, dv2
|
fla/ops/generalized_delta_rule/dplr/chunk_h_fwd.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.common.utils import prepare_chunk_offsets
|
| 11 |
+
from fla.ops.utils.op import exp
|
| 12 |
+
from fla.utils import check_shared_mem, use_cuda_graph
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@triton.heuristics({
|
| 16 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
| 17 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
| 18 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
| 19 |
+
})
|
| 20 |
+
@triton.autotune(
|
| 21 |
+
configs=[
|
| 22 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
| 23 |
+
for num_warps in [2, 4, 8, 16, 32]
|
| 24 |
+
for num_stages in [2, 3, 4]
|
| 25 |
+
],
|
| 26 |
+
key=['BT', 'BK', 'BV'],
|
| 27 |
+
use_cuda_graph=use_cuda_graph,
|
| 28 |
+
)
|
| 29 |
+
@triton.jit(do_not_specialize=['T'])
|
| 30 |
+
def chunk_dplr_fwd_kernel_h(
|
| 31 |
+
kg,
|
| 32 |
+
v,
|
| 33 |
+
w,
|
| 34 |
+
bg,
|
| 35 |
+
u,
|
| 36 |
+
v_new,
|
| 37 |
+
gk,
|
| 38 |
+
h,
|
| 39 |
+
h0,
|
| 40 |
+
ht,
|
| 41 |
+
offsets,
|
| 42 |
+
chunk_offsets,
|
| 43 |
+
T,
|
| 44 |
+
H: tl.constexpr,
|
| 45 |
+
K: tl.constexpr,
|
| 46 |
+
V: tl.constexpr,
|
| 47 |
+
BT: tl.constexpr,
|
| 48 |
+
BC: tl.constexpr,
|
| 49 |
+
BK: tl.constexpr,
|
| 50 |
+
BV: tl.constexpr,
|
| 51 |
+
NT: tl.constexpr,
|
| 52 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 53 |
+
STORE_FINAL_STATE: tl.constexpr,
|
| 54 |
+
USE_OFFSETS: tl.constexpr,
|
| 55 |
+
HEAD_FIRST: tl.constexpr,
|
| 56 |
+
):
|
| 57 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 58 |
+
i_n, i_h = i_nh // H, i_nh % H
|
| 59 |
+
if USE_OFFSETS:
|
| 60 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 61 |
+
T = eos - bos
|
| 62 |
+
NT = tl.cdiv(T, BT)
|
| 63 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
| 64 |
+
else:
|
| 65 |
+
bos, eos = i_n * T, i_n * T + T
|
| 66 |
+
NT = tl.cdiv(T, BT)
|
| 67 |
+
boh = i_n * NT
|
| 68 |
+
|
| 69 |
+
# [BK, BV]
|
| 70 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
| 71 |
+
if USE_INITIAL_STATE:
|
| 72 |
+
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 73 |
+
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
| 74 |
+
|
| 75 |
+
for i_t in range(NT):
|
| 76 |
+
if HEAD_FIRST:
|
| 77 |
+
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 78 |
+
else:
|
| 79 |
+
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 80 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
| 81 |
+
|
| 82 |
+
b_hc = tl.zeros([BK, BV], dtype=tl.float32)
|
| 83 |
+
# since we need to make all DK in the SRAM. we face serve SRAM memory burden. By subchunking we allievate such burden
|
| 84 |
+
for i_c in range(tl.cdiv(min(BT, T - i_t * BT), BC)):
|
| 85 |
+
if HEAD_FIRST:
|
| 86 |
+
p_kg = tl.make_block_ptr(kg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 87 |
+
p_bg = tl.make_block_ptr(bg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 88 |
+
p_w = tl.make_block_ptr(w + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
| 89 |
+
p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 90 |
+
p_u = tl.make_block_ptr(u + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 91 |
+
p_v_new = tl.make_block_ptr(v_new+i_nh*T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 92 |
+
else:
|
| 93 |
+
p_kg = tl.make_block_ptr(kg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 94 |
+
p_bg = tl.make_block_ptr(bg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
| 95 |
+
p_w = tl.make_block_ptr(w+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
| 96 |
+
p_v = tl.make_block_ptr(v+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 97 |
+
p_u = tl.make_block_ptr(u+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
| 98 |
+
p_v_new = tl.make_block_ptr(v_new+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT+i_c*BC, i_v * BV), (BC, BV), (1, 0))
|
| 99 |
+
# [BK, BC]
|
| 100 |
+
b_kg = tl.load(p_kg, boundary_check=(0, 1))
|
| 101 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 102 |
+
b_w = tl.load(p_w, boundary_check=(0, 1))
|
| 103 |
+
b_bg = tl.load(p_bg, boundary_check=(0, 1))
|
| 104 |
+
b_v2 = tl.dot(b_w, b_h.to(b_w.dtype)) + tl.load(p_u, boundary_check=(0, 1))
|
| 105 |
+
b_hc += tl.dot(b_kg, b_v)
|
| 106 |
+
b_hc += tl.dot(b_bg.to(b_hc.dtype), b_v2)
|
| 107 |
+
tl.store(p_v_new, b_v2.to(p_v_new.dtype.element_ty), boundary_check=(0, 1))
|
| 108 |
+
|
| 109 |
+
last_idx = min((i_t + 1) * BT, T) - 1
|
| 110 |
+
if HEAD_FIRST:
|
| 111 |
+
b_g_last = tl.load(gk + i_nh * T * K + last_idx * K + tl.arange(0, BK), mask=tl.arange(0, BK) < K).to(tl.float32)
|
| 112 |
+
else:
|
| 113 |
+
b_g_last = tl.load(gk + (bos + last_idx) * H * K + i_h * K +
|
| 114 |
+
tl.arange(0, BK), mask=tl.arange(0, BK) < K).to(tl.float32)
|
| 115 |
+
b_h *= exp(b_g_last[:, None])
|
| 116 |
+
b_h += b_hc
|
| 117 |
+
|
| 118 |
+
if STORE_FINAL_STATE:
|
| 119 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
| 120 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def chunk_dplr_fwd_h(
|
| 124 |
+
kg: torch.Tensor,
|
| 125 |
+
v: torch.Tensor,
|
| 126 |
+
w: torch.Tensor,
|
| 127 |
+
u: torch.Tensor,
|
| 128 |
+
bg: torch.Tensor,
|
| 129 |
+
gk: torch.Tensor,
|
| 130 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 131 |
+
output_final_state: bool = False,
|
| 132 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 133 |
+
indices: Optional[torch.LongTensor] = None,
|
| 134 |
+
head_first: bool = True,
|
| 135 |
+
chunk_size: int = 64
|
| 136 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 137 |
+
if head_first:
|
| 138 |
+
B, H, T, K, V = *kg.shape, u.shape[-1]
|
| 139 |
+
else:
|
| 140 |
+
B, T, H, K, V = *kg.shape, u.shape[-1]
|
| 141 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
| 142 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
| 143 |
+
if offsets is None:
|
| 144 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
| 145 |
+
else:
|
| 146 |
+
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT)
|
| 147 |
+
BK = triton.next_power_of_2(K)
|
| 148 |
+
assert BK <= 256, "current kernel does not support head dimension larger than 256."
|
| 149 |
+
# H100 can have larger block size
|
| 150 |
+
|
| 151 |
+
if check_shared_mem('hopper', kg.device.index):
|
| 152 |
+
BV = 64
|
| 153 |
+
BC = 64 if K <= 128 else 32
|
| 154 |
+
elif check_shared_mem('ampere', kg.device.index): # A100
|
| 155 |
+
BV = 32
|
| 156 |
+
BC = 32
|
| 157 |
+
else:
|
| 158 |
+
BV = 16
|
| 159 |
+
BC = 16
|
| 160 |
+
|
| 161 |
+
BC = min(BT, BC)
|
| 162 |
+
NK = triton.cdiv(K, BK)
|
| 163 |
+
NV = triton.cdiv(V, BV)
|
| 164 |
+
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization'
|
| 165 |
+
|
| 166 |
+
if head_first:
|
| 167 |
+
h = kg.new_empty(B, H, NT, K, V)
|
| 168 |
+
else:
|
| 169 |
+
h = kg.new_empty(B, NT, H, K, V)
|
| 170 |
+
final_state = kg.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None
|
| 171 |
+
v_new = torch.empty_like(u)
|
| 172 |
+
grid = (NK, NV, N * H)
|
| 173 |
+
chunk_dplr_fwd_kernel_h[grid](
|
| 174 |
+
kg=kg,
|
| 175 |
+
v=v,
|
| 176 |
+
w=w,
|
| 177 |
+
bg=bg,
|
| 178 |
+
u=u,
|
| 179 |
+
v_new=v_new,
|
| 180 |
+
h=h,
|
| 181 |
+
gk=gk,
|
| 182 |
+
h0=initial_state,
|
| 183 |
+
ht=final_state,
|
| 184 |
+
offsets=offsets,
|
| 185 |
+
chunk_offsets=chunk_offsets,
|
| 186 |
+
T=T,
|
| 187 |
+
H=H,
|
| 188 |
+
K=K,
|
| 189 |
+
V=V,
|
| 190 |
+
BT=BT,
|
| 191 |
+
BC=BC,
|
| 192 |
+
BK=BK,
|
| 193 |
+
BV=BV,
|
| 194 |
+
NT=NT,
|
| 195 |
+
HEAD_FIRST=head_first
|
| 196 |
+
)
|
| 197 |
+
return h, v_new, final_state
|
fla/ops/generalized_delta_rule/dplr/fused_recurrent.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.utils.op import exp
|
| 11 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard, use_cuda_graph
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@triton.heuristics({
|
| 15 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
| 16 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
| 17 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 18 |
+
})
|
| 19 |
+
@triton.autotune(
|
| 20 |
+
configs=[
|
| 21 |
+
triton.Config({'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
| 22 |
+
for BV in [16, 32, 64]
|
| 23 |
+
for num_warps in [2, 4, 8, 16]
|
| 24 |
+
for num_stages in [2, 3, 4]
|
| 25 |
+
],
|
| 26 |
+
key=['BK'],
|
| 27 |
+
use_cuda_graph=use_cuda_graph,
|
| 28 |
+
)
|
| 29 |
+
@triton.jit(do_not_specialize=['T'])
|
| 30 |
+
def fused_recurrent_dplr_delta_rule_fwd_kernel(
|
| 31 |
+
q,
|
| 32 |
+
k,
|
| 33 |
+
v,
|
| 34 |
+
a,
|
| 35 |
+
b,
|
| 36 |
+
gk,
|
| 37 |
+
o,
|
| 38 |
+
h0,
|
| 39 |
+
ht,
|
| 40 |
+
offsets,
|
| 41 |
+
scale,
|
| 42 |
+
T,
|
| 43 |
+
B: tl.constexpr,
|
| 44 |
+
H: tl.constexpr,
|
| 45 |
+
K: tl.constexpr,
|
| 46 |
+
V: tl.constexpr,
|
| 47 |
+
BK: tl.constexpr,
|
| 48 |
+
BV: tl.constexpr,
|
| 49 |
+
REVERSE: tl.constexpr,
|
| 50 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 51 |
+
STORE_FINAL_STATE: tl.constexpr,
|
| 52 |
+
USE_OFFSETS: tl.constexpr,
|
| 53 |
+
HEAD_FIRST: tl.constexpr
|
| 54 |
+
):
|
| 55 |
+
i_v, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64)
|
| 56 |
+
i_n, i_h = i_nh // H, i_nh % H
|
| 57 |
+
|
| 58 |
+
if USE_OFFSETS:
|
| 59 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
| 60 |
+
T = eos - bos
|
| 61 |
+
else:
|
| 62 |
+
bos, eos = i_n * T, i_n * T + T
|
| 63 |
+
|
| 64 |
+
o_k = tl.arange(0, BK)
|
| 65 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
| 66 |
+
if HEAD_FIRST:
|
| 67 |
+
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
|
| 68 |
+
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
|
| 69 |
+
p_a = a + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
|
| 70 |
+
p_b = b + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
|
| 71 |
+
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
|
| 72 |
+
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v
|
| 73 |
+
p_o = o + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v
|
| 74 |
+
|
| 75 |
+
else:
|
| 76 |
+
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
|
| 77 |
+
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
|
| 78 |
+
p_a = a + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
|
| 79 |
+
p_b = b + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
|
| 80 |
+
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
|
| 81 |
+
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v
|
| 82 |
+
p_o = o + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v
|
| 83 |
+
|
| 84 |
+
mask_k = o_k < K
|
| 85 |
+
mask_v = o_v < V
|
| 86 |
+
mask_h = mask_k[None, :] & mask_v[:, None]
|
| 87 |
+
b_h = tl.zeros([BV, BK], dtype=tl.float32)
|
| 88 |
+
|
| 89 |
+
if USE_INITIAL_STATE:
|
| 90 |
+
p_h0 = h0 + i_nh * K*V + o_k[None, :] * V + o_v[:, None]
|
| 91 |
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
| 92 |
+
|
| 93 |
+
for _ in range(0, T):
|
| 94 |
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
|
| 95 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
| 96 |
+
b_a = tl.load(p_a, mask=mask_k, other=0).to(tl.float32)
|
| 97 |
+
b_b = tl.load(p_b, mask=mask_k, other=0).to(tl.float32)
|
| 98 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
| 99 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
| 100 |
+
|
| 101 |
+
tmp = tl.sum(b_h * b_a[None, :], axis=1)
|
| 102 |
+
b_h = exp(b_gk)[None, :] * b_h + (tmp[:, None] * b_b[None, :] + b_k[None, :] * b_v[:, None])
|
| 103 |
+
b_o = tl.sum(b_h * b_q[None, :], axis=1)
|
| 104 |
+
|
| 105 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
| 106 |
+
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 107 |
+
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 108 |
+
p_a += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 109 |
+
p_b += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 110 |
+
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
| 111 |
+
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
| 112 |
+
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
| 113 |
+
|
| 114 |
+
if STORE_FINAL_STATE:
|
| 115 |
+
p_ht = ht + i_nh * K*V + o_k[None, :] * V + o_v[:, None]
|
| 116 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def fused_recurrent_dplr_delta_rule_fwd(
|
| 120 |
+
q: torch.Tensor,
|
| 121 |
+
k: torch.Tensor,
|
| 122 |
+
v: torch.Tensor,
|
| 123 |
+
a: torch.Tensor,
|
| 124 |
+
b: torch.Tensor,
|
| 125 |
+
gk: torch.Tensor,
|
| 126 |
+
scale: Optional[float] = 1.0,
|
| 127 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 128 |
+
output_final_state: bool = False,
|
| 129 |
+
reverse: bool = False,
|
| 130 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 131 |
+
head_first: bool = True
|
| 132 |
+
):
|
| 133 |
+
if head_first:
|
| 134 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
| 135 |
+
else:
|
| 136 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
| 137 |
+
N = B if offsets is None else len(offsets) - 1
|
| 138 |
+
BK = triton.next_power_of_2(K)
|
| 139 |
+
|
| 140 |
+
h0 = initial_state
|
| 141 |
+
if output_final_state:
|
| 142 |
+
ht = q.new_empty(N, H, K, V, dtype=torch.float32)
|
| 143 |
+
else:
|
| 144 |
+
ht = None
|
| 145 |
+
o = torch.empty_like(v)
|
| 146 |
+
|
| 147 |
+
def grid(meta): return (triton.cdiv(V, meta['BV']), N * H)
|
| 148 |
+
fused_recurrent_dplr_delta_rule_fwd_kernel[grid](
|
| 149 |
+
q,
|
| 150 |
+
k,
|
| 151 |
+
v,
|
| 152 |
+
a,
|
| 153 |
+
b,
|
| 154 |
+
gk,
|
| 155 |
+
o,
|
| 156 |
+
h0,
|
| 157 |
+
ht,
|
| 158 |
+
offsets,
|
| 159 |
+
scale,
|
| 160 |
+
T=T,
|
| 161 |
+
B=B,
|
| 162 |
+
H=H,
|
| 163 |
+
K=K,
|
| 164 |
+
V=V,
|
| 165 |
+
BK=BK,
|
| 166 |
+
REVERSE=reverse,
|
| 167 |
+
HEAD_FIRST=head_first
|
| 168 |
+
)
|
| 169 |
+
return o, ht
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class FusedRecurrentDPLRDeltaRuleFunction(torch.autograd.Function):
|
| 173 |
+
|
| 174 |
+
@staticmethod
|
| 175 |
+
@input_guard
|
| 176 |
+
@autocast_custom_fwd
|
| 177 |
+
def forward(
|
| 178 |
+
ctx,
|
| 179 |
+
q: torch.Tensor,
|
| 180 |
+
k: torch.Tensor,
|
| 181 |
+
v: torch.Tensor,
|
| 182 |
+
a: torch.Tensor,
|
| 183 |
+
b: torch.Tensor,
|
| 184 |
+
gk: torch.Tensor,
|
| 185 |
+
scale: Optional[float] = 1.0,
|
| 186 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 187 |
+
output_final_state: bool = False,
|
| 188 |
+
reverse: bool = False,
|
| 189 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 190 |
+
head_first: bool = False
|
| 191 |
+
):
|
| 192 |
+
o, ht = fused_recurrent_dplr_delta_rule_fwd(
|
| 193 |
+
q=q,
|
| 194 |
+
k=k,
|
| 195 |
+
v=v,
|
| 196 |
+
a=a,
|
| 197 |
+
b=b,
|
| 198 |
+
gk=gk,
|
| 199 |
+
scale=scale,
|
| 200 |
+
initial_state=initial_state,
|
| 201 |
+
output_final_state=output_final_state,
|
| 202 |
+
reverse=reverse,
|
| 203 |
+
offsets=offsets,
|
| 204 |
+
head_first=head_first
|
| 205 |
+
)
|
| 206 |
+
return o, ht
|
| 207 |
+
|
| 208 |
+
@staticmethod
|
| 209 |
+
@input_guard
|
| 210 |
+
@autocast_custom_bwd
|
| 211 |
+
def backward(ctx, do, dht):
|
| 212 |
+
raise NotImplementedError(
|
| 213 |
+
"Backward pass for fused_recurrent_dplr_delta_rule is not implemented and will not be supported. "
|
| 214 |
+
"This kernel is only for inference. "
|
| 215 |
+
"For training, please use `chunk_dplr_delta_rule`."
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def fused_recurrent_dplr_delta_rule(
|
| 220 |
+
q: torch.Tensor,
|
| 221 |
+
k: torch.Tensor,
|
| 222 |
+
v: torch.Tensor,
|
| 223 |
+
a: torch.Tensor,
|
| 224 |
+
b: torch.Tensor,
|
| 225 |
+
gk: torch.Tensor,
|
| 226 |
+
scale: Optional[float] = 1.0,
|
| 227 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 228 |
+
output_final_state: bool = False,
|
| 229 |
+
reverse: bool = False,
|
| 230 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 231 |
+
head_first: bool = False
|
| 232 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 233 |
+
r"""
|
| 234 |
+
This function computes the recurrence S_t = S_t @ (I + a_t b_t^T) + v_t k_t^T in a recurrent manner.
|
| 235 |
+
|
| 236 |
+
Args:
|
| 237 |
+
q (torch.Tensor):
|
| 238 |
+
queries of shape `[B, H, T, K]`
|
| 239 |
+
k (torch.Tensor):
|
| 240 |
+
keys of shape `[B, H, T, K]`
|
| 241 |
+
v (torch.Tensor):
|
| 242 |
+
values of shape `[B, H, T, V]`
|
| 243 |
+
a (torch.Tensor):
|
| 244 |
+
as of shape `[B, H, T, K]`
|
| 245 |
+
b (torch.Tensor):
|
| 246 |
+
bs of shape `[B, H, T, K]`
|
| 247 |
+
gk (torch.Tensor):
|
| 248 |
+
gk of shape `[B, H, T, K]`
|
| 249 |
+
scale (Optional[int]):
|
| 250 |
+
Scale factor for the RetNet attention scores.
|
| 251 |
+
If None, it will default to `1 / sqrt(K)`. Default: `1.0`.
|
| 252 |
+
initial_state (Optional[torch.Tensor]):
|
| 253 |
+
Initial state of shape `[B, H, K, V]`. Default: `None`.
|
| 254 |
+
output_final_state (Optional[bool]):
|
| 255 |
+
Whether to output the final state of shape `[B, H, K, V]`. Default: `False`.
|
| 256 |
+
reverse (Optional[bool]):
|
| 257 |
+
If `True`, process the state passing in reverse order. Default: `False`.
|
| 258 |
+
cu_seqlens (Optional[torch.Tensor]):
|
| 259 |
+
Cumulative sequence lengths of shape `[N + 1]` used for variable-length training,
|
| 260 |
+
consistent with the FlashAttention API.
|
| 261 |
+
head_first (Optional[bool]):
|
| 262 |
+
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
|
| 263 |
+
Default: `False`.
|
| 264 |
+
"""
|
| 265 |
+
if cu_seqlens is not None:
|
| 266 |
+
if q.shape[0] != 1:
|
| 267 |
+
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
| 268 |
+
f"Please flatten variable-length inputs before processing.")
|
| 269 |
+
if head_first:
|
| 270 |
+
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
|
| 271 |
+
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
|
| 272 |
+
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
|
| 273 |
+
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.")
|
| 274 |
+
if scale is None:
|
| 275 |
+
scale = q.shape[-1] ** -0.5
|
| 276 |
+
else:
|
| 277 |
+
assert scale > 0, "scale must be positive"
|
| 278 |
+
o, final_state = FusedRecurrentDPLRDeltaRuleFunction.apply(
|
| 279 |
+
q,
|
| 280 |
+
k,
|
| 281 |
+
v,
|
| 282 |
+
a,
|
| 283 |
+
b,
|
| 284 |
+
gk,
|
| 285 |
+
scale,
|
| 286 |
+
initial_state,
|
| 287 |
+
output_final_state,
|
| 288 |
+
reverse,
|
| 289 |
+
cu_seqlens,
|
| 290 |
+
head_first
|
| 291 |
+
)
|
| 292 |
+
return o, final_state
|
fla/ops/generalized_delta_rule/dplr/naive.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
|
| 6 |
+
# S_t = S_t @ (I + alpha_t beta_t^T) + v_t k_t^T
|
| 7 |
+
# q, k, alpha, beta [B, H, L, D_K]
|
| 8 |
+
# v [B, H, L, D_V]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def dplr_recurrence(q, k, v, alpha, beta, gk, initial_state=None, output_final_state=True):
|
| 12 |
+
orig_dtype = q.dtype
|
| 13 |
+
b, h, l, d_k = q.shape
|
| 14 |
+
q, k, v, beta, gk = map(lambda x: x.float(), [q, k, v, beta, gk])
|
| 15 |
+
d_v = v.shape[-1]
|
| 16 |
+
o = torch.zeros_like(v)
|
| 17 |
+
S = torch.zeros(b, h, d_k, d_v).to(v)
|
| 18 |
+
q = q * (d_k ** -0.5)
|
| 19 |
+
|
| 20 |
+
if initial_state is not None:
|
| 21 |
+
S += initial_state
|
| 22 |
+
|
| 23 |
+
for i in range(l):
|
| 24 |
+
_k = k[:, :, i]
|
| 25 |
+
_q = q[:, :, i]
|
| 26 |
+
_v = v[:, :, i]
|
| 27 |
+
_alpha = alpha[:, :, i].clone()
|
| 28 |
+
_beta = beta[:, :, i].clone()
|
| 29 |
+
_kv = _k[..., None] * _v[..., None, :] + (S.clone() * _alpha[..., None]).sum(-2, keepdim=True) * _beta[..., None]
|
| 30 |
+
S = S.clone() * gk[:, :, i].exp()[..., None] + _kv
|
| 31 |
+
o[:, :, i] = torch.einsum('bhd,bhdm->bhm', _q, S)
|
| 32 |
+
S = None if output_final_state is False else S
|
| 33 |
+
return o.to(orig_dtype), S
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def dplr_chunkwise(q, k, v, alpha, beta, gk, initial_state=None, output_final_state=True, chunk_size=32):
|
| 37 |
+
b, h, l, d_k = q.shape
|
| 38 |
+
d_v = v.shape[-1]
|
| 39 |
+
q = q * (d_k ** -0.5)
|
| 40 |
+
v = v
|
| 41 |
+
assert l % chunk_size == 0
|
| 42 |
+
|
| 43 |
+
S = k.new_zeros(b, h, d_k, d_v).to(q)
|
| 44 |
+
if initial_state is not None:
|
| 45 |
+
S += initial_state
|
| 46 |
+
|
| 47 |
+
# note that diagonal is masked.
|
| 48 |
+
mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), diagonal=0)
|
| 49 |
+
q, k, v, alpha, beta, gk = map(lambda x: rearrange(x, 'b h (n c) d -> b h n c d',
|
| 50 |
+
c=chunk_size).float(), [q, k, v, alpha, beta, gk])
|
| 51 |
+
|
| 52 |
+
gk_cumsum = gk.cumsum(-2)
|
| 53 |
+
|
| 54 |
+
# v2 = (alpha @ k.transpose(-1, -2)).masked_fill_(mask, 0) @ v
|
| 55 |
+
A_ab = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device)
|
| 56 |
+
A_qk = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device)
|
| 57 |
+
A_ak = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device)
|
| 58 |
+
A_qb = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device)
|
| 59 |
+
|
| 60 |
+
for i in range(chunk_size):
|
| 61 |
+
alpha_i = alpha[:, :, :, i, None]
|
| 62 |
+
q_i = q[:, :, :, i, None]
|
| 63 |
+
gk_i = gk_cumsum[:, :, :, i, None]
|
| 64 |
+
mask = (torch.arange(chunk_size) <= i).to(q.device)
|
| 65 |
+
attn_i = (gk_i - gk_cumsum).masked_fill(~mask.unsqueeze(-1), float('-inf')).exp()
|
| 66 |
+
A_qk[:, :, :, i, :] = (q_i * k * attn_i).sum(-1).clone()
|
| 67 |
+
A_qb[:, :, :, i, :] = (q_i * beta * attn_i).sum(-1).clone()
|
| 68 |
+
mask = (torch.arange(chunk_size) < i).to(q.device)
|
| 69 |
+
# shift by one.
|
| 70 |
+
attn_i = (gk_i - gk[:, :, :, i, None] - gk_cumsum).masked_fill(~mask.unsqueeze(-1), float('-inf')).exp()
|
| 71 |
+
A_ab[:, :, :, i, :] = (alpha_i * beta * attn_i).sum(-1).clone()
|
| 72 |
+
A_ak[:, :, :, i, :] = (alpha_i * k * attn_i).sum(-1).clone()
|
| 73 |
+
|
| 74 |
+
A_ab = A_ab
|
| 75 |
+
for i in range(1, chunk_size):
|
| 76 |
+
A_ab[..., i, :i] = A_ab[..., i, :i].clone() + (A_ab[..., i, :, None].clone() * A_ab[..., :, :i].clone()).sum(-2)
|
| 77 |
+
|
| 78 |
+
A_ab = A_ab + torch.eye(chunk_size, dtype=torch.float, device=q.device)
|
| 79 |
+
u = A_ab @ (A_ak @ v)
|
| 80 |
+
w = A_ab @ ((gk_cumsum-gk).exp() * alpha)
|
| 81 |
+
|
| 82 |
+
o = torch.zeros_like(v)
|
| 83 |
+
mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), diagonal=1)
|
| 84 |
+
for i in range(0, l // chunk_size):
|
| 85 |
+
q_i, k_i, v_i, u_i, w_i, beta_i = q[:, :, i], k[:, :, i], v[:, :, i], u[:, :, i], w[:, :, i], beta[:, :, i]
|
| 86 |
+
v2_i = u_i + w_i @ S
|
| 87 |
+
|
| 88 |
+
o_1 = A_qk[:, :, i] @ v_i
|
| 89 |
+
o_2 = A_qb[:, :, i] @ v2_i
|
| 90 |
+
o_3 = (q_i * gk_cumsum[:, :, i].exp()) @ S
|
| 91 |
+
o[:, :, i] = o_1 + o_2 + o_3
|
| 92 |
+
decay = (gk_cumsum[:, :, i, -1, None] - gk_cumsum[:, :, i]).exp()
|
| 93 |
+
S = S*gk_cumsum[:, :, i, -1, :, None].exp() + (k_i * decay).transpose(-1, -2) @ v_i + \
|
| 94 |
+
(beta_i * decay).transpose(-1, -2) @ v2_i
|
| 95 |
+
S = None if output_final_state is False else S
|
| 96 |
+
return rearrange(o, 'b h n c d -> b h (n c) d'), S
|
fla/ops/generalized_delta_rule/iplr/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (328 Bytes). View file
|
|
|
fla/ops/generalized_delta_rule/iplr/__pycache__/wy_fast.cpython-312.pyc
ADDED
|
Binary file (23.1 kB). View file
|
|
|
fla/ops/generalized_delta_rule/iplr/wy_fast.py
ADDED
|
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 4 |
+
|
| 5 |
+
from typing import Optional, Tuple
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import triton
|
| 9 |
+
import triton.language as tl
|
| 10 |
+
|
| 11 |
+
from fla.utils import check_shared_mem, is_nvidia_hopper
|
| 12 |
+
|
| 13 |
+
NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@triton.heuristics({
|
| 17 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 18 |
+
})
|
| 19 |
+
@triton.autotune(
|
| 20 |
+
configs=[
|
| 21 |
+
triton.Config({}, num_warps=num_warps)
|
| 22 |
+
for num_warps in [1, 2, 4, 8, 16]
|
| 23 |
+
],
|
| 24 |
+
key=['BK']
|
| 25 |
+
)
|
| 26 |
+
@triton.jit(do_not_specialize=['T'])
|
| 27 |
+
def fwd_prepare_wy_repr_kernel_chunk32(
|
| 28 |
+
a,
|
| 29 |
+
b,
|
| 30 |
+
A,
|
| 31 |
+
offsets,
|
| 32 |
+
indices,
|
| 33 |
+
T,
|
| 34 |
+
H: tl.constexpr,
|
| 35 |
+
K: tl.constexpr,
|
| 36 |
+
BT: tl.constexpr,
|
| 37 |
+
BK: tl.constexpr,
|
| 38 |
+
BC: tl.constexpr, # dummy placeholder
|
| 39 |
+
USE_OFFSETS: tl.constexpr,
|
| 40 |
+
HEAD_FIRST: tl.constexpr,
|
| 41 |
+
):
|
| 42 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
| 43 |
+
i_b, i_h = i_bh // H, i_bh % H
|
| 44 |
+
if USE_OFFSETS:
|
| 45 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 46 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 47 |
+
T = eos - bos
|
| 48 |
+
else:
|
| 49 |
+
bos, eos = i_b * T, i_b * T + T
|
| 50 |
+
|
| 51 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
| 52 |
+
for i_k in range(tl.cdiv(K, BK)):
|
| 53 |
+
if HEAD_FIRST:
|
| 54 |
+
p_a = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 55 |
+
p_b = tl.make_block_ptr(b + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 56 |
+
else:
|
| 57 |
+
p_a = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 58 |
+
p_b = tl.make_block_ptr(b + (bos * H + i_h) * K, (K, T), (1, K*H), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
| 59 |
+
b_a = tl.load(p_a, boundary_check=(0, 1))
|
| 60 |
+
b_b = tl.load(p_b, boundary_check=(0, 1))
|
| 61 |
+
b_A += tl.dot(b_a, b_b)
|
| 62 |
+
|
| 63 |
+
b_A = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_A, 0)
|
| 64 |
+
for i in range(1, BT):
|
| 65 |
+
mask = tl.arange(0, BT) == i
|
| 66 |
+
b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0)
|
| 67 |
+
b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BT) < i)
|
| 68 |
+
b_A = tl.where(mask[:, None], b_a, b_A)
|
| 69 |
+
b_A += tl.arange(0, BT)[:, None] == tl.arange(0, BT)[None, :]
|
| 70 |
+
|
| 71 |
+
if HEAD_FIRST:
|
| 72 |
+
p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
| 73 |
+
else:
|
| 74 |
+
p_A = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
| 75 |
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@triton.heuristics({
|
| 79 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 80 |
+
})
|
| 81 |
+
@triton.autotune(
|
| 82 |
+
configs=[
|
| 83 |
+
triton.Config({}, num_warps=num_warps)
|
| 84 |
+
for num_warps in [1, 2, 4, 8, 16]
|
| 85 |
+
],
|
| 86 |
+
key=['BK']
|
| 87 |
+
)
|
| 88 |
+
@triton.jit(do_not_specialize=['T'])
|
| 89 |
+
def fwd_prepare_wy_repr_kernel_chunk64(
|
| 90 |
+
a,
|
| 91 |
+
b,
|
| 92 |
+
A,
|
| 93 |
+
offsets,
|
| 94 |
+
indices,
|
| 95 |
+
T,
|
| 96 |
+
H: tl.constexpr,
|
| 97 |
+
K: tl.constexpr,
|
| 98 |
+
BT: tl.constexpr,
|
| 99 |
+
BK: tl.constexpr,
|
| 100 |
+
BC: tl.constexpr,
|
| 101 |
+
USE_OFFSETS: tl.constexpr,
|
| 102 |
+
HEAD_FIRST: tl.constexpr
|
| 103 |
+
):
|
| 104 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
| 105 |
+
i_b, i_h = i_bh // H, i_bh % H
|
| 106 |
+
if USE_OFFSETS:
|
| 107 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 108 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 109 |
+
T = eos - bos
|
| 110 |
+
else:
|
| 111 |
+
bos, eos = i_b * T, i_b * T + T
|
| 112 |
+
|
| 113 |
+
b_A = tl.zeros([BC, BC], dtype=tl.float32)
|
| 114 |
+
b_A2 = tl.zeros([BC, BC], dtype=tl.float32)
|
| 115 |
+
b_A3 = tl.zeros([BC, BC], dtype=tl.float32)
|
| 116 |
+
|
| 117 |
+
for i_k in range(tl.cdiv(K, BK)):
|
| 118 |
+
if HEAD_FIRST:
|
| 119 |
+
p_a1 = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0))
|
| 120 |
+
p_a2 = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0))
|
| 121 |
+
p_b1 = tl.make_block_ptr(b + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BC), (0, 1))
|
| 122 |
+
p_b2 = tl.make_block_ptr(b + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + BC), (BK, BC), (0, 1))
|
| 123 |
+
else:
|
| 124 |
+
p_a1 = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0))
|
| 125 |
+
p_a2 = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0))
|
| 126 |
+
p_b1 = tl.make_block_ptr(b + (bos * H + i_h) * K, (K, T), (1, K*H), (i_k * BK, i_t * BT), (BK, BC), (0, 1))
|
| 127 |
+
p_b2 = tl.make_block_ptr(b + (bos * H + i_h) * K, (K, T), (1, K*H), (i_k * BK, i_t * BT + BC), (BK, BC), (0, 1))
|
| 128 |
+
b_a1 = tl.load(p_a1, boundary_check=(0, 1))
|
| 129 |
+
b_a2 = tl.load(p_a2, boundary_check=(0, 1))
|
| 130 |
+
b_b1 = tl.load(p_b1, boundary_check=(0, 1))
|
| 131 |
+
b_b2 = tl.load(p_b2, boundary_check=(0, 1))
|
| 132 |
+
b_A += tl.dot(b_a1, b_b1, allow_tf32=False)
|
| 133 |
+
b_A2 += tl.dot(b_a2, b_b2, allow_tf32=False)
|
| 134 |
+
b_A3 += tl.dot(b_a2, b_b1, allow_tf32=False)
|
| 135 |
+
|
| 136 |
+
b_A = tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A, 0)
|
| 137 |
+
b_A2 = tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A2, 0)
|
| 138 |
+
|
| 139 |
+
for i in range(1, BC):
|
| 140 |
+
mask = tl.arange(0, BC) == i
|
| 141 |
+
b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0)
|
| 142 |
+
b_a2 = tl.sum(tl.where(mask[:, None], b_A2, 0), 0)
|
| 143 |
+
b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BC) < i)
|
| 144 |
+
b_a2 = b_a2 + tl.sum(b_a2[:, None] * b_A2, 0) * (tl.arange(0, BC) < i)
|
| 145 |
+
b_A = tl.where(mask[:, None], b_a, b_A)
|
| 146 |
+
b_A2 = tl.where(mask[:, None], b_a2, b_A2)
|
| 147 |
+
|
| 148 |
+
# blockwise computation of lower triangular matrix's inverse
|
| 149 |
+
# i.e., [A11, 0; A21, A22]^-1 = [A11^-1, 0; -A22^-1 A21 A11^-1, A22^-1]
|
| 150 |
+
b_A += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
| 151 |
+
b_A2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
| 152 |
+
b_A3 = tl.dot(tl.dot(b_A2, b_A3, allow_tf32=False), b_A, allow_tf32=False)
|
| 153 |
+
|
| 154 |
+
if HEAD_FIRST:
|
| 155 |
+
p_A1 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
| 156 |
+
p_A2 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0))
|
| 157 |
+
p_A3 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0))
|
| 158 |
+
p_A4 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, BC), (BC, BC), (1, 0))
|
| 159 |
+
else:
|
| 160 |
+
p_A1 = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
| 161 |
+
p_A2 = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0))
|
| 162 |
+
p_A3 = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0))
|
| 163 |
+
p_A4 = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, BC), (BC, BC), (1, 0))
|
| 164 |
+
tl.store(p_A1, b_A.to(p_A1.dtype.element_ty), boundary_check=(0, 1))
|
| 165 |
+
tl.store(p_A2, b_A2.to(p_A2.dtype.element_ty), boundary_check=(0, 1))
|
| 166 |
+
tl.store(p_A3, b_A3.to(p_A3.dtype.element_ty), boundary_check=(0, 1))
|
| 167 |
+
# causal mask
|
| 168 |
+
tl.store(p_A4, tl.zeros([BC, BC], dtype=tl.float32).to(p_A4.dtype.element_ty), boundary_check=(0, 1))
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@triton.heuristics({
|
| 172 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 173 |
+
})
|
| 174 |
+
@triton.autotune(
|
| 175 |
+
configs=[
|
| 176 |
+
triton.Config({}, num_warps=num_warps)
|
| 177 |
+
for num_warps in NUM_WARPS
|
| 178 |
+
],
|
| 179 |
+
key=['BT', 'BK', 'BV']
|
| 180 |
+
)
|
| 181 |
+
@triton.jit(do_not_specialize=['T'])
|
| 182 |
+
def fwd_wu_kernel(
|
| 183 |
+
w,
|
| 184 |
+
u,
|
| 185 |
+
a,
|
| 186 |
+
k,
|
| 187 |
+
v,
|
| 188 |
+
A,
|
| 189 |
+
offsets,
|
| 190 |
+
indices,
|
| 191 |
+
T,
|
| 192 |
+
H: tl.constexpr,
|
| 193 |
+
K: tl.constexpr,
|
| 194 |
+
V: tl.constexpr,
|
| 195 |
+
BT: tl.constexpr,
|
| 196 |
+
BK: tl.constexpr,
|
| 197 |
+
BV: tl.constexpr,
|
| 198 |
+
USE_OFFSETS: tl.constexpr,
|
| 199 |
+
HEAD_FIRST: tl.constexpr
|
| 200 |
+
):
|
| 201 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
| 202 |
+
i_b, i_h = i_bh // H, i_bh % H
|
| 203 |
+
if USE_OFFSETS:
|
| 204 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
| 205 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
| 206 |
+
T = eos - bos
|
| 207 |
+
else:
|
| 208 |
+
bos, eos = i_b * T, i_b * T + T
|
| 209 |
+
|
| 210 |
+
if HEAD_FIRST:
|
| 211 |
+
p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
| 212 |
+
else:
|
| 213 |
+
p_A = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
| 214 |
+
|
| 215 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
| 216 |
+
b_Aak = tl.zeros([BT, BT], dtype=tl.float32)
|
| 217 |
+
|
| 218 |
+
for i_k in range(tl.cdiv(K, BK)):
|
| 219 |
+
if HEAD_FIRST:
|
| 220 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 221 |
+
p_a = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 222 |
+
p_w = tl.make_block_ptr(w + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 223 |
+
else:
|
| 224 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 225 |
+
p_a = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 226 |
+
p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
| 227 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 228 |
+
b_a = tl.load(p_a, boundary_check=(0, 1))
|
| 229 |
+
b_w = tl.dot(b_A, b_a)
|
| 230 |
+
b_Aak += tl.dot(b_a, tl.trans(b_k))
|
| 231 |
+
tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))
|
| 232 |
+
|
| 233 |
+
b_Aak = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_Aak, 0)
|
| 234 |
+
b_Aak = b_Aak.to(k.dtype.element_ty)
|
| 235 |
+
|
| 236 |
+
for i_v in range(tl.cdiv(V, BV)):
|
| 237 |
+
if HEAD_FIRST:
|
| 238 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 239 |
+
p_u = tl.make_block_ptr(u + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 240 |
+
else:
|
| 241 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 242 |
+
p_u = tl.make_block_ptr(u + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
| 243 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 244 |
+
b_v = tl.dot(b_Aak, b_v).to(v.dtype.element_ty)
|
| 245 |
+
b_u = tl.dot(b_A, b_v)
|
| 246 |
+
tl.store(p_u, b_u.to(p_u.dtype.element_ty), boundary_check=(0, 1))
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def fwd_prepare_wy_repr(
|
| 250 |
+
a: torch.Tensor,
|
| 251 |
+
b: torch.Tensor,
|
| 252 |
+
v: torch.Tensor,
|
| 253 |
+
k: torch.Tensor,
|
| 254 |
+
offsets: Optional[torch.LongTensor],
|
| 255 |
+
indices: Optional[torch.LongTensor],
|
| 256 |
+
head_first: bool = True,
|
| 257 |
+
chunk_size: int = 64
|
| 258 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 259 |
+
if head_first:
|
| 260 |
+
B, H, T, K = a.shape
|
| 261 |
+
else:
|
| 262 |
+
B, T, H, K = a.shape
|
| 263 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
| 264 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
| 265 |
+
BC = min(BT, 32)
|
| 266 |
+
BK = min(triton.next_power_of_2(K), 64)
|
| 267 |
+
|
| 268 |
+
A = torch.empty(B, *((H, T) if head_first else (T, H)), BT, device=a.device, dtype=a.dtype)
|
| 269 |
+
fwd_fn = fwd_prepare_wy_repr_kernel_chunk64 if BT == 64 else fwd_prepare_wy_repr_kernel_chunk32
|
| 270 |
+
|
| 271 |
+
fwd_fn[(NT, B * H)](
|
| 272 |
+
a=a,
|
| 273 |
+
b=b,
|
| 274 |
+
A=A,
|
| 275 |
+
offsets=offsets,
|
| 276 |
+
indices=indices,
|
| 277 |
+
T=T,
|
| 278 |
+
H=H,
|
| 279 |
+
K=K,
|
| 280 |
+
BT=BT,
|
| 281 |
+
BK=BK,
|
| 282 |
+
BC=BC,
|
| 283 |
+
HEAD_FIRST=head_first
|
| 284 |
+
)
|
| 285 |
+
w, u = fwd_wu(
|
| 286 |
+
a=a,
|
| 287 |
+
v=v,
|
| 288 |
+
k=k,
|
| 289 |
+
A=A,
|
| 290 |
+
offsets=offsets,
|
| 291 |
+
indices=indices,
|
| 292 |
+
head_first=head_first,
|
| 293 |
+
chunk_size=chunk_size
|
| 294 |
+
)
|
| 295 |
+
return w, u, A
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def fwd_wu(
|
| 299 |
+
a: torch.Tensor,
|
| 300 |
+
v: torch.Tensor,
|
| 301 |
+
k: torch.Tensor,
|
| 302 |
+
A: torch.Tensor,
|
| 303 |
+
offsets: Optional[torch.LongTensor],
|
| 304 |
+
indices: Optional[torch.LongTensor],
|
| 305 |
+
head_first: bool,
|
| 306 |
+
chunk_size: int
|
| 307 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 308 |
+
if head_first:
|
| 309 |
+
B, H, T, K, V = *a.shape, v.shape[-1]
|
| 310 |
+
else:
|
| 311 |
+
B, T, H, K, V = *a.shape, v.shape[-1]
|
| 312 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
| 313 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
| 314 |
+
CONST_TILING = 64 if check_shared_mem() else 32
|
| 315 |
+
BK = min(triton.next_power_of_2(K), CONST_TILING)
|
| 316 |
+
BV = min(triton.next_power_of_2(V), CONST_TILING)
|
| 317 |
+
|
| 318 |
+
u = torch.empty_like(v)
|
| 319 |
+
w = torch.empty_like(a)
|
| 320 |
+
fwd_wu_kernel[(NT, B*H)](
|
| 321 |
+
a=a,
|
| 322 |
+
v=v,
|
| 323 |
+
w=w,
|
| 324 |
+
u=u,
|
| 325 |
+
A=A,
|
| 326 |
+
k=k,
|
| 327 |
+
offsets=offsets,
|
| 328 |
+
indices=indices,
|
| 329 |
+
T=T,
|
| 330 |
+
H=H,
|
| 331 |
+
K=K,
|
| 332 |
+
V=V,
|
| 333 |
+
BT=BT,
|
| 334 |
+
BK=BK,
|
| 335 |
+
BV=BV,
|
| 336 |
+
HEAD_FIRST=head_first
|
| 337 |
+
)
|
| 338 |
+
return w, u
|
fla/ops/gla/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (333 Bytes). View file
|
|
|
fla/ops/gla/__pycache__/chunk.cpython-312.pyc
ADDED
|
Binary file (81.8 kB). View file
|
|
|
fla/ops/gla/__pycache__/fused_chunk.cpython-312.pyc
ADDED
|
Binary file (35.3 kB). View file
|
|
|
fla/ops/gla/__pycache__/fused_recurrent.cpython-312.pyc
ADDED
|
Binary file (5.69 kB). View file
|
|
|
fla/ops/gsa/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from .chunk import chunk_gsa
|
| 4 |
+
from .fused_recurrent import fused_recurrent_gsa
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
'chunk_gsa',
|
| 8 |
+
'fused_recurrent_gsa'
|
| 9 |
+
]
|
fla/ops/gsa/naive.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from einops import repeat
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def naive_recurrent_gsa(
|
| 10 |
+
q: torch.Tensor,
|
| 11 |
+
k: torch.Tensor,
|
| 12 |
+
v: torch.Tensor,
|
| 13 |
+
s: torch.Tensor,
|
| 14 |
+
g: Optional[torch.Tensor] = None,
|
| 15 |
+
scale: Optional[int] = None,
|
| 16 |
+
initial_state: Optional[torch.Tensor] = None,
|
| 17 |
+
output_final_state: Optional[bool] = False
|
| 18 |
+
) -> torch.Tensor:
|
| 19 |
+
dtype = q.dtype
|
| 20 |
+
|
| 21 |
+
NG = q.shape[1]//k.shape[1]
|
| 22 |
+
# [batch_size, n_heads, seq_len, n_slots]
|
| 23 |
+
if g is None:
|
| 24 |
+
z = s.float().logcumsumexp(2)
|
| 25 |
+
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
| 26 |
+
s = torch.exp(s - z)
|
| 27 |
+
q, k, v, s, g = map(lambda x: x.float(), (q, k, v, s, g))
|
| 28 |
+
k, v, s, g = map(lambda x: repeat(x, 'b h t d -> b (h g) t d', g=NG), (k, v, s, g))
|
| 29 |
+
if initial_state is not None:
|
| 30 |
+
initial_state = tuple(map(lambda x: repeat(x, 'b h k v -> b (h g) k v', g=NG), initial_state))
|
| 31 |
+
|
| 32 |
+
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
| 33 |
+
|
| 34 |
+
hk = torch.zeros(B, H, K, M, dtype=torch.float, device=q.device)
|
| 35 |
+
ok = torch.zeros_like(s)
|
| 36 |
+
|
| 37 |
+
if scale is None:
|
| 38 |
+
scale = q.shape[-1] ** -0.5
|
| 39 |
+
|
| 40 |
+
final_state = None
|
| 41 |
+
if initial_state is not None:
|
| 42 |
+
hk += initial_state[0]
|
| 43 |
+
|
| 44 |
+
for i in range(T):
|
| 45 |
+
q_i = q[:, :, i] * scale
|
| 46 |
+
k_i = k[:, :, i]
|
| 47 |
+
v_i = s[:, :, i]
|
| 48 |
+
g_i = g[:, :, i].exp()
|
| 49 |
+
hk = hk * g_i[..., None, :] + k_i[..., None] * v_i[..., None, :]
|
| 50 |
+
ok[:, :, i] = (q_i[..., None] * hk).sum(-2)
|
| 51 |
+
|
| 52 |
+
qv = ok.softmax(-1)
|
| 53 |
+
hv = torch.zeros(B, H, M, V, dtype=torch.float, device=q.device)
|
| 54 |
+
ov = torch.zeros_like(v)
|
| 55 |
+
if initial_state is not None:
|
| 56 |
+
hv += initial_state[1]
|
| 57 |
+
|
| 58 |
+
for i in range(T):
|
| 59 |
+
q_i = qv[:, :, i]
|
| 60 |
+
k_i = s[:, :, i]
|
| 61 |
+
v_i = v[:, :, i]
|
| 62 |
+
g_i = g[:, :, i].exp()
|
| 63 |
+
hv = hv * g_i[..., :, None] + k_i[..., None] * v_i[..., None, :]
|
| 64 |
+
ov[:, :, i] = (q_i[..., None] * hv).sum(-2)
|
| 65 |
+
|
| 66 |
+
if output_final_state:
|
| 67 |
+
final_state = (hk.view(B, -1, NG, K, M)[:, :, 0], hv.view(B, -1, NG, M, V)[:, :, 0])
|
| 68 |
+
return ov.to(dtype), final_state
|
fla/ops/hgrn/__pycache__/fused_recurrent.cpython-312.pyc
ADDED
|
Binary file (14.3 kB). View file
|
|
|
fla/ops/hgrn/chunk.py
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
# this function implements the chunkwise form of HGRN, inspired by
|
| 5 |
+
# [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html)
|
| 6 |
+
# also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan
|
| 7 |
+
|
| 8 |
+
# from tests on H800, with B, D = 16, 128, we see that the chunk can be greatly faster than the recurrent:
|
| 9 |
+
#
|
| 10 |
+
# Performance:
|
| 11 |
+
# seq_len chunk recurrent chunk_bwd recurrent_bwd
|
| 12 |
+
# 0 128.0 0.039360 0.061056 0.312160 0.205008
|
| 13 |
+
# 1 256.0 0.045824 0.123712 0.308784 0.297696
|
| 14 |
+
# 2 512.0 0.058688 0.241952 0.310720 0.626528
|
| 15 |
+
# 3 1024.0 0.088288 0.476992 0.313184 1.333152
|
| 16 |
+
# 4 2048.0 0.169472 0.943264 0.452464 2.724864
|
| 17 |
+
# 5 4096.0 0.329920 1.886144 0.881600 5.551520
|
| 18 |
+
# 6 8192.0 0.647872 3.755040 1.740496 11.117184
|
| 19 |
+
# 7 16384.0 1.272064 7.520576 3.446608 22.362528
|
| 20 |
+
|
| 21 |
+
from typing import Tuple
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import triton
|
| 25 |
+
import triton.language as tl
|
| 26 |
+
|
| 27 |
+
from fla.ops.utils.op import exp
|
| 28 |
+
from fla.utils import input_guard
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@triton.autotune(
|
| 32 |
+
configs=[
|
| 33 |
+
triton.Config({'BD': 32}, num_warps=1),
|
| 34 |
+
triton.Config({'BD': 32}, num_warps=2),
|
| 35 |
+
triton.Config({'BD': 32}, num_warps=4),
|
| 36 |
+
triton.Config({'BD': 32}, num_warps=8),
|
| 37 |
+
triton.Config({'BD': 64}, num_warps=1),
|
| 38 |
+
triton.Config({'BD': 64}, num_warps=2),
|
| 39 |
+
triton.Config({'BD': 64}, num_warps=4),
|
| 40 |
+
triton.Config({'BD': 64}, num_warps=8),
|
| 41 |
+
triton.Config({'BD': 128}, num_warps=1),
|
| 42 |
+
triton.Config({'BD': 128}, num_warps=2),
|
| 43 |
+
triton.Config({'BD': 128}, num_warps=4),
|
| 44 |
+
triton.Config({'BD': 128}, num_warps=8),
|
| 45 |
+
],
|
| 46 |
+
key=['D']
|
| 47 |
+
)
|
| 48 |
+
@triton.jit(do_not_specialize=['T'])
|
| 49 |
+
def chunk_hgrn_fwd_kernel_h(
|
| 50 |
+
x,
|
| 51 |
+
g,
|
| 52 |
+
gc,
|
| 53 |
+
o,
|
| 54 |
+
h0,
|
| 55 |
+
T,
|
| 56 |
+
D: tl.constexpr,
|
| 57 |
+
BT: tl.constexpr,
|
| 58 |
+
BD: tl.constexpr,
|
| 59 |
+
USE_INITIAL_STATE: tl.constexpr
|
| 60 |
+
):
|
| 61 |
+
i_d, i_t, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 62 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
| 63 |
+
mask = o_d < D
|
| 64 |
+
|
| 65 |
+
p_x = x + i_b * T * D + i_t * BT * D + o_d
|
| 66 |
+
p_g = g + i_b * T * D + i_t * BT * D + o_d
|
| 67 |
+
p_gc = gc + i_b * T * D + i_t * BT * D + o_d
|
| 68 |
+
p_o = o + i_b * T * D + i_t * BT * D + o_d
|
| 69 |
+
|
| 70 |
+
b_h = tl.zeros([BD], dtype=tl.float32)
|
| 71 |
+
b_gc = tl.zeros([BD], dtype=tl.float32)
|
| 72 |
+
if USE_INITIAL_STATE:
|
| 73 |
+
if i_t == 0:
|
| 74 |
+
b_h += tl.load(h0 + i_b * D + o_d, mask=mask, other=0).to(tl.float32)
|
| 75 |
+
for i in range(0, BT):
|
| 76 |
+
mask_t = mask & ((i_t * BT + i) < T)
|
| 77 |
+
b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32)
|
| 78 |
+
b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32)
|
| 79 |
+
b_h = exp(b_g) * b_h + b_x
|
| 80 |
+
b_gc = b_gc + b_g
|
| 81 |
+
tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t)
|
| 82 |
+
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t)
|
| 83 |
+
|
| 84 |
+
p_x += D
|
| 85 |
+
p_g += D
|
| 86 |
+
p_gc += D
|
| 87 |
+
p_o += D
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
@triton.jit(do_not_specialize=['T'])
|
| 91 |
+
def chunk_hgrn_fwd_kernel_o(
|
| 92 |
+
gc,
|
| 93 |
+
o,
|
| 94 |
+
s_b,
|
| 95 |
+
s_t,
|
| 96 |
+
s_d,
|
| 97 |
+
T,
|
| 98 |
+
D: tl.constexpr,
|
| 99 |
+
BT: tl.constexpr,
|
| 100 |
+
BD: tl.constexpr
|
| 101 |
+
):
|
| 102 |
+
i_d, i_b = tl.program_id(0), tl.program_id(1)
|
| 103 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
| 104 |
+
mask = o_d < D
|
| 105 |
+
|
| 106 |
+
for i_t in range(1, tl.cdiv(T, BT)):
|
| 107 |
+
p_gc = tl.make_block_ptr(gc + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
|
| 108 |
+
p_o = tl.make_block_ptr(o + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
|
| 109 |
+
|
| 110 |
+
# [BD,]
|
| 111 |
+
b_h0 = tl.load(o + i_b * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32)
|
| 112 |
+
# [BT, BD]
|
| 113 |
+
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
|
| 114 |
+
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
|
| 115 |
+
b_o = b_o + exp(b_gc) * b_h0[None, :]
|
| 116 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@triton.autotune(
|
| 120 |
+
configs=[
|
| 121 |
+
triton.Config({'BD': BD}, num_warps=num_warps)
|
| 122 |
+
for BD in [32, 64, 128]
|
| 123 |
+
for num_warps in [1, 2, 4, 8]
|
| 124 |
+
],
|
| 125 |
+
key=['D']
|
| 126 |
+
)
|
| 127 |
+
@triton.jit(do_not_specialize=['T'])
|
| 128 |
+
def chunk_hgrn_bwd_kernel_h(
|
| 129 |
+
g,
|
| 130 |
+
gc,
|
| 131 |
+
dx,
|
| 132 |
+
do,
|
| 133 |
+
T,
|
| 134 |
+
D: tl.constexpr,
|
| 135 |
+
BT: tl.constexpr,
|
| 136 |
+
BD: tl.constexpr
|
| 137 |
+
):
|
| 138 |
+
i_d, i_t, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 139 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
| 140 |
+
mask = o_d < D
|
| 141 |
+
BC = min(BT, T - i_t * BT)
|
| 142 |
+
NT = tl.num_programs(1)
|
| 143 |
+
|
| 144 |
+
p_g = g + (i_b * T + i_t * BT + BC - 1) * D + o_d
|
| 145 |
+
p_gc = gc + (i_b * T + i_t * BT + BC - 1) * D + o_d
|
| 146 |
+
p_dx = dx + (i_b * T + i_t * BT + BC - 1) * D + o_d
|
| 147 |
+
p_do = do + (i_b * T + i_t * BT + BC - 1) * D + o_d
|
| 148 |
+
|
| 149 |
+
if i_t == NT - 1:
|
| 150 |
+
b_gc = tl.zeros([BD], dtype=tl.float32)
|
| 151 |
+
else:
|
| 152 |
+
b_gc = tl.load(g + (i_b * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32)
|
| 153 |
+
b_dh = tl.zeros([BD], dtype=tl.float32)
|
| 154 |
+
for _ in range(BC - 1, -1, -1):
|
| 155 |
+
tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask)
|
| 156 |
+
|
| 157 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
| 158 |
+
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
|
| 159 |
+
|
| 160 |
+
b_gc = b_gc + b_g
|
| 161 |
+
b_dh = b_dh + b_do
|
| 162 |
+
b_dx = b_dh
|
| 163 |
+
b_dh = b_dh * exp(b_g)
|
| 164 |
+
|
| 165 |
+
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
|
| 166 |
+
|
| 167 |
+
p_g -= D
|
| 168 |
+
p_gc -= D
|
| 169 |
+
p_dx -= D
|
| 170 |
+
p_do -= D
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
@triton.jit(do_not_specialize=['T'])
|
| 174 |
+
def chunk_hgrn_bwd_kernel_o(
|
| 175 |
+
g,
|
| 176 |
+
gc,
|
| 177 |
+
o,
|
| 178 |
+
dx,
|
| 179 |
+
dg,
|
| 180 |
+
s_b,
|
| 181 |
+
s_t,
|
| 182 |
+
s_d,
|
| 183 |
+
T,
|
| 184 |
+
D: tl.constexpr,
|
| 185 |
+
BT: tl.constexpr,
|
| 186 |
+
BD: tl.constexpr
|
| 187 |
+
):
|
| 188 |
+
i_d, i_b = tl.program_id(0), tl.program_id(1)
|
| 189 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
| 190 |
+
mask = o_d < D
|
| 191 |
+
|
| 192 |
+
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
|
| 193 |
+
p_g = tl.make_block_ptr(g + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
|
| 194 |
+
p_gc = tl.make_block_ptr(gc + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
|
| 195 |
+
p_o = tl.make_block_ptr(o + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0))
|
| 196 |
+
p_dx = tl.make_block_ptr(dx + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
|
| 197 |
+
p_dg = tl.make_block_ptr(dg + i_b * s_b, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
|
| 198 |
+
|
| 199 |
+
# [BD,]
|
| 200 |
+
mask_t = mask & ((i_t + 1) * BT < T)
|
| 201 |
+
b_ht = tl.load(dx + i_b * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32)
|
| 202 |
+
# [BT, BD]
|
| 203 |
+
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
|
| 204 |
+
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
|
| 205 |
+
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
|
| 206 |
+
b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32)
|
| 207 |
+
|
| 208 |
+
b_dx = b_dx + exp(b_gc) * b_ht[None, :]
|
| 209 |
+
b_dg = b_o * b_dx * exp(b_g)
|
| 210 |
+
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1))
|
| 211 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
class ChunkHGRNFunction(torch.autograd.Function):
|
| 215 |
+
|
| 216 |
+
@staticmethod
|
| 217 |
+
@input_guard
|
| 218 |
+
def forward(ctx, x, g, initial_state=None, output_final_state=False):
|
| 219 |
+
B, T, D = x.shape
|
| 220 |
+
BT, BD = 128, min(64, triton.next_power_of_2(D))
|
| 221 |
+
num_warps = 8 if BD == 64 else 4
|
| 222 |
+
|
| 223 |
+
gc = torch.empty_like(g, dtype=torch.float)
|
| 224 |
+
o = torch.empty_like(x, dtype=torch.float)
|
| 225 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B)
|
| 226 |
+
chunk_hgrn_fwd_kernel_h[grid](
|
| 227 |
+
x, g, gc, o, initial_state,
|
| 228 |
+
T=T, D=D, BT=BT,
|
| 229 |
+
USE_INITIAL_STATE=initial_state is not None
|
| 230 |
+
)
|
| 231 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), B)
|
| 232 |
+
chunk_hgrn_fwd_kernel_o[grid](
|
| 233 |
+
gc, o,
|
| 234 |
+
o.stride(-3), o.stride(-2), o.stride(-1),
|
| 235 |
+
T=T, D=D, BT=BT, BD=BD,
|
| 236 |
+
num_warps=num_warps
|
| 237 |
+
)
|
| 238 |
+
final_state = None
|
| 239 |
+
if output_final_state:
|
| 240 |
+
final_state = o[:, -1].clone()
|
| 241 |
+
o = o.to(x.dtype)
|
| 242 |
+
ctx.save_for_backward(g, o, initial_state)
|
| 243 |
+
return o, final_state
|
| 244 |
+
|
| 245 |
+
@staticmethod
|
| 246 |
+
@input_guard
|
| 247 |
+
def backward(ctx, do, dht=None):
|
| 248 |
+
g, o, initial_state = ctx.saved_tensors
|
| 249 |
+
B, T, D = do.shape
|
| 250 |
+
BT, BD = 128, min(64, triton.next_power_of_2(D))
|
| 251 |
+
num_warps = 8 if BD == 64 else 4
|
| 252 |
+
|
| 253 |
+
gc = torch.empty_like(g, dtype=torch.float)
|
| 254 |
+
dx = torch.empty_like(o, dtype=torch.float)
|
| 255 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B)
|
| 256 |
+
chunk_hgrn_bwd_kernel_h[grid](
|
| 257 |
+
g, gc, dx, do,
|
| 258 |
+
T=T, D=D, BT=BT
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
dg = torch.empty_like(g, dtype=torch.float)
|
| 262 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), B)
|
| 263 |
+
chunk_hgrn_bwd_kernel_o[grid](
|
| 264 |
+
g, gc, o, dx, dg,
|
| 265 |
+
o.stride(-3), o.stride(-2), o.stride(-1),
|
| 266 |
+
T=T, D=D, BT=BT, BD=BD,
|
| 267 |
+
num_warps=num_warps
|
| 268 |
+
)
|
| 269 |
+
if initial_state is not None:
|
| 270 |
+
dg[:, 0] = (initial_state * dx[:, 0] * g[:, 0].float().exp()).to(dg.dtype)
|
| 271 |
+
|
| 272 |
+
return dx.to(o.dtype), dg, None, None
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
@torch.compiler.disable
|
| 276 |
+
def chunk_hgrn(
|
| 277 |
+
x: torch.Tensor,
|
| 278 |
+
g: torch.Tensor,
|
| 279 |
+
initial_state: torch.Tensor = None,
|
| 280 |
+
output_final_state: bool = False
|
| 281 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 282 |
+
return ChunkHGRNFunction.apply(x, g, initial_state, output_final_state)
|
fla/ops/hgrn/fused_recurrent.py
ADDED
|
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.utils.op import exp
|
| 11 |
+
from fla.utils import input_guard
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@triton.heuristics({
|
| 15 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
| 16 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
| 17 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 18 |
+
})
|
| 19 |
+
@triton.autotune(
|
| 20 |
+
configs=[
|
| 21 |
+
triton.Config({'BD': BD}, num_warps=num_warps)
|
| 22 |
+
for BD in [32, 64, 128]
|
| 23 |
+
for num_warps in [1, 2, 4, 8]
|
| 24 |
+
],
|
| 25 |
+
key=['D']
|
| 26 |
+
)
|
| 27 |
+
@triton.jit(do_not_specialize=['T'])
|
| 28 |
+
def fused_recurrent_hgrn_fwd_kernel(
|
| 29 |
+
x,
|
| 30 |
+
g,
|
| 31 |
+
o,
|
| 32 |
+
h0,
|
| 33 |
+
ht,
|
| 34 |
+
offsets,
|
| 35 |
+
T,
|
| 36 |
+
D: tl.constexpr,
|
| 37 |
+
BD: tl.constexpr,
|
| 38 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 39 |
+
STORE_FINAL_STATE: tl.constexpr,
|
| 40 |
+
USE_OFFSETS: tl.constexpr
|
| 41 |
+
):
|
| 42 |
+
i_d, i_n = tl.program_id(0), tl.program_id(1)
|
| 43 |
+
if USE_OFFSETS:
|
| 44 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
| 45 |
+
T = eos - bos
|
| 46 |
+
else:
|
| 47 |
+
bos, eos = i_n * T, i_n * T + T
|
| 48 |
+
|
| 49 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
| 50 |
+
mask = o_d < D
|
| 51 |
+
|
| 52 |
+
p_x = x + bos * D + o_d
|
| 53 |
+
p_g = g + bos * D + o_d
|
| 54 |
+
p_o = o + bos * D + o_d
|
| 55 |
+
|
| 56 |
+
b_h = tl.zeros([BD], dtype=tl.float32)
|
| 57 |
+
if USE_INITIAL_STATE:
|
| 58 |
+
p_h0 = h0 + i_n * D + o_d
|
| 59 |
+
b_h += tl.load(p_h0, mask=mask, other=0).to(tl.float32)
|
| 60 |
+
for _ in range(0, T):
|
| 61 |
+
b_x = tl.load(p_x, mask=mask, other=0).to(tl.float32)
|
| 62 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
| 63 |
+
b_h = exp(b_g) * b_h + b_x
|
| 64 |
+
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask)
|
| 65 |
+
|
| 66 |
+
p_x += D
|
| 67 |
+
p_g += D
|
| 68 |
+
p_o += D
|
| 69 |
+
|
| 70 |
+
if STORE_FINAL_STATE:
|
| 71 |
+
p_ht = ht + i_n * D + o_d
|
| 72 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@triton.heuristics({
|
| 76 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
| 77 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
| 78 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
| 79 |
+
})
|
| 80 |
+
@triton.autotune(
|
| 81 |
+
configs=[
|
| 82 |
+
triton.Config({'BD': BD}, num_warps=num_warps)
|
| 83 |
+
for BD in [32, 64, 128]
|
| 84 |
+
for num_warps in [1, 2, 4, 8]
|
| 85 |
+
],
|
| 86 |
+
key=['D']
|
| 87 |
+
)
|
| 88 |
+
@triton.jit(do_not_specialize=['T'])
|
| 89 |
+
def fused_recurrent_hgrn_bwd_kernel(
|
| 90 |
+
g,
|
| 91 |
+
o,
|
| 92 |
+
h0,
|
| 93 |
+
dx,
|
| 94 |
+
dg,
|
| 95 |
+
do,
|
| 96 |
+
dht,
|
| 97 |
+
dh0,
|
| 98 |
+
offsets,
|
| 99 |
+
T,
|
| 100 |
+
D: tl.constexpr,
|
| 101 |
+
BD: tl.constexpr,
|
| 102 |
+
USE_INITIAL_STATE: tl.constexpr,
|
| 103 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
| 104 |
+
USE_OFFSETS: tl.constexpr
|
| 105 |
+
):
|
| 106 |
+
i_d, i_n = tl.program_id(0), tl.program_id(1)
|
| 107 |
+
if USE_OFFSETS:
|
| 108 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
| 109 |
+
T = eos - bos
|
| 110 |
+
else:
|
| 111 |
+
bos, eos = i_n * T, i_n * T + T
|
| 112 |
+
|
| 113 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
| 114 |
+
mask = o_d < D
|
| 115 |
+
|
| 116 |
+
p_g = g + (bos + T - 1) * D + o_d
|
| 117 |
+
p_o = o + (bos + T - 2) * D + o_d
|
| 118 |
+
p_dx = dx + (bos + T - 1) * D + o_d
|
| 119 |
+
p_dg = dg + (bos + T - 1) * D + o_d
|
| 120 |
+
p_do = do + (bos + T - 1) * D + o_d
|
| 121 |
+
|
| 122 |
+
b_dh = tl.zeros([BD], dtype=tl.float32)
|
| 123 |
+
if USE_FINAL_STATE_GRADIENT:
|
| 124 |
+
p_dht = dht + i_n * D + o_d
|
| 125 |
+
b_dh += tl.load(p_dht, mask=mask, other=0).to(tl.float32)
|
| 126 |
+
|
| 127 |
+
for i in range(T - 1, -1, -1):
|
| 128 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
| 129 |
+
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
|
| 130 |
+
if i > 0:
|
| 131 |
+
b_o = tl.load(p_o, mask=mask, other=0).to(tl.float32)
|
| 132 |
+
elif USE_INITIAL_STATE:
|
| 133 |
+
b_o = tl.load(h0 + i_n * D + o_d, mask=mask, other=0).to(tl.float32)
|
| 134 |
+
else:
|
| 135 |
+
b_o = tl.zeros([BD], dtype=tl.float32)
|
| 136 |
+
|
| 137 |
+
b_dh = b_dh + b_do
|
| 138 |
+
b_dx = b_dh
|
| 139 |
+
b_dh = b_dh * exp(b_g)
|
| 140 |
+
b_dg = b_dh * b_o
|
| 141 |
+
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
|
| 142 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), mask=mask)
|
| 143 |
+
|
| 144 |
+
p_g -= D
|
| 145 |
+
p_o -= D
|
| 146 |
+
p_dx -= D
|
| 147 |
+
p_dg -= D
|
| 148 |
+
p_do -= D
|
| 149 |
+
|
| 150 |
+
if USE_INITIAL_STATE:
|
| 151 |
+
p_dh0 = dh0 + i_n * D + o_d
|
| 152 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def fused_recurrent_hgrn_fwd(
|
| 156 |
+
x: torch.Tensor,
|
| 157 |
+
g: torch.Tensor,
|
| 158 |
+
initial_state: torch.Tensor = None,
|
| 159 |
+
output_final_state: bool = False,
|
| 160 |
+
offsets: Optional[torch.LongTensor] = None,
|
| 161 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 162 |
+
B, T, D = x.shape
|
| 163 |
+
N = B if offsets is None else len(offsets) - 1
|
| 164 |
+
|
| 165 |
+
o = torch.empty_like(x)
|
| 166 |
+
final_state = x.new_empty(N, D) if output_final_state else None
|
| 167 |
+
|
| 168 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), N)
|
| 169 |
+
fused_recurrent_hgrn_fwd_kernel[grid](
|
| 170 |
+
x=x,
|
| 171 |
+
g=g,
|
| 172 |
+
o=o,
|
| 173 |
+
h0=initial_state,
|
| 174 |
+
ht=final_state,
|
| 175 |
+
offsets=offsets,
|
| 176 |
+
T=T,
|
| 177 |
+
D=D
|
| 178 |
+
)
|
| 179 |
+
return o, final_state
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def fused_recurrent_hgrn_bwd(
|
| 183 |
+
g: torch.Tensor,
|
| 184 |
+
o: torch.Tensor,
|
| 185 |
+
do: torch.Tensor,
|
| 186 |
+
dht: torch.Tensor = None,
|
| 187 |
+
initial_state: torch.Tensor = None,
|
| 188 |
+
offsets: Optional[torch.LongTensor] = None
|
| 189 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 190 |
+
B, T, D = do.shape
|
| 191 |
+
N = B if offsets is None else len(offsets) - 1
|
| 192 |
+
|
| 193 |
+
dx = torch.empty_like(o, dtype=torch.float)
|
| 194 |
+
dg = torch.empty_like(g, dtype=torch.float)
|
| 195 |
+
dh0 = torch.empty_like(initial_state, dtype=torch.float) if initial_state is not None else None
|
| 196 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), N)
|
| 197 |
+
fused_recurrent_hgrn_bwd_kernel[grid](
|
| 198 |
+
g=g,
|
| 199 |
+
o=o,
|
| 200 |
+
h0=initial_state,
|
| 201 |
+
dx=dx,
|
| 202 |
+
dg=dg,
|
| 203 |
+
do=do,
|
| 204 |
+
dht=dht,
|
| 205 |
+
dh0=dh0,
|
| 206 |
+
offsets=offsets,
|
| 207 |
+
T=T,
|
| 208 |
+
D=D
|
| 209 |
+
)
|
| 210 |
+
return dx, dg, dh0
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class FusedRecurrentHGRNFunction(torch.autograd.Function):
|
| 214 |
+
|
| 215 |
+
@staticmethod
|
| 216 |
+
@input_guard
|
| 217 |
+
def forward(
|
| 218 |
+
ctx,
|
| 219 |
+
x: torch.Tensor,
|
| 220 |
+
g: torch.Tensor,
|
| 221 |
+
initial_state: torch.Tensor = None,
|
| 222 |
+
output_final_state: bool = False,
|
| 223 |
+
offsets: Optional[torch.LongTensor] = None
|
| 224 |
+
):
|
| 225 |
+
o, ht = fused_recurrent_hgrn_fwd(
|
| 226 |
+
x=x,
|
| 227 |
+
g=g,
|
| 228 |
+
initial_state=initial_state,
|
| 229 |
+
output_final_state=output_final_state,
|
| 230 |
+
offsets=offsets
|
| 231 |
+
)
|
| 232 |
+
ctx.save_for_backward(g, o, initial_state)
|
| 233 |
+
ctx.offsets = offsets
|
| 234 |
+
return o, ht
|
| 235 |
+
|
| 236 |
+
@staticmethod
|
| 237 |
+
@input_guard
|
| 238 |
+
def backward(ctx, do, dht=None):
|
| 239 |
+
g, o, initial_state = ctx.saved_tensors
|
| 240 |
+
offsets = ctx.offsets
|
| 241 |
+
|
| 242 |
+
dx, dg, dh0 = fused_recurrent_hgrn_bwd(
|
| 243 |
+
g=g,
|
| 244 |
+
o=o,
|
| 245 |
+
do=do,
|
| 246 |
+
dht=dht,
|
| 247 |
+
initial_state=initial_state,
|
| 248 |
+
offsets=offsets
|
| 249 |
+
)
|
| 250 |
+
return dx, dg, dh0, None, None
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
@torch.compiler.disable
|
| 254 |
+
def fused_recurrent_hgrn(
|
| 255 |
+
x: torch.Tensor,
|
| 256 |
+
g: torch.Tensor,
|
| 257 |
+
initial_state: torch.Tensor = None,
|
| 258 |
+
output_final_state: bool = False,
|
| 259 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
| 260 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 261 |
+
r"""
|
| 262 |
+
Args:
|
| 263 |
+
x (torch.Tensor):
|
| 264 |
+
inputs of shape `[B, T, D].
|
| 265 |
+
g (torch.Tensor):
|
| 266 |
+
Forget gates of shape `[B, T, D]`.
|
| 267 |
+
initial_state (Optional[torch.Tensor]):
|
| 268 |
+
Initial state of shape `[N, D]` for `N` input sequences.
|
| 269 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
| 270 |
+
Default: `None`.
|
| 271 |
+
output_final_state (Optional[bool]):
|
| 272 |
+
Whether to output the final state of shape `[N, D]`. Default: `False`.
|
| 273 |
+
cu_seqlens (torch.LongTensor):
|
| 274 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
| 275 |
+
consistent with the FlashAttention API.
|
| 276 |
+
|
| 277 |
+
Returns:
|
| 278 |
+
o (torch.Tensor):
|
| 279 |
+
Outputs of shape `[B, T, D]`.
|
| 280 |
+
final_state (torch.Tensor):
|
| 281 |
+
Final state of shape `[N, D]` if `output_final_state=True` else `None`.
|
| 282 |
+
|
| 283 |
+
Examples::
|
| 284 |
+
>>> import torch
|
| 285 |
+
>>> import torch.nn.functional as F
|
| 286 |
+
>>> from einops import rearrange
|
| 287 |
+
>>> from fla.ops.hgrn import fused_recurrent_hgrn
|
| 288 |
+
# inputs with equal lengths
|
| 289 |
+
>>> B, T, D = 4, 2048, 512
|
| 290 |
+
>>> x = torch.randn(B, T, D, device='cuda')
|
| 291 |
+
>>> g = F.logsigmoid(torch.randn(B, T, D, device='cuda'))
|
| 292 |
+
>>> h0 = torch.randn(B, D, device='cuda')
|
| 293 |
+
>>> o, ht = fused_recurrent_hgrn(x, g, initial_state=h0, output_final_state=True)
|
| 294 |
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
| 295 |
+
>>> x, g = map(lambda x: rearrange(x, 'b t d -> 1 (b t) d'), (x, g))
|
| 296 |
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
| 297 |
+
>>> cu_seqlens = x.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
| 298 |
+
>>> o_var, ht_var = fused_recurrent_hgrn(x, g, initial_state=h0, output_final_state=True, cu_seqlens=cu_seqlens)
|
| 299 |
+
>>> assert o.allclose(o_var.view(o.shape))
|
| 300 |
+
>>> assert ht.allclose(ht_var)
|
| 301 |
+
"""
|
| 302 |
+
return FusedRecurrentHGRNFunction.apply(
|
| 303 |
+
x,
|
| 304 |
+
g,
|
| 305 |
+
initial_state,
|
| 306 |
+
output_final_state,
|
| 307 |
+
cu_seqlens
|
| 308 |
+
)
|
fla/ops/lightning_attn/__pycache__/fused_recurrent.cpython-312.pyc
ADDED
|
Binary file (3.75 kB). View file
|
|
|
fla/ops/linear_attn/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (365 Bytes). View file
|
|
|
fla/ops/linear_attn/__pycache__/utils.cpython-312.pyc
ADDED
|
Binary file (554 Bytes). View file
|
|
|
fla/ops/linear_attn/fused_recurrent.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import triton
|
| 8 |
+
import triton.language as tl
|
| 9 |
+
|
| 10 |
+
from fla.ops.linear_attn.utils import normalize_output
|
| 11 |
+
from fla.utils import input_guard
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@triton.jit
|
| 15 |
+
def fused_recurrent_linear_attn_fwd_kernel(
|
| 16 |
+
q, # query [B, H, L, K]
|
| 17 |
+
k, # key [B, H, L, V]
|
| 18 |
+
v, # value [B, H, L, V]
|
| 19 |
+
o, # output [B, H, L, V]
|
| 20 |
+
h0,
|
| 21 |
+
ht, # final hidden state [B, H, K, V]
|
| 22 |
+
|
| 23 |
+
s_k_h, # stride size: L * K
|
| 24 |
+
s_v_h, # stride size: L * V
|
| 25 |
+
|
| 26 |
+
scale,
|
| 27 |
+
B, # batch size
|
| 28 |
+
H, # H
|
| 29 |
+
T, # T
|
| 30 |
+
K: tl.constexpr, # K
|
| 31 |
+
V: tl.constexpr, # V
|
| 32 |
+
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
| 33 |
+
BV: tl.constexpr, # BLOCK SIZE along the V dimension
|
| 34 |
+
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
|
| 35 |
+
STORE_FINAL_STATE: tl.constexpr, # whether to store final state
|
| 36 |
+
):
|
| 37 |
+
# indices
|
| 38 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 39 |
+
|
| 40 |
+
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
|
| 41 |
+
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
|
| 42 |
+
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV)
|
| 43 |
+
p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV)
|
| 44 |
+
|
| 45 |
+
mask_bk = (i_k * BK + tl.arange(0, BK)) < K
|
| 46 |
+
mask_bv = (i_v * BV + tl.arange(0, BV)) < V
|
| 47 |
+
mask_kv = mask_bk[None, :] & mask_bv[:, None]
|
| 48 |
+
|
| 49 |
+
b_h = tl.zeros([BV, BK], dtype=tl.float32)
|
| 50 |
+
|
| 51 |
+
if USE_INITIAL_STATE:
|
| 52 |
+
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
| 53 |
+
b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
|
| 54 |
+
|
| 55 |
+
for _ in range(0, T):
|
| 56 |
+
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
| 57 |
+
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
| 58 |
+
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
|
| 59 |
+
|
| 60 |
+
b_h += b_k[None, :] * b_v[:, None]
|
| 61 |
+
b_o = b_h * b_q[None, :]
|
| 62 |
+
b_o = tl.sum(b_o, axis=1)
|
| 63 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv)
|
| 64 |
+
|
| 65 |
+
p_q += K
|
| 66 |
+
p_k += K
|
| 67 |
+
p_o += V
|
| 68 |
+
p_v += V
|
| 69 |
+
|
| 70 |
+
if STORE_FINAL_STATE:
|
| 71 |
+
p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
| 72 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_kv)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# Similar to Algorithm1 of https://arxiv.org/abs/2006.16236
|
| 76 |
+
@triton.jit
|
| 77 |
+
def fused_recurrent_linear_attn_bwd_kernel(
|
| 78 |
+
q, # query [B, H, L, K]
|
| 79 |
+
k, # key [B, H, L, V]
|
| 80 |
+
v, # value [B, H, L, V]
|
| 81 |
+
|
| 82 |
+
do, # gradient of output [B, H, L, V]
|
| 83 |
+
dq, # gradient of query [NV, B, H, L, K]
|
| 84 |
+
dk, # gradient of key [NV, B, H, L, K]
|
| 85 |
+
dv, # gradient of value [NK, B, H, L, V]
|
| 86 |
+
h0, # initial hidden state initialization [B, H, K, V]
|
| 87 |
+
|
| 88 |
+
s_k_h, # stride size: L * K
|
| 89 |
+
s_v_h, # stride size: L * V
|
| 90 |
+
scale, # K ** -0.5
|
| 91 |
+
|
| 92 |
+
B, # B
|
| 93 |
+
H, # H
|
| 94 |
+
T, # T
|
| 95 |
+
K: tl.constexpr, # K
|
| 96 |
+
V: tl.constexpr, # V
|
| 97 |
+
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
| 98 |
+
BV: tl.constexpr, # BLOCK SIZE along the V dimension
|
| 99 |
+
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
|
| 100 |
+
):
|
| 101 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 102 |
+
|
| 103 |
+
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
|
| 104 |
+
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
|
| 105 |
+
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV)
|
| 106 |
+
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV)
|
| 107 |
+
|
| 108 |
+
p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK)
|
| 109 |
+
mask_bk = i_k * BK + tl.arange(0, BK) < K
|
| 110 |
+
mask_bv = i_v * BV + tl.arange(0, BV) < V
|
| 111 |
+
|
| 112 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
| 113 |
+
|
| 114 |
+
if USE_INITIAL_STATE:
|
| 115 |
+
mask_kv = mask_bk[:, None] & mask_bv[None, :]
|
| 116 |
+
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
| 117 |
+
b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
|
| 118 |
+
|
| 119 |
+
for _ in range(0, T):
|
| 120 |
+
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
| 121 |
+
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
| 122 |
+
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
|
| 123 |
+
|
| 124 |
+
b_h += b_k[:, None] * b_v[None, :]
|
| 125 |
+
_d_q = b_h * b_do[None, :]
|
| 126 |
+
d_q = tl.sum(_d_q, axis=1) * scale
|
| 127 |
+
tl.store(p_dq, d_q.to(p_dq.dtype.element_ty), mask=mask_bk)
|
| 128 |
+
|
| 129 |
+
p_k += K
|
| 130 |
+
p_do += V
|
| 131 |
+
p_v += V
|
| 132 |
+
p_dq += K
|
| 133 |
+
|
| 134 |
+
# sync threads
|
| 135 |
+
tl.debug_barrier()
|
| 136 |
+
|
| 137 |
+
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K
|
| 138 |
+
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K
|
| 139 |
+
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V
|
| 140 |
+
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V
|
| 141 |
+
p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K
|
| 142 |
+
p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V
|
| 143 |
+
d_h = tl.zeros([BK, BV], dtype=tl.float32)
|
| 144 |
+
|
| 145 |
+
for _ in range(T):
|
| 146 |
+
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
|
| 147 |
+
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
|
| 148 |
+
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
| 149 |
+
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
| 150 |
+
d_h += b_q[:, None] * b_do[None, :]
|
| 151 |
+
d_k = tl.sum(d_h * b_v[None, :], axis=1)
|
| 152 |
+
d_v = tl.sum(d_h * b_k[:, None], axis=0)
|
| 153 |
+
|
| 154 |
+
tl.store(p_dk, d_k.to(p_dk.dtype.element_ty), mask=mask_bk)
|
| 155 |
+
tl.store(p_dv, d_v.to(p_dv.dtype.element_ty), mask=mask_bv)
|
| 156 |
+
|
| 157 |
+
p_do -= V
|
| 158 |
+
p_q -= K
|
| 159 |
+
p_k -= K
|
| 160 |
+
p_v -= V
|
| 161 |
+
p_dk -= K
|
| 162 |
+
p_dv -= V
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class FusedRecurrentLinearAttentionFunction(torch.autograd.Function):
|
| 166 |
+
|
| 167 |
+
@staticmethod
|
| 168 |
+
@input_guard
|
| 169 |
+
def forward(ctx, q, k, v, scale, initial_state=None, output_final_state=False):
|
| 170 |
+
B, H, T, K = q.shape
|
| 171 |
+
V = v.shape[-1]
|
| 172 |
+
|
| 173 |
+
BK, BV = min(K, 32), min(V, 32)
|
| 174 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
| 175 |
+
num_warps = 1
|
| 176 |
+
num_stages = 1
|
| 177 |
+
|
| 178 |
+
o = q.new_empty(NK, B, H, T, V)
|
| 179 |
+
final_state = q.new_empty(B, H, K, V) if output_final_state else None
|
| 180 |
+
|
| 181 |
+
grid = (NV, NK, B * H)
|
| 182 |
+
fused_recurrent_linear_attn_fwd_kernel[grid](
|
| 183 |
+
q, k, v, o, initial_state, final_state,
|
| 184 |
+
q.stride(1),
|
| 185 |
+
v.stride(1), scale,
|
| 186 |
+
B=B, H=H, T=T, K=K, V=V, BK=BK, BV=BV,
|
| 187 |
+
USE_INITIAL_STATE=initial_state is not None,
|
| 188 |
+
STORE_FINAL_STATE=final_state is not None,
|
| 189 |
+
num_warps=num_warps,
|
| 190 |
+
num_stages=num_stages
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
o = o.sum(0)
|
| 194 |
+
ctx.save_for_backward(q, k, v, initial_state)
|
| 195 |
+
ctx.scale = scale
|
| 196 |
+
return o, final_state
|
| 197 |
+
|
| 198 |
+
@staticmethod
|
| 199 |
+
@input_guard
|
| 200 |
+
def backward(ctx, do, dht=None):
|
| 201 |
+
q, k, v, initial_state = ctx.saved_tensors
|
| 202 |
+
B, H, T, K = q.shape
|
| 203 |
+
V = v.shape[-1]
|
| 204 |
+
scale = ctx.scale
|
| 205 |
+
|
| 206 |
+
BK, BV = min(K, 32), min(V, 32)
|
| 207 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
| 208 |
+
num_warps = 1
|
| 209 |
+
num_stages = 1
|
| 210 |
+
|
| 211 |
+
dq = q.new_empty(NV, B, H, T, K)
|
| 212 |
+
dk = q.new_empty(NV, B, H, T, K)
|
| 213 |
+
dv = q.new_empty(NK, B, H, T, V)
|
| 214 |
+
grid = (NV, NK, B * H)
|
| 215 |
+
|
| 216 |
+
fused_recurrent_linear_attn_bwd_kernel[grid](
|
| 217 |
+
q, k, v, do, dq, dk, dv, initial_state,
|
| 218 |
+
q.stride(1),
|
| 219 |
+
v.stride(1),
|
| 220 |
+
scale,
|
| 221 |
+
B=B, H=H, T=T, K=K, V=V, BK=BK, BV=BV,
|
| 222 |
+
USE_INITIAL_STATE=initial_state is not None,
|
| 223 |
+
num_warps=num_warps,
|
| 224 |
+
num_stages=num_stages
|
| 225 |
+
)
|
| 226 |
+
dq = dq.sum(0)
|
| 227 |
+
dk = dk.sum(0)
|
| 228 |
+
dv = dv.sum(0)
|
| 229 |
+
return dq, dk, dv, None, None, None
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def fused_recurrent_linear_attn(
|
| 233 |
+
q: torch.Tensor,
|
| 234 |
+
k: torch.Tensor,
|
| 235 |
+
v: torch.Tensor,
|
| 236 |
+
scale: Optional[float] = None,
|
| 237 |
+
initial_state: torch.Tensor = None,
|
| 238 |
+
output_final_state: bool = False,
|
| 239 |
+
normalize: bool = False,
|
| 240 |
+
head_first: bool = True
|
| 241 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 242 |
+
if scale is None:
|
| 243 |
+
scale = q.shape[-1] ** -0.5
|
| 244 |
+
if not head_first:
|
| 245 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
| 246 |
+
o, final_state = FusedRecurrentLinearAttentionFunction.apply(q, k, v, scale, initial_state, output_final_state)
|
| 247 |
+
if normalize:
|
| 248 |
+
o = normalize_output(q * scale, k, o)
|
| 249 |
+
if not head_first:
|
| 250 |
+
o = o.transpose(1, 2)
|
| 251 |
+
return o, final_state
|
fla/ops/nsa/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (268 Bytes). View file
|
|
|
fla/ops/nsa/__pycache__/naive.cpython-312.pyc
ADDED
|
Binary file (5.82 kB). View file
|
|
|
fla/ops/nsa/__pycache__/parallel.cpython-312.pyc
ADDED
|
Binary file (68.9 kB). View file
|
|
|
fla/ops/rebased/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (226 Bytes). View file
|
|
|
fla/ops/rebased/parallel.py
ADDED
|
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import triton
|
| 7 |
+
import triton.language as tl
|
| 8 |
+
|
| 9 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
| 10 |
+
|
| 11 |
+
# Rebased: Linear Transformers with Learnable Kernel Functions are Better In-Context Models
|
| 12 |
+
# https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/ops/triton/rebased_fast/parallel.py
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@triton.jit(do_not_specialize=['T'])
|
| 16 |
+
def parallel_rebased_fwd_kernel(
|
| 17 |
+
q,
|
| 18 |
+
k,
|
| 19 |
+
v,
|
| 20 |
+
o,
|
| 21 |
+
z,
|
| 22 |
+
scale,
|
| 23 |
+
T,
|
| 24 |
+
B: tl.constexpr,
|
| 25 |
+
H: tl.constexpr,
|
| 26 |
+
K: tl.constexpr,
|
| 27 |
+
V: tl.constexpr,
|
| 28 |
+
BTL: tl.constexpr,
|
| 29 |
+
BTS: tl.constexpr,
|
| 30 |
+
BK: tl.constexpr,
|
| 31 |
+
BV: tl.constexpr,
|
| 32 |
+
):
|
| 33 |
+
# i_c: chunk index. used for sequence parallelism
|
| 34 |
+
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 35 |
+
NV = tl.cdiv(V, BV)
|
| 36 |
+
i_k = i_kv // (NV)
|
| 37 |
+
i_v = i_kv % (NV)
|
| 38 |
+
|
| 39 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
| 40 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k*BK, 0), (BK, BTS), (0, 1))
|
| 41 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v*BV), (BTS, BV), (1, 0))
|
| 42 |
+
|
| 43 |
+
# [BQ, BD] block Q, in the shared memory throughout the whole kernel
|
| 44 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 45 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
| 46 |
+
b_o = tl.zeros([BTL, BV], dtype=tl.float32)
|
| 47 |
+
b_z = tl.zeros([BTL], dtype=tl.float32)
|
| 48 |
+
|
| 49 |
+
# Q block and K block have no overlap
|
| 50 |
+
# no need for mask, thereby saving flops
|
| 51 |
+
for _ in range(0, i_c*BTL, BTS):
|
| 52 |
+
# [BK, BTS]
|
| 53 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 54 |
+
|
| 55 |
+
# [BTS, BV]
|
| 56 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 57 |
+
# [BTL, BTS]
|
| 58 |
+
b_s = tl.dot(b_q, (b_k), allow_tf32=False)
|
| 59 |
+
b_s = b_s * b_s
|
| 60 |
+
b_z += tl.sum(b_s, axis=1)
|
| 61 |
+
|
| 62 |
+
# [BQ, BD]
|
| 63 |
+
b_o = b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)
|
| 64 |
+
p_k = tl.advance(p_k, (0, BTS))
|
| 65 |
+
p_v = tl.advance(p_v, (BTS, 0))
|
| 66 |
+
|
| 67 |
+
# # rescale interchunk output
|
| 68 |
+
tl.debug_barrier()
|
| 69 |
+
o_q = tl.arange(0, BTL)
|
| 70 |
+
# # sync threads, easy for compiler to optimize
|
| 71 |
+
# tl.debug_barrier()
|
| 72 |
+
|
| 73 |
+
o_k = tl.arange(0, BTS)
|
| 74 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k*BK, i_c*BTL), (BK, BTS), (0, 1))
|
| 75 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTS, BV), (1, 0))
|
| 76 |
+
# Q block and K block have overlap. masks required
|
| 77 |
+
for _ in range(i_c*BTL, (i_c + 1) * BTL, BTS):
|
| 78 |
+
# [BK, BTS]
|
| 79 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 80 |
+
# [BTS, BV]
|
| 81 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 82 |
+
# [BTL, BTS]
|
| 83 |
+
m_s = o_q[:, None] >= o_k[None, :]
|
| 84 |
+
b_s = tl.dot(b_q, b_k, allow_tf32=False)
|
| 85 |
+
b_s = b_s * b_s
|
| 86 |
+
b_s = tl.where(m_s, b_s, 0)
|
| 87 |
+
b_z += tl.sum(b_s, axis=1)
|
| 88 |
+
# [BTL, BV]
|
| 89 |
+
b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
|
| 90 |
+
p_k = tl.advance(p_k, (0, BTS))
|
| 91 |
+
p_v = tl.advance(p_v, (BTS, 0))
|
| 92 |
+
o_k += BTS
|
| 93 |
+
|
| 94 |
+
p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
| 95 |
+
p_z = z + (i_bh + B * H * i_k) * T + i_c*BTL + tl.arange(0, BTL)
|
| 96 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
| 97 |
+
tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=((i_c*BTL + tl.arange(0, BTL)) < T))
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
@triton.jit(do_not_specialize=['T'])
|
| 101 |
+
def _parallel_rebased_bwd_dq(
|
| 102 |
+
i_bh,
|
| 103 |
+
i_c,
|
| 104 |
+
i_k,
|
| 105 |
+
i_v,
|
| 106 |
+
i_h,
|
| 107 |
+
q,
|
| 108 |
+
k,
|
| 109 |
+
v,
|
| 110 |
+
do,
|
| 111 |
+
dz,
|
| 112 |
+
dq,
|
| 113 |
+
scale,
|
| 114 |
+
T,
|
| 115 |
+
B: tl.constexpr,
|
| 116 |
+
H: tl.constexpr,
|
| 117 |
+
K: tl.constexpr,
|
| 118 |
+
V: tl.constexpr,
|
| 119 |
+
BTL: tl.constexpr,
|
| 120 |
+
BTS: tl.constexpr,
|
| 121 |
+
BK: tl.constexpr,
|
| 122 |
+
BV: tl.constexpr
|
| 123 |
+
):
|
| 124 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
| 125 |
+
p_q = tl.make_block_ptr(q + (i_bh) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
| 126 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 127 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
| 128 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
| 129 |
+
b_dq = tl.zeros([BTL, BK], dtype=tl.float32)
|
| 130 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (0, i_k*BK), (BTS, BK), (1, 0))
|
| 131 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v*BV, 0), (BV, BTS), (0, 1))
|
| 132 |
+
p_dz = dz + i_bh * T + i_c*BTL + tl.arange(0, BTL)
|
| 133 |
+
b_dz = tl.load(p_dz, mask=(i_c*BTL + tl.arange(0, BTL)) < T)
|
| 134 |
+
|
| 135 |
+
for _ in range(0, i_c*BTL, BTS):
|
| 136 |
+
# [BTS, BK]
|
| 137 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 138 |
+
# [BV, BTS]
|
| 139 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 140 |
+
# [BTL, BTS]
|
| 141 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
| 142 |
+
if i_v == 0:
|
| 143 |
+
b_ds += b_dz[:, None]
|
| 144 |
+
else:
|
| 145 |
+
b_ds = b_ds
|
| 146 |
+
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False)
|
| 147 |
+
# [BQ, BD]
|
| 148 |
+
b_dq += tl.dot((2 * b_ds * b_s).to(b_v.dtype), b_k, allow_tf32=False)
|
| 149 |
+
p_k = tl.advance(p_k, (BTS, 0))
|
| 150 |
+
p_v = tl.advance(p_v, (0, BTS))
|
| 151 |
+
|
| 152 |
+
b_dq *= scale
|
| 153 |
+
o_q = tl.arange(0, BTL)
|
| 154 |
+
o_k = tl.arange(0, BTS)
|
| 155 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTS, BK), (1, 0))
|
| 156 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v*BV, i_c*BTL), (BV, BTS), (0, 1))
|
| 157 |
+
# Q block and K block have overlap. masks required
|
| 158 |
+
for _ in range(i_c*BTL, (i_c + 1) * BTL, BTS):
|
| 159 |
+
# [BTS, BK]
|
| 160 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
| 161 |
+
# [BV, BTS]
|
| 162 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
| 163 |
+
# [BTL, BTS]
|
| 164 |
+
m_s = o_q[:, None] >= o_k[None, :]
|
| 165 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
| 166 |
+
if i_v == 0:
|
| 167 |
+
b_ds += b_dz[:, None]
|
| 168 |
+
else:
|
| 169 |
+
b_ds = b_ds
|
| 170 |
+
b_ds = tl.where(m_s, b_ds, 0) * scale
|
| 171 |
+
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False)
|
| 172 |
+
b_s = tl.where(m_s, b_s, 0)
|
| 173 |
+
# [BTL, BK]
|
| 174 |
+
b_dq += tl.dot((2 * b_ds * b_s).to(b_k.dtype),
|
| 175 |
+
b_k, allow_tf32=False)
|
| 176 |
+
p_k = tl.advance(p_k, (BTS, 0))
|
| 177 |
+
p_v = tl.advance(p_v, (0, BTS))
|
| 178 |
+
o_k += BTS
|
| 179 |
+
p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
| 180 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
| 181 |
+
return
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
@triton.jit(do_not_specialize=['T'])
|
| 185 |
+
def _parallel_rebased_bwd_dkv(
|
| 186 |
+
i_bh,
|
| 187 |
+
i_c,
|
| 188 |
+
i_k,
|
| 189 |
+
i_v,
|
| 190 |
+
i_h,
|
| 191 |
+
q,
|
| 192 |
+
k,
|
| 193 |
+
v,
|
| 194 |
+
do,
|
| 195 |
+
dz,
|
| 196 |
+
dk,
|
| 197 |
+
dv,
|
| 198 |
+
scale,
|
| 199 |
+
T,
|
| 200 |
+
B: tl.constexpr,
|
| 201 |
+
H: tl.constexpr,
|
| 202 |
+
K: tl.constexpr,
|
| 203 |
+
V: tl.constexpr,
|
| 204 |
+
BTL: tl.constexpr,
|
| 205 |
+
BTS: tl.constexpr,
|
| 206 |
+
BK: tl.constexpr,
|
| 207 |
+
BV: tl.constexpr,
|
| 208 |
+
):
|
| 209 |
+
# compute dk dv
|
| 210 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
| 211 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
| 212 |
+
b_k, b_v = tl.load(p_k, boundary_check=(0, 1)), tl.load(p_v, boundary_check=(0, 1))
|
| 213 |
+
b_dk, b_dv = tl.zeros([BTL, BK], dtype=tl.float32), tl.zeros(
|
| 214 |
+
[BTL, BV], dtype=tl.float32)
|
| 215 |
+
|
| 216 |
+
for i in range((tl.cdiv(T, BTS) * BTS)-BTS, (i_c + 1) * BTL - BTS, -BTS):
|
| 217 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k*BK, i), (BK, BTS), (0, 1))
|
| 218 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (V, T), (1, V), (i_v*BV, i), (BV, BTS), (0, 1))
|
| 219 |
+
p_dz = dz + i_bh * T + i + tl.arange(0, BTS)
|
| 220 |
+
# [BK, BTS]
|
| 221 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
| 222 |
+
# [BV, BTS]
|
| 223 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
| 224 |
+
b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T)
|
| 225 |
+
# [BTL, BTS]
|
| 226 |
+
b_s = tl.dot(b_k.to(b_q.dtype), b_q, allow_tf32=False) * scale
|
| 227 |
+
b_s2 = b_s * b_s
|
| 228 |
+
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False)
|
| 229 |
+
b_ds = tl.dot(b_v, b_do, allow_tf32=False) * scale
|
| 230 |
+
if i_v == 0:
|
| 231 |
+
b_ds += b_dz[None, :] * scale
|
| 232 |
+
else:
|
| 233 |
+
b_ds = b_ds
|
| 234 |
+
b_dk += tl.dot((2 * b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False)
|
| 235 |
+
|
| 236 |
+
tl.debug_barrier()
|
| 237 |
+
o_q, o_k = tl.arange(0, BTS), tl.arange(0, BTL)
|
| 238 |
+
for i in range(i_c*BTL, (i_c+1)*BTL, BTS):
|
| 239 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k*BK, i), (BK, BTS), (0, 1))
|
| 240 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (V, T), (1, V), (i_v*BV, i), (BV, BTS), (0, 1))
|
| 241 |
+
p_dz = dz + i_bh * T + i + tl.arange(0, BTS)
|
| 242 |
+
b_q = tl.load(p_q, boundary_check=(0, 1)) # [BD, BQ]
|
| 243 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
| 244 |
+
b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T)
|
| 245 |
+
# [BK, BQ]
|
| 246 |
+
m_s = o_k[:, None] <= o_q[None, :]
|
| 247 |
+
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale
|
| 248 |
+
b_s2 = b_s * b_s
|
| 249 |
+
b_s = tl.where(m_s, b_s, 0)
|
| 250 |
+
b_s2 = tl.where(m_s, b_s2, 0)
|
| 251 |
+
|
| 252 |
+
b_ds = tl.dot(b_v, b_do, allow_tf32=False)
|
| 253 |
+
if i_v == 0:
|
| 254 |
+
b_ds += b_dz[None, :]
|
| 255 |
+
else:
|
| 256 |
+
b_ds = b_ds
|
| 257 |
+
b_ds = tl.where(m_s, b_ds, 0) * scale
|
| 258 |
+
# [BK, BD]
|
| 259 |
+
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False)
|
| 260 |
+
b_dk += tl.dot((2 * b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False)
|
| 261 |
+
o_q += BTS
|
| 262 |
+
|
| 263 |
+
p_dk = tl.make_block_ptr(dk + (i_bh + B * H * i_v) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
| 264 |
+
p_dv = tl.make_block_ptr(dv + (i_bh + B * H * i_k) * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
| 265 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
| 266 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
| 267 |
+
return
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
@triton.jit(do_not_specialize=['T'])
|
| 271 |
+
def parallel_rebased_bwd_kernel(
|
| 272 |
+
q,
|
| 273 |
+
k,
|
| 274 |
+
v,
|
| 275 |
+
do,
|
| 276 |
+
dz,
|
| 277 |
+
dq,
|
| 278 |
+
dk,
|
| 279 |
+
dv,
|
| 280 |
+
scale,
|
| 281 |
+
T,
|
| 282 |
+
B: tl.constexpr,
|
| 283 |
+
H: tl.constexpr,
|
| 284 |
+
K: tl.constexpr,
|
| 285 |
+
V: tl.constexpr,
|
| 286 |
+
BTL: tl.constexpr,
|
| 287 |
+
BTS: tl.constexpr,
|
| 288 |
+
BK: tl.constexpr,
|
| 289 |
+
BV: tl.constexpr
|
| 290 |
+
):
|
| 291 |
+
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
| 292 |
+
NV = tl.cdiv(V, BV)
|
| 293 |
+
i_k = i_kv // (NV)
|
| 294 |
+
i_v = i_kv % (NV)
|
| 295 |
+
i_h = i_bh % H
|
| 296 |
+
_parallel_rebased_bwd_dq(
|
| 297 |
+
i_bh,
|
| 298 |
+
i_c,
|
| 299 |
+
i_k,
|
| 300 |
+
i_v,
|
| 301 |
+
i_h,
|
| 302 |
+
q,
|
| 303 |
+
k,
|
| 304 |
+
v,
|
| 305 |
+
do,
|
| 306 |
+
dz,
|
| 307 |
+
dq,
|
| 308 |
+
scale,
|
| 309 |
+
B=B,
|
| 310 |
+
H=H,
|
| 311 |
+
T=T,
|
| 312 |
+
K=K,
|
| 313 |
+
V=V,
|
| 314 |
+
BTL=BTL,
|
| 315 |
+
BTS=BTS,
|
| 316 |
+
BK=BK,
|
| 317 |
+
BV=BV
|
| 318 |
+
)
|
| 319 |
+
tl.debug_barrier()
|
| 320 |
+
_parallel_rebased_bwd_dkv(
|
| 321 |
+
i_bh,
|
| 322 |
+
i_c,
|
| 323 |
+
i_k,
|
| 324 |
+
i_v,
|
| 325 |
+
i_h,
|
| 326 |
+
q,
|
| 327 |
+
k,
|
| 328 |
+
v,
|
| 329 |
+
do,
|
| 330 |
+
dz,
|
| 331 |
+
dk,
|
| 332 |
+
dv,
|
| 333 |
+
scale,
|
| 334 |
+
B=B,
|
| 335 |
+
H=H,
|
| 336 |
+
T=T,
|
| 337 |
+
K=K,
|
| 338 |
+
V=V,
|
| 339 |
+
BTL=BTL,
|
| 340 |
+
BTS=BTS,
|
| 341 |
+
BK=BK,
|
| 342 |
+
BV=BV
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
class ParallelBasedFunction(torch.autograd.Function):
|
| 347 |
+
|
| 348 |
+
@staticmethod
|
| 349 |
+
@input_guard
|
| 350 |
+
@autocast_custom_fwd
|
| 351 |
+
def forward(ctx, q, k, v, scale):
|
| 352 |
+
BTL, BTS = 128, 32
|
| 353 |
+
assert BTL % BTS == 0
|
| 354 |
+
# assert q.shape[-1] % 16 == 0
|
| 355 |
+
BK = min(128, triton.next_power_of_2(k.shape[-1]))
|
| 356 |
+
BV = min(128, triton.next_power_of_2(v.shape[-1]))
|
| 357 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
| 358 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
| 359 |
+
num_stages = 2
|
| 360 |
+
num_warps = 4
|
| 361 |
+
NK = triton.cdiv(K, BK)
|
| 362 |
+
NV = triton.cdiv(V, BV)
|
| 363 |
+
grid = (NK * NV, triton.cdiv(T, BTL), B * H)
|
| 364 |
+
|
| 365 |
+
assert NK == 1, "will encounter some synchronization issue if not."
|
| 366 |
+
|
| 367 |
+
o = torch.empty(NK, B, H, T, V, device=q.device)
|
| 368 |
+
z = torch.empty(NK, B, H, T, device=q.device)
|
| 369 |
+
parallel_rebased_fwd_kernel[grid](
|
| 370 |
+
q,
|
| 371 |
+
k,
|
| 372 |
+
v,
|
| 373 |
+
o,
|
| 374 |
+
z,
|
| 375 |
+
scale,
|
| 376 |
+
T=T,
|
| 377 |
+
B=B,
|
| 378 |
+
H=H,
|
| 379 |
+
K=K,
|
| 380 |
+
V=V,
|
| 381 |
+
BTL=BTL,
|
| 382 |
+
BTS=BTS,
|
| 383 |
+
BK=BK,
|
| 384 |
+
BV=BV,
|
| 385 |
+
num_warps=num_warps,
|
| 386 |
+
num_stages=num_stages
|
| 387 |
+
)
|
| 388 |
+
ctx.save_for_backward(q, k, v)
|
| 389 |
+
ctx.scale = scale
|
| 390 |
+
return o.sum(0).to(q.dtype), z.sum(0).to(q.dtype)
|
| 391 |
+
|
| 392 |
+
@staticmethod
|
| 393 |
+
@input_guard
|
| 394 |
+
@autocast_custom_bwd
|
| 395 |
+
def backward(ctx, do, dz):
|
| 396 |
+
q, k, v = ctx.saved_tensors
|
| 397 |
+
scale = ctx.scale
|
| 398 |
+
BTL, BTS = 64, 32
|
| 399 |
+
assert BTL % BTS == 0
|
| 400 |
+
BK = min(128, triton.next_power_of_2(k.shape[-1]))
|
| 401 |
+
BV = min(128, triton.next_power_of_2(v.shape[-1]))
|
| 402 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
| 403 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
| 404 |
+
num_stages = 2
|
| 405 |
+
num_warps = 4
|
| 406 |
+
NK = triton.cdiv(K, BK)
|
| 407 |
+
NV = triton.cdiv(V, BV)
|
| 408 |
+
grid = (NK * NV, triton.cdiv(T, BTL), B * H)
|
| 409 |
+
|
| 410 |
+
assert NK == 1, "will encounter some synchronization issue if not"
|
| 411 |
+
|
| 412 |
+
dq = torch.empty(NV, B, H, T, K, dtype=q.dtype, device=q.device)
|
| 413 |
+
dk = torch.empty(NV, B, H, T, K, dtype=q.dtype, device=q.device)
|
| 414 |
+
dv = torch.empty(NK, B, H, T, V, dtype=q.dtype, device=q.device)
|
| 415 |
+
|
| 416 |
+
parallel_rebased_bwd_kernel[grid](
|
| 417 |
+
q,
|
| 418 |
+
k,
|
| 419 |
+
v,
|
| 420 |
+
do,
|
| 421 |
+
dz,
|
| 422 |
+
dq,
|
| 423 |
+
dk,
|
| 424 |
+
dv,
|
| 425 |
+
scale,
|
| 426 |
+
T=T,
|
| 427 |
+
B=B,
|
| 428 |
+
H=H,
|
| 429 |
+
K=K,
|
| 430 |
+
V=V,
|
| 431 |
+
BTL=BTL,
|
| 432 |
+
BTS=BTS,
|
| 433 |
+
BK=BK,
|
| 434 |
+
BV=BV,
|
| 435 |
+
num_warps=num_warps,
|
| 436 |
+
num_stages=num_stages
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
return dq.sum(0).to(q.dtype), dk.sum(0).to(k.dtype), dv.sum(0).to(v.dtype), None
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def parallel_rebased(
|
| 443 |
+
q: torch.Tensor,
|
| 444 |
+
k: torch.Tensor,
|
| 445 |
+
v: torch.Tensor,
|
| 446 |
+
eps: float = 1e-5,
|
| 447 |
+
use_scale: bool = True,
|
| 448 |
+
use_normalize: bool = True,
|
| 449 |
+
return_both: bool = False,
|
| 450 |
+
head_first: bool = True
|
| 451 |
+
):
|
| 452 |
+
assert q.shape[-1] <= 128, "only support feature dim up to 128"
|
| 453 |
+
if use_scale:
|
| 454 |
+
scale = q.shape[-1] ** -0.5
|
| 455 |
+
else:
|
| 456 |
+
scale = 1
|
| 457 |
+
if not head_first:
|
| 458 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
| 459 |
+
o, z = ParallelBasedFunction.apply(q, k, v, scale)
|
| 460 |
+
if return_both:
|
| 461 |
+
return o, z
|
| 462 |
+
if use_normalize:
|
| 463 |
+
o = o / (z[..., None] + eps)
|
| 464 |
+
if not head_first:
|
| 465 |
+
o = o.transpose(1, 2)
|
| 466 |
+
return o.to(q.dtype)
|
fla/ops/retention/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (414 Bytes). View file
|
|
|