# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch import triton import triton.language as tl from fla.ops.common.utils import prepare_chunk_offsets from fla.ops.utils.op import exp from fla.utils import check_shared_mem, is_nvidia_hopper, use_cuda_graph NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8, 16] @triton.heuristics({ 'USE_G': lambda args: args['g'] is not None, 'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'STORE_FINAL_STATE': lambda args: args['ht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None, }) @triton.autotune( configs=[ triton.Config({}, num_warps=num_warps, num_stages=num_stages) for num_warps in NUM_WARPS for num_stages in [2, 3, 4] ], key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G'], use_cuda_graph=use_cuda_graph, ) @triton.jit(do_not_specialize=['T']) def chunk_gated_delta_rule_fwd_kernel_h( k, v, d, v_new, g, h, h0, ht, offsets, chunk_offsets, T, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr, USE_G: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr, ): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT # [BK, BV] b_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32) for i_t in range(NT): if HEAD_FIRST: p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1)) b_hc = tl.zeros([BK, BV], dtype=tl.float32) if USE_G: last_idx = min((i_t + 1) * BT, T) - 1 if HEAD_FIRST: b_g_last = tl.load(g + i_nh * T + last_idx) else: b_g_last = tl.load(g + bos * H + last_idx * H + i_h) else: b_g_last = None last_idx = None # since we need to make all DK in the SRAM. we face serve SRAM memory burden. By subchunking we allievate such burden for i_c in range(tl.cdiv(min(BT, T - i_t * BT), BC)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_d = tl.make_block_ptr(d + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_v_new = tl.make_block_ptr(v_new+i_nh*T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_g = tl.make_block_ptr(g + i_nh * T, (T,), (1,), (i_t * BT + i_c * BC,), (BC,), (0,)) if USE_G else None else: p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_d = tl.make_block_ptr(d+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_v = tl.make_block_ptr(v+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_v_new = tl.make_block_ptr(v_new+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT+i_c*BC, i_v * BV), (BC, BV), (1, 0)) p_g = tl.make_block_ptr(g+bos*H+i_h, (T,), (H,), (i_t*BT+i_c*BC, ), (BC,), (0,)) if USE_G else None b_g = tl.load(p_g, boundary_check=(0, )) if USE_G else None # [BK, BC] b_k = tl.load(p_k, boundary_check=(0, 1)) b_k = (b_k * exp(b_g_last - b_g)[None, :]).to(b_k.dtype) if USE_G else b_k # [BC, BK] b_d = tl.load(p_d, boundary_check=(0, 1)) b_d = (b_d * exp(b_g)[:, None]).to(b_d.dtype) if USE_G else b_d # [BC, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) b_v2 = b_v - tl.dot(b_d, b_h.to(b_d.dtype)) # [BK, BV] tl.store(p_v_new, b_v2.to(p_v_new.dtype.element_ty), boundary_check=(0, 1)) b_hc += tl.dot(b_k, b_v2.to(b_k.dtype), allow_tf32=False) b_h *= exp(b_g_last) if USE_G else 1 b_h += b_hc if STORE_FINAL_STATE: p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1)) @triton.heuristics({ 'USE_G': lambda args: args['g'] is not None, 'USE_INITIAL_STATE': lambda args: args['dh0'] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None, }) @triton.autotune( configs=[ triton.Config({}, num_warps=num_warps, num_stages=num_stages) for num_warps in NUM_WARPS for num_stages in [2, 3, 4] ], key=['BT', 'BK', 'BV', 'USE_G'], use_cuda_graph=use_cuda_graph, ) @triton.jit(do_not_specialize=['T']) def chunk_gated_delta_rule_bwd_kernel_dhu( q, k, d, g, dht, dh0, do, dh, dv, dv2, offsets, chunk_offsets, scale, T, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_G: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT # [BK, BV] b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dht, boundary_check=(0, 1)) for i_t in range(NT - 1, -1, -1): if HEAD_FIRST: p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) b_dh_tmp = tl.zeros([BK, BV], dtype=tl.float32) if USE_G: last_idx = min((i_t + 1) * BT, T) - 1 if HEAD_FIRST: bg_last = tl.load(g + i_nh * T + last_idx) else: bg_last = tl.load(g + (bos + last_idx) * H + i_h) else: bg_last = None last_idx = None for i_c in range(tl.cdiv(BT, BC) - 1, -1, -1): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_k = tl.make_block_ptr(k + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_d = tl.make_block_ptr(d + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_dv = tl.make_block_ptr(dv + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_g = tl.make_block_ptr(g + i_nh * T, (T,), (1,), (i_t * BT + i_c * BC,), (BC,), (0,)) if USE_G else None p_dv2 = tl.make_block_ptr(dv2 + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) else: p_q = tl.make_block_ptr(q+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_d = tl.make_block_ptr(d+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_dv = tl.make_block_ptr(dv+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_g = tl.make_block_ptr(g+bos*H+i_h, (T,), (H,), (i_t*BT + i_c * BC,), (BC,), (0,)) if USE_G else None p_dv2 = tl.make_block_ptr(dv2+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) b_g = tl.load(p_g, boundary_check=(0,)) if USE_G else None # [BK, BT] b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale * exp(b_g)[None, :]).to(b_q.dtype) if USE_G else (b_q * scale).to(b_q.dtype) # [BT, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) b_d = tl.load(p_d, boundary_check=(0, 1)) b_k = (b_k * exp(bg_last - b_g)[:, None]).to(b_k.dtype) if USE_G else b_k b_d = (b_d * exp(b_g)[None, :]).to(b_d.dtype) if USE_G else b_d # [BT, V] b_do = tl.load(p_do, boundary_check=(0, 1)) b_dv = tl.load(p_dv, boundary_check=(0, 1)) b_dv2 = b_dv + tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) tl.store(p_dv2, b_dv2.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) # [BK, BV] b_dh_tmp += tl.dot(b_q, b_do.to(b_q.dtype), allow_tf32=False) b_dh_tmp -= tl.dot(b_d, b_dv2.to(b_q.dtype), allow_tf32=False) b_dh *= exp(bg_last) if USE_G else 1 b_dh += b_dh_tmp if USE_INITIAL_STATE: p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1)) def chunk_gated_delta_rule_fwd_h( k: torch.Tensor, w: torch.Tensor, u: torch.Tensor, g: Optional[torch.Tensor] = None, initial_state: Optional[torch.Tensor] = None, output_final_state: bool = False, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, head_first: bool = True, chunk_size: int = 64 ) -> Tuple[torch.Tensor, torch.Tensor]: if head_first: B, H, T, K, V = *k.shape, u.shape[-1] else: B, T, H, K, V = *k.shape, u.shape[-1] BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) # N: the actual number of sequences in the batch with either equal or variable lengths if offsets is None: N, NT, chunk_offsets = B, triton.cdiv(T, BT), None else: N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT) BK = triton.next_power_of_2(K) assert BK <= 256, "current kernel does not support head dimension larger than 256." # H100 can have larger block size if check_shared_mem('hopper', k.device.index): BV = 64 BC = 64 if K <= 128 else 32 # A100 elif check_shared_mem('ampere', k.device.index): BV = 32 BC = 64 else: BV = 32 BC = 32 if K <= 128 else 16 BC = min(BT, BC) NK = triton.cdiv(K, BK) NV = triton.cdiv(V, BV) assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization' if head_first: h = k.new_empty(B, H, NT, K, V) else: h = k.new_empty(B, NT, H, K, V) final_state = k.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None v_new = torch.empty_like(u) grid = (NK, NV, N * H) chunk_gated_delta_rule_fwd_kernel_h[grid]( k=k, v=u, d=w, v_new=v_new, g=g, h=h, h0=initial_state, ht=final_state, offsets=offsets, chunk_offsets=chunk_offsets, T=T, H=H, K=K, V=V, BT=BT, BC=BC, BK=BK, BV=BV, NT=NT, HEAD_FIRST=head_first ) return h, v_new, final_state def chunk_gated_delta_rule_bwd_dhu( q: torch.Tensor, k: torch.Tensor, w: torch.Tensor, g: torch.Tensor, h0: torch.Tensor, dht: Optional[torch.Tensor], do: torch.Tensor, dv: torch.Tensor, scale: float, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, head_first: bool = True, chunk_size: int = 64 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if head_first: B, H, T, K, V = *q.shape, do.shape[-1] else: B, T, H, K, V = *q.shape, do.shape[-1] BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) # N: the actual number of sequences in the batch with either equal or variable lengths if offsets is None: N, NT, chunk_offsets = B, triton.cdiv(T, BT), None else: N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT) BK = triton.next_power_of_2(K) assert BK <= 256, "current kernel does not support head dimension being larger than 256." # H100 if check_shared_mem('hopper', q.device.index): BV = 64 BC = 64 if K <= 128 else 32 # A100 elif check_shared_mem('ampere', q.device.index): BV = 32 BC = 64 if K <= 128 else 32 else: BV = 32 if K <= 128 else 16 BC = 16 BC = min(BT, BC) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization' if head_first: dh = q.new_empty(B, H, NT, K, V) else: dh = q.new_empty(B, NT, H, K, V) dh0 = torch.empty_like(h0, dtype=torch.float32) if h0 is not None else None dv2 = torch.empty_like(dv) grid = (NK, NV, N * H) chunk_gated_delta_rule_bwd_kernel_dhu[grid]( q=q, k=k, d=w, g=g, dht=dht, dh0=dh0, do=do, dh=dh, dv=dv, dv2=dv2, offsets=offsets, chunk_offsets=chunk_offsets, scale=scale, T=T, H=H, K=K, V=V, BT=BT, BC=BC, BK=BK, BV=BV, HEAD_FIRST=head_first ) return dh, dh0, dv2