SentenceTransformer
This is a sentence-transformers model trained on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Omartificial-Intelligence-Space/arabic-n_li-triplet
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AbderrahmanSkiredj1/arabic_text_embedding_sts_arabertv02_arabicnlitriplet")
# Run inference
sentences = [
'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.',
'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه',
'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Omartificial-Intelligence-Space/arabic-n_li-triplet
- Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
- Size: 557,850 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 8.02 tokens
- max: 41 tokens
- min: 4 tokens
- mean: 10.03 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 10.72 tokens
- max: 38 tokens
- Samples:
anchor positive negative شخص على حصان يقفز فوق طائرة معطلةشخص في الهواء الطلق، على حصان.شخص في مطعم، يطلب عجة.أطفال يبتسمون و يلوحون للكاميراهناك أطفال حاضرونالاطفال يتجهمونصبي يقفز على لوح التزلج في منتصف الجسر الأحمر.الفتى يقوم بخدعة التزلجالصبي يتزلج على الرصيف - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
Omartificial-Intelligence-Space/arabic-n_li-triplet
- Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
- Size: 6,584 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 14.87 tokens
- max: 70 tokens
- min: 4 tokens
- mean: 7.54 tokens
- max: 26 tokens
- min: 4 tokens
- mean: 8.14 tokens
- max: 23 tokens
- Samples:
anchor positive negative امرأتان يتعانقان بينما يحملان حزمةإمرأتان يحملان حزمةالرجال يتشاجرون خارج مطعمطفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.طفلين يرتديان قميصاً مرقماً يغسلون أيديهمطفلين يرتديان سترة يذهبان إلى المدرسةرجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليسرجل يبيع الدونات لعميلامرأة تشرب قهوتها في مقهى صغير - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 1e-06num_train_epochs: 10warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 1e-06weight_decay: 0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falsefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0183 | 40 | 10.8122 |
| 0.0367 | 80 | 10.8841 |
| 0.0550 | 120 | 10.0068 |
| 0.0734 | 160 | 9.925 |
| 0.0917 | 200 | 9.2169 |
| 0.1101 | 240 | 8.8431 |
| 0.1284 | 280 | 8.6185 |
| 0.1468 | 320 | 8.8141 |
| 0.1651 | 360 | 8.0517 |
| 0.1835 | 400 | 7.9315 |
| 0.2018 | 440 | 7.7502 |
| 0.2202 | 480 | 7.432 |
| 0.2385 | 520 | 7.4885 |
| 0.2569 | 560 | 6.8975 |
| 0.2752 | 600 | 6.9895 |
| 0.2936 | 640 | 6.5074 |
| 0.3119 | 680 | 6.3892 |
| 0.3303 | 720 | 6.6392 |
| 0.3486 | 760 | 6.235 |
| 0.3670 | 800 | 5.95 |
| 0.3853 | 840 | 5.7161 |
| 0.4037 | 880 | 5.6532 |
| 0.4220 | 920 | 5.5386 |
| 0.4404 | 960 | 5.7382 |
| 0.4587 | 1000 | 5.3164 |
| 0.4771 | 1040 | 5.1571 |
| 0.4954 | 1080 | 4.9178 |
| 0.5138 | 1120 | 5.0309 |
| 0.5321 | 1160 | 5.0867 |
| 0.5505 | 1200 | 5.1403 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu121
- Accelerate: 0.29.1
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Spaces using AbderrahmanSkiredj1/arabic_text_embedding_sts_arabertv02_arabicnlitriplet 13
Evaluation results
- cosine_pearson on MTEB STS17 (ar-ar)test set self-reported84.455
- cosine_spearman on MTEB STS17 (ar-ar)test set self-reported84.959
- euclidean_pearson on MTEB STS17 (ar-ar)test set self-reported82.789
- euclidean_spearman on MTEB STS17 (ar-ar)test set self-reported84.302
- main_score on MTEB STS17 (ar-ar)test set self-reported84.959
- manhattan_pearson on MTEB STS17 (ar-ar)test set self-reported82.879
- manhattan_spearman on MTEB STS17 (ar-ar)test set self-reported84.320