SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| matches-match_time |
- 'Norwich City vs Newcastle United'
- 'will Manchester United play with chelsea'
- 'est-ce que Manchester United jouera avec chelsea'
|
| matches-match_result |
- 'Liverpool and West Ham result'
- 'what is the score of Wolverhampton match'
- 'who won in Liverpool vs Newcastle United match'
|
| greet-who_are_you |
- 'how can you help me'
- "pourquoi j'ai besoin de toi"
- 'je ne te comprends pas'
|
| matches-team_next_match |
- 'Real Madrid fixtures'
- 'quels sont les prochains matchs de Borussia Dortmund'
- 'próximos partidos de Atletico Madrid'
|
| greet-good_bye |
- 'See you later'
- 'A plus tard'
- 'stop'
|
| greet-hi |
- 'Hello buddy'
- 'Salut'
- 'Hey'
|
Evaluation
Metrics
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("Ah7med/setfit-football_bootpress_paraph-multi-v2")
preds = model("why do I need you")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
1 |
5.2 |
10 |
| Label |
Training Sample Count |
| greet-hi |
5 |
| greet-who_are_you |
7 |
| greet-good_bye |
5 |
| matches-team_next_match |
21 |
| matches-match_time |
12 |
| matches-match_result |
15 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
| Epoch |
Step |
Training Loss |
Validation Loss |
| 0.0012 |
1 |
0.1308 |
- |
| 0.0603 |
50 |
0.1596 |
- |
| 0.1206 |
100 |
0.1399 |
- |
| 0.1809 |
150 |
0.089 |
- |
| 0.2413 |
200 |
0.0461 |
- |
| 0.3016 |
250 |
0.026 |
- |
| 0.3619 |
300 |
0.0081 |
- |
| 0.4222 |
350 |
0.0048 |
- |
| 0.4825 |
400 |
0.0039 |
- |
| 0.5428 |
450 |
0.0018 |
- |
| 0.6031 |
500 |
0.002 |
- |
| 0.6634 |
550 |
0.0015 |
- |
| 0.7238 |
600 |
0.0011 |
- |
| 0.7841 |
650 |
0.0009 |
- |
| 0.8444 |
700 |
0.0008 |
- |
| 0.9047 |
750 |
0.0005 |
- |
| 0.9650 |
800 |
0.0007 |
- |
| 1.0 |
829 |
- |
0.0211 |
| 1.0253 |
850 |
0.0006 |
- |
| 1.0856 |
900 |
0.0005 |
- |
| 1.1460 |
950 |
0.0005 |
- |
| 1.2063 |
1000 |
0.0003 |
- |
| 1.2666 |
1050 |
0.0003 |
- |
| 1.3269 |
1100 |
0.0004 |
- |
| 1.3872 |
1150 |
0.0003 |
- |
| 1.4475 |
1200 |
0.0004 |
- |
| 1.5078 |
1250 |
0.0002 |
- |
| 1.5682 |
1300 |
0.0003 |
- |
| 1.6285 |
1350 |
0.0003 |
- |
| 1.6888 |
1400 |
0.0003 |
- |
| 1.7491 |
1450 |
0.0003 |
- |
| 1.8094 |
1500 |
0.0003 |
- |
| 1.8697 |
1550 |
0.0003 |
- |
| 1.9300 |
1600 |
0.0002 |
- |
| 1.9903 |
1650 |
0.0002 |
- |
| 2.0 |
1658 |
- |
0.0190 |
| 2.0507 |
1700 |
0.0003 |
- |
| 2.1110 |
1750 |
0.0002 |
- |
| 2.1713 |
1800 |
0.0002 |
- |
| 2.2316 |
1850 |
0.0002 |
- |
| 2.2919 |
1900 |
0.0002 |
- |
| 2.3522 |
1950 |
0.0002 |
- |
| 2.4125 |
2000 |
0.0002 |
- |
| 2.4729 |
2050 |
0.0002 |
- |
| 2.5332 |
2100 |
0.0002 |
- |
| 2.5935 |
2150 |
0.0002 |
- |
| 2.6538 |
2200 |
0.0001 |
- |
| 2.7141 |
2250 |
0.0002 |
- |
| 2.7744 |
2300 |
0.0001 |
- |
| 2.8347 |
2350 |
0.0002 |
- |
| 2.8951 |
2400 |
0.0001 |
- |
| 2.9554 |
2450 |
0.0002 |
- |
| 3.0 |
2487 |
- |
0.0181 |
| 3.0157 |
2500 |
0.0002 |
- |
| 3.0760 |
2550 |
0.0001 |
- |
| 3.1363 |
2600 |
0.0001 |
- |
| 3.1966 |
2650 |
0.0001 |
- |
| 3.2569 |
2700 |
0.0001 |
- |
| 3.3172 |
2750 |
0.0001 |
- |
| 3.3776 |
2800 |
0.0001 |
- |
| 3.4379 |
2850 |
0.0001 |
- |
| 3.4982 |
2900 |
0.0001 |
- |
| 3.5585 |
2950 |
0.0001 |
- |
| 3.6188 |
3000 |
0.0001 |
- |
| 3.6791 |
3050 |
0.0001 |
- |
| 3.7394 |
3100 |
0.0001 |
- |
| 3.7998 |
3150 |
0.0001 |
- |
| 3.8601 |
3200 |
0.0001 |
- |
| 3.9204 |
3250 |
0.0001 |
- |
| 3.9807 |
3300 |
0.0001 |
- |
| 4.0 |
3316 |
- |
0.0176 |
Framework Versions
- Python: 3.11.12
- SetFit: 1.1.2
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}