# Copyright (c) 2024, Tri Dao. # Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html # For the backward pass, we keep weight_grad and bias_grad in registers and accumulate. # This backward pass is faster for dimensions up to 8k, but after that it's much slower due to register spilling. # The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine. import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F import triton import triton.language as tl from einops import rearrange from fla.utils import get_multiprocessor_count, input_guard def rms_norm_ref(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True, upcast=True): dtype = x.dtype weight = weight.float() bias = bias.float() if bias is not None else None if upcast: x = x.float() z = z.float() if z is not None else z if z is not None and not norm_before_gate: x = x * F.silu(z) if group_size is None: rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps) out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight) else: x_group = rearrange(x, "... (g d) -> ... g d", d=group_size) rstd = 1 / torch.sqrt((x_group.square()).mean(dim=-1, keepdim=True) + eps) out = rearrange(x_group * rstd, "... g d -> ... (g d)") * weight if bias is not None: out = out + bias if z is not None and norm_before_gate: out *= F.silu(z) return out.to(dtype) @triton.heuristics({ "HAS_BIAS": lambda args: args["B"] is not None, "HAS_Z": lambda args: args["Z"] is not None, }) @triton.jit def layer_norm_fwd_kernel( X, # pointer to the input Y, # pointer to the output W, # pointer to the weights B, # pointer to the biases Z, # pointer to the other branch Mean, # pointer to the mean Rstd, # pointer to the 1/std stride_x_row, # how much to increase the pointer when moving by 1 row stride_y_row, stride_z_row, M, # number of rows in X N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_N: tl.constexpr, HAS_BIAS: tl.constexpr, HAS_Z: tl.constexpr, NORM_BEFORE_GATE: tl.constexpr, IS_RMS_NORM: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) group = tl.program_id(1) X += row * stride_x_row + group * N Y += row * stride_y_row + group * N if HAS_Z: Z += row * stride_z_row + group * N if not IS_RMS_NORM: Mean += group * M Rstd += group * M W += group * N if HAS_BIAS: B += group * N # Compute mean and variance cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) if HAS_Z and not NORM_BEFORE_GATE: z = tl.load(Z + cols, mask=cols < N).to(tl.float32) x *= z * tl.sigmoid(z) if not IS_RMS_NORM: mean = tl.sum(x, axis=0) / N tl.store(Mean + row, mean) xbar = tl.where(cols < N, x - mean, 0.) var = tl.sum(xbar * xbar, axis=0) / N else: xbar = tl.where(cols < N, x, 0.) var = tl.sum(xbar * xbar, axis=0) / N rstd = 1 / tl.sqrt(var + eps) tl.store(Rstd + row, rstd) # Normalize and apply linear transformation mask = cols < N w = tl.load(W + cols, mask=mask).to(tl.float32) if HAS_BIAS: b = tl.load(B + cols, mask=mask).to(tl.float32) x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd y = x_hat * w + b if HAS_BIAS else x_hat * w if HAS_Z and NORM_BEFORE_GATE: z = tl.load(Z + cols, mask=mask).to(tl.float32) y *= z * tl.sigmoid(z) # Write output tl.store(Y + cols, y, mask=mask) def layer_norm_fwd( x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float, z: torch.Tensor = None, out: torch.Tensor = None, group_size: int = None, norm_before_gate: bool = True, is_rms_norm: bool = False, ): M, N = x.shape if group_size is None: group_size = N assert N % group_size == 0 ngroups = N // group_size assert x.stride(-1) == 1 if z is not None: assert z.stride(-1) == 1 assert z.shape == (M, N) assert weight.shape == (N,) assert weight.stride(-1) == 1 if bias is not None: assert bias.stride(-1) == 1 assert bias.shape == (N,) # allocate output if out is not None: assert out.shape == x.shape else: out = torch.empty_like(x) assert out.stride(-1) == 1 mean = torch.empty((ngroups * M, ), dtype=torch.float32, device=x.device) if not is_rms_norm else None rstd = torch.empty((ngroups * M, ), dtype=torch.float32, device=x.device) # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(group_size)) if group_size > BLOCK_N: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_N // 256, 1), 8) grid = (M, ngroups) layer_norm_fwd_kernel[grid]( x, out, weight, bias, z, mean, rstd, x.stride(0), out.stride(0), z.stride(0) if z is not None else 0, M, group_size, eps, BLOCK_N=BLOCK_N, NORM_BEFORE_GATE=norm_before_gate, IS_RMS_NORM=is_rms_norm, num_warps=num_warps ) return out, mean, rstd @triton.heuristics({ "HAS_BIAS": lambda args: args["B"] is not None, "HAS_Z": lambda args: args["Z"] is not None, "RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None, }) @triton.jit def layer_norm_bwd_kernel( X, # pointer to the input W, # pointer to the weights B, # pointer to the biases Z, # pointer to the other branch Y, # pointer to the output to be recomputed DY, # pointer to the output gradient DX, # pointer to the input gradient DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient DZ, # pointer to the other branch Mean, # pointer to the mean Rstd, # pointer to the 1/std stride_x_row, # how much to increase the pointer when moving by 1 row stride_z_row, stride_y_row, stride_dy_row, stride_dx_row, stride_dz_row, stride_dw_row, stride_db_row, M, # number of rows in X N, # number of columns in X eps, # epsilon to avoid division by zero rows_per_program, NORM_BEFORE_GATE: tl.constexpr, IS_RMS_NORM: tl.constexpr, HAS_BIAS: tl.constexpr, HAS_Z: tl.constexpr, RECOMPUTE_OUTPUT: tl.constexpr, BLOCK_N: tl.constexpr, ): # Map the program id to the elements of X, DX, and DY it should compute. row_block_id = tl.program_id(0) group = tl.program_id(1) row_start = row_block_id * rows_per_program cols = tl.arange(0, BLOCK_N) mask = cols < N X += row_start * stride_x_row + group * N if HAS_Z: Z += row_start * stride_z_row + group * N DZ += row_start * stride_dz_row + group * N DY += row_start * stride_dy_row + group * N DX += row_start * stride_dx_row + group * N if RECOMPUTE_OUTPUT: Y += row_start * stride_y_row + group * N if not IS_RMS_NORM: Mean += group * M Rstd += group * M W += group * N w = tl.load(W + cols, mask=mask).to(tl.float32) if (RECOMPUTE_OUTPUT or HAS_Z) and HAS_BIAS: B += group * N b = tl.load(B + cols, mask=mask, other=0.).to(tl.float32) dw = tl.zeros((BLOCK_N,), dtype=tl.float32) if HAS_BIAS: db = tl.zeros((BLOCK_N,), dtype=tl.float32) row_end = min((row_block_id + 1) * rows_per_program, M) for row in range(row_start, row_end): # Load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) if not IS_RMS_NORM: mean = tl.load(Mean + row) if HAS_Z and not NORM_BEFORE_GATE: z = tl.load(Z + cols, mask=mask, other=0.).to(tl.float32) x_og = x x = x_og * z * tl.sigmoid(z) rstd = tl.load(Rstd + row) # Compute dx xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd xhat = tl.where(mask, xhat, 0.) if HAS_Z and NORM_BEFORE_GATE: z = tl.load(Z + cols, mask=mask, other=0.).to(tl.float32) z_sigmoid = tl.sigmoid(z) y = xhat * w + b if HAS_BIAS else xhat * w if RECOMPUTE_OUTPUT: tl.store(Y + cols, y * z * z_sigmoid, mask=mask) dz = dy * y * z_sigmoid * (1 + z * (1 - z_sigmoid)) tl.store(DZ + cols, dz, mask=mask) dy *= z * z_sigmoid else: if RECOMPUTE_OUTPUT: y = xhat * w + b if HAS_BIAS else xhat * w tl.store(Y + cols, y, mask=mask) wdy = w * dy c1 = tl.sum(xhat * wdy, axis=0) / N if not IS_RMS_NORM: c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd else: dx = (wdy - xhat * c1) * rstd dw += dy * xhat if HAS_BIAS: db += dy if HAS_Z and not NORM_BEFORE_GATE: z_sigmoid = tl.sigmoid(z) dz = dx * x_og * z_sigmoid * (1 + z * (1 - z_sigmoid)) tl.store(DZ + cols, dz, mask=mask) dx *= z * z_sigmoid # Write dx tl.store(DX + cols, dx, mask=mask) X += stride_x_row if HAS_Z: Z += stride_z_row DZ += stride_dz_row if RECOMPUTE_OUTPUT: Y += stride_y_row DY += stride_dy_row DX += stride_dx_row tl.store(DW + row_block_id * stride_dw_row + group * N + cols, dw, mask=mask) if HAS_BIAS: tl.store(DB + row_block_id * stride_db_row + group * N + cols, db, mask=mask) def layer_norm_bwd( dy: torch.Tensor, x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float, mean: torch.Tensor, rstd: torch.Tensor, z: torch.Tensor = None, group_size: int = None, norm_before_gate: bool = True, is_rms_norm: bool = False, recompute_output: bool = False, dz: torch.Tensor = None, out: torch.Tensor = None, ): M, N = x.shape if group_size is None: group_size = N assert N % group_size == 0 ngroups = N // group_size assert x.stride(-1) == 1 assert dy.stride(-1) == 1 assert dy.shape == (M, N) if z is not None: assert z.stride(-1) == 1 assert z.shape == (M, N) assert weight.shape == (N,) assert weight.stride(-1) == 1 if bias is not None: assert bias.stride(-1) == 1 assert bias.shape == (N,) # allocate output dx = torch.empty_like(x) if dz is not None: assert z is not None assert dz.shape == z.shape assert dz.stride(-1) == 1 else: dz = torch.empty_like(z) if z is not None else None if recompute_output: if out is None: out = torch.empty_like(x) assert out.shape == x.shape # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(group_size)) if group_size > BLOCK_N: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_N // 256, 1), 8) sm_count = get_multiprocessor_count(x.device.index) # If group size is small (e.g., 64), we're only using 1 warp. So having just 108 programs # would limit the occupancy. nrow_groups = math.ceil(sm_count * math.ceil(4 / num_warps) / ngroups) _dw = torch.empty((nrow_groups, N), dtype=torch.float32, device=weight.device) _db = torch.empty((nrow_groups, N), dtype=torch.float32, device=bias.device) if bias is not None else None rows_per_program = math.ceil(M / nrow_groups) grid = (nrow_groups, ngroups) layer_norm_bwd_kernel[grid]( x, weight, bias, z, out if recompute_output else None, dy, dx, _dw, _db, dz, mean, rstd, x.stride(0), z.stride(0) if z is not None else 0, 0 if not recompute_output else out.stride(0), dy.stride(0), dx.stride(0), dz.stride(0) if dz is not None else 0, _dw.stride(0), _db.stride(0) if _db is not None else 0, M, group_size, eps, rows_per_program, BLOCK_N=BLOCK_N, NORM_BEFORE_GATE=norm_before_gate, IS_RMS_NORM=is_rms_norm, num_warps=num_warps ) dw = _dw.sum(0).to(weight.dtype) db = _db.sum(0).to(bias.dtype) if bias is not None else None return (dx, dw, db, dz) if not recompute_output else (dx, dw, db, dz, out) class LayerNormFn(torch.autograd.Function): @input_guard @staticmethod def forward(ctx, x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True, is_rms_norm=False): """If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z)) """ x_shape_og = x.shape # reshape input data into 2D tensor x = x.reshape(-1, x.shape[-1]) if x.stride(-1) != 1: x = x.contiguous() if z is not None: assert z.shape == x_shape_og z = z.reshape(-1, z.shape[-1]) if z.stride(-1) != 1: z = z.contiguous() weight = weight.contiguous() if bias is not None: bias = bias.contiguous() y, mean, rstd = layer_norm_fwd( x, weight, bias, eps, z=z, group_size=group_size, norm_before_gate=norm_before_gate, is_rms_norm=is_rms_norm, ) ctx.save_for_backward(x, weight, bias, mean, rstd, z) ctx.x_shape_og = x_shape_og ctx.eps = eps ctx.group_size = group_size ctx.norm_before_gate = norm_before_gate ctx.is_rms_norm = is_rms_norm return y.reshape(x_shape_og) @input_guard @staticmethod def backward(ctx, dy): x, weight, bias, mean, rstd, z = ctx.saved_tensors dy = dy.reshape(-1, dy.shape[-1]) if dy.stride(-1) != 1: dy = dy.contiguous() assert dy.shape == x.shape dx, dw, db, dz = layer_norm_bwd( dy, x, weight, bias, ctx.eps, mean, rstd, z, ctx.group_size, ctx.norm_before_gate, ctx.is_rms_norm ) dx = dx.reshape(ctx.x_shape_og) dz = dz.reshape(ctx.x_shape_og) if dz is not None else None return dx, dw, db, dz, None, None, None, None def layernorm_fn(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True, is_rms_norm=False): return LayerNormFn.apply(x, weight, bias, z, eps, group_size, norm_before_gate, is_rms_norm) def rmsnorm_fn(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True): return LayerNormFn.apply(x, weight, bias, z, eps, group_size, norm_before_gate, True) class LayerNormGated(nn.Module): def __init__( self, hidden_size, eps: float = 1e-5, group_size: Optional[int] = None, norm_before_gate: bool = True, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): """If group_size is not None, we do GroupNorm with each group having group_size elements. group_size=None is equivalent to group_size=hidden_size (i.e. there's only 1 group). """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.eps = eps self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.bias = nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.group_size = group_size self.norm_before_gate = norm_before_gate self.reset_parameters() def reset_parameters(self): torch.nn.init.ones_(self.weight) torch.nn.init.zeros_(self.bias) def forward(self, x, z=None): """If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z)) """ return layernorm_fn(x, self.weight, self.bias, z=z, group_size=self.group_size, eps=self.eps, norm_before_gate=self.norm_before_gate) class RMSNormGated(nn.Module): def __init__( self, hidden_size, eps: float = 1e-5, group_size: Optional[int] = None, norm_before_gate: bool = False, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): """If group_size is not None, we do GroupNorm with each group having group_size elements. group_size=None is equivalent to group_size=hidden_size (i.e. there's only 1 group). """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.eps = eps self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.register_parameter("bias", None) self.group_size = group_size self.norm_before_gate = norm_before_gate self.reset_parameters() def reset_parameters(self): torch.nn.init.ones_(self.weight) def forward(self, x, z=None): """If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z)) """ return rmsnorm_fn(x, self.weight, self.bias, z=z, eps=self.eps, group_size=self.group_size, norm_before_gate=self.norm_before_gate)