Interactor / interactor.py
Abdullah-Nazhat's picture
Update interactor.py
d3cadd1 verified
import torch
from torch import nn
class MappingUnit(nn.Module):
def __init__(self,dim):
super().__init__()
self.norm_token = nn.LayerNorm(dim)
self.proj_1 = nn.Linear(dim,dim,bias = False)
self.proj_2 = nn.Linear(dim,dim,bias = False)
self.proj_3 = nn.Linear(dim,dim,bias = False)
self.gelu = nn.GELU()
def forward(self, x):
x = self.norm_token(x)
u, v = x, x
u = self.proj_1(u)
u = self.gelu(u)
v = self.proj_2(v)
g = u * v
x = self.proj_3(g)
return x
class InteractionUnit(nn.Module):
def __init__(self,dim):
super().__init__()
self.norm_token = nn.LayerNorm(dim)
self.gelu = nn.GELU()
def forward(self, x):
x = self.norm_token(x)
dim0 = x.shape[0]
dim1 = x.shape[1]
dim2 = x.shape[2]
x = x.reshape([dim0,dim1*dim2])
x = self.gelu(x)
x = x.reshape([dim0,dim1,dim2])
return x
class InteractorBlock(nn.Module):
def __init__(self, d_model):
super().__init__()
self.mapping = MappingUnit(d_model)
self.interaction = InteractionUnit(d_model)
def forward(self, x):
residual = x
x = self.interaction(x)
x = x + residual
residual = x
x = self.mapping(x)
out = x + residual
return out
class Interactor(nn.Module):
def __init__(self, d_model, num_layers):
super().__init__()
self.model = nn.Sequential(
*[InteractorBlock(d_model) for _ in range(num_layers)]
)
def forward(self, x):
return self.model(x)