results
This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4994
- Accuracy: 0.8113
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.0736 | 1.0 | 322 | 0.9818 | 0.5627 |
| 0.5646 | 2.0 | 644 | 0.5224 | 0.8119 |
| 0.4369 | 3.0 | 966 | 0.4994 | 0.8113 |
| 0.3224 | 4.0 | 1288 | 0.5640 | 0.8190 |
| 0.196 | 5.0 | 1610 | 0.6338 | 0.8240 |
| 0.1123 | 6.0 | 1932 | 0.7486 | 0.8284 |
| 0.0984 | 7.0 | 2254 | 1.0128 | 0.8262 |
| 0.0813 | 8.0 | 2576 | 1.0662 | 0.8273 |
| 0.0496 | 9.0 | 2898 | 1.1083 | 0.8306 |
| 0.0364 | 10.0 | 3220 | 1.0959 | 0.8311 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.6.0+cu124
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 23
Model tree for Aimu0999/Ahmed-my-nli-model-multilingual
Base model
FacebookAI/xlm-roberta-large