# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional import torch import triton import triton.language as tl from fla.ops.common.utils import prepare_chunk_indices @triton.heuristics({ 'USE_OFFSETS': lambda args: args['offsets'] is not None }) @triton.autotune( configs=[ triton.Config({'BK': BK}, num_warps=num_warps, num_stages=num_stages) for BK in [32, 64, 128] for num_warps in [2, 4, 8] for num_stages in [2, 3, 4] ], key=['H', 'K', 'BT', 'USE_OFFSETS'], ) @triton.jit(do_not_specialize=['T']) def chunk_scaled_dot_kkt_fwd_kernel( k, beta, A, offsets, indices, T, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr, ): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T o_t = tl.arange(0, BT) if HEAD_FIRST: p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) else: p_beta = tl.make_block_ptr(beta + bos*H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) b_beta = tl.load(p_beta, boundary_check=(0,)) b_A = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_kb = b_k * b_beta[:, None] b_A += tl.dot(b_kb.to(b_k.dtype), tl.trans(b_k)) b_A = tl.where(o_t[:, None] > o_t[None, :], b_A, 0) if HEAD_FIRST: p_A = tl.make_block_ptr(A + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_A = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (BT*H, 1), (i_t * BT, 0), (BT, BT), (1, 0)) tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1)) def chunk_scaled_dot_kkt_fwd( k: torch.Tensor, beta: torch.Tensor, cu_seqlens: Optional[torch.LongTensor], head_first: bool = False, chunk_size: int = 64, output_dtype: torch.dtype = torch.float32 ) -> torch.Tensor: r""" Compute beta * K * K^T. Args: k (torch.Tensor): The key tensor of shape `[B, T, H, K]` if not `head_first` else `[B, H, T, K]`. beta (torch.Tensor): The beta tensor of shape `[B, T, H]` if not `head_first` else `[B, H, T]`. cu_seqlens (torch.LongTensor): The cumulative sequence lengths of the input tensor. Default: None head_first (bool): If False, the input/output tensor is in the shape of `[B, T, H, K]`. If True, the input/output tensor is in the shape of `[B, H, T, K]`. Default: False chunk_size (int): The chunk size. Default: 64. output_dtype (torch.dtype): The dtype of the output tensor. Default: `torch.float32` Returns: beta * K * K^T of shape `[B, T, H, BT]` if not `head_first` else `[B, H, T, BT]`, where `BT` is the chunk size. """ if head_first: B, H, T, K = k.shape else: B, T, H, K = k.shape BT = chunk_size indices = prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None NT = triton.cdiv(T, BT) if cu_seqlens is None else len(indices) A = torch.empty(B, *((H, T) if head_first else (T, H)), BT, device=k.device, dtype=output_dtype) chunk_scaled_dot_kkt_fwd_kernel[(NT, B * H)]( k=k, beta=beta, A=A, offsets=cu_seqlens, indices=indices, T=T, H=H, K=K, BT=BT, HEAD_FIRST=head_first ) return A