GAO_grpo / docs /sglang_multiturn /search_tool_example.rst
zswzswzsw's picture
Upload folder using huggingface_hub
5c2075d verified
=======================
Search Tool Integration
=======================
Introduction
------------
- We have added a search tool calling function to Multi-Turn RL, enabling the model to initiate retrieval requests during Actor rollout and directly use retrieval results for training. **We support using a local dense retriever as the retrieval tool, as well as integrating with your own local retrieval engine.**
Quick Reproduction
------------------
Create a New Docker Container
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: bash
docker run \
-it \
--shm-size 32g \
--gpus all \
-v {Huggingface-Cache-Path}:/root/.cache \
--ipc=host \
--network=host \
--privileged \
--name sglang_{your-name} \
lmsysorg/sglang:dev \
/bin/zsh
If you need to restart after exiting the container:
.. code:: bash
docker start -i sglang_{your-name}
Update Python and Configure the Virtual Environment using uv
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: bash
apt update
apt install -y python3.10 python3.10-venv
# Create a virtual environment
python3 -m venv ~/.python/verl-multiturn-rollout
# Activate the virtual environment
source ~/.python/verl-multiturn-rollout/bin/activate
# Install uv
python3 -m pip install uv
Install verl Upstream
~~~~~~~~~~~~~~~~~~~~~
.. code:: bash
cd ~
git clone https://github.com/volcengine/verl.git
cd verl
# Install verl
python3 -m uv pip install .
python3 -m uv pip install -r ./requirements_sglang.txt
# Manually install flash-attn
python3 -m uv pip install wheel
python3 -m uv pip install packaging
python3 -m uv pip install flash-attn --no-build-isolation --no-deps
Set Up a Local Retrieval Engine
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you are using your own local retrieval service, you can skip this
step. We chose the local dense retriever provided in the search-R1
example; detailed instructions are in the `searchR1
docs <https://raw.githubusercontent.com/PeterGriffinJin/Search-R1/refs/heads/main/docs/retriever.md>`__.
In brief:
- The GPU version offers higher accuracy and speed; each GPU uses about
5–7 GB of memory.
- The CPU version can be used for simple testing but has lower
retrieval precision, which will degrade training performance. See the
`retriever
documentation <https://github.com/PeterGriffinJin/Search-R1/blob/main/docs/retriever.md>`__
in search-R1 for details.
- Recommend using Conda to install faiss-gpu=1.8.0; venv may cause errors.
**Note**: To start both the training process and the local retrieval
service, we launch two separate Python environments. The training uses
uv in the verl-multiturn-rollout environment, while the retriever uses
conda to install ``faiss-gpu``.
.. code:: bash
# Download the Miniconda installer script
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
# Install to $HOME/miniconda3 in batch mode
bash ~/miniconda.sh -b -p $HOME/miniconda3
# Activate conda (only in the current shell)
eval "$($HOME/miniconda3/bin/conda shell.bash hook)"
# (Optional) Add conda to your default shell startup
conda init
# Reload shell config
source ~/.bashrc
# Create and activate the retriever environment with Python 3.10
conda create -n retriever python=3.10 -y
conda activate retriever
# Install PyTorch (with GPU support) and related libraries
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# Install other Python packages
pip install transformers datasets pyserini huggingface_hub
# Install the GPU version of faiss
conda install faiss-gpu=1.8.0 -c pytorch -c nvidia -y
# Install the API service framework
pip install uvicorn fastapi
Download the Indexing and Corpus
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The local retrieval files are large—prepare sufficient disk space.
Downloading is about 60–70 GB, and uncompressed takes about 132 GB:
.. code:: bash
conda activate retriever
save_path=/the/path/to/save
python examples/sglang_multiturn/search_r1_like/local_dense_retriever/download.py --save_path $save_path
cat $save_path/part_* > $save_path/e5_Flat.index
gzip -d $save_path/wiki-18.jsonl.gz
Start the Local flat e5 Retrieval Server
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. The first startup will download models and load the index.
2. Apart from the download, startup takes about 1–2 minutes.
3. After startup, each GPU uses about 5–7 GB of memory, leaving the rest
for multi-turn RL training.
.. code:: bash
conda activate retriever
index_file=$save_path/e5_Flat.index
corpus_file=$save_path/wiki-18.jsonl
retriever_name=e5
retriever_path=intfloat/e5-base-v2
python examples/sglang_multiturn/search_r1_like/local_dense_retriever/retrieval_server.py \
--index_path $index_file \
--corpus_path $corpus_file \
--topk 3 \
--retriever_name $retriever_name \
--retriever_model $retriever_path \
--faiss_gpu
Set Up WANDB_API_KEY
~~~~~~~~~~~~~~~~~~~~
.. code:: bash
export WANDB_API_KEY={YOUR_WANDB_API_KEY}
# Define a timestamp function
function now() {
date '+%Y-%m-%d-%H-%M'
}
**Preprocess the Dataset**
~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note:** The following data processing and training commands must be
run in the verl-multiturn-rollout environment.
.. code:: bash
python3 examples/data_preprocess/preprocess_search_r1_dataset.py
Testing on 8 x H20
~~~~~~~~~~~~~~~~~~
.. code:: bash
# Ensure the now() function is defined
# Create a logs directory
mkdir -p logs
# Set GPUs and run with a suitable log path
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
nohup bash examples/sglang_multiturn/search_r1_like/run_qwen2.5-3b_instruct_search_multiturn.sh \
trainer.experiment_name=qwen2.5-3b-it_rm-searchR1-like-sgl-multiturn-$(now) \
> logs/searchR1-like$(now).log 2>&1 &
Custom Search Configuration
---------------------------
To enable multi-turn reasoning, set the following fields in your config:
.. code:: yaml
actor_rollout_ref:
rollout:
name: "sglang_async"
multi_turn:
enable: True
You must specify ``retrieval_service_url`` in ``examples/sglang_multiturn/config/tool_config/search_tool_config.yaml``, and properly configure concurrency. For more details on concurrency, refer to the Sandbox Fusion example:
.. code:: yaml
tools:
- class_name: verl.tools.search_tool.SearchTool
config:
retrieval_service_url: http://127.0.0.1:8000/retrieve
num_workers: 120
rate_limit: 120
timeout: 30
The retriever input/output formats are as follows. If your service
parameters match, only modify ``retrieval_service_url``. You can also
customize in ``search_r1_like_utils.py``.
.. code:: python
Input format:
{
"queries": ["What is Python?", "Tell me about neural networks."],
"topk": 3,
"return_scores": true
}
Output format (when return_scores=True, similarity scores are returned):
{
"result": [
[ # Results for each query
{
"document": doc, "score": score
},
# ... more documents
],
# ... results for other queries
]
}
Notes
-----
1. The total training time is about 27 hours; meanwhile, the validation
dataset is very large (51 k), and each validation takes about 6000 s.
(Therefore, ``val_before_train=False`` by default)