Chinese Food Classification with ResNet-50 (ChineseFoodNet)
Fine-tuned ResNet-50 for Chinese food classification using the ChineseFoodNet dataset. (Kaggle: ChineseFoodNet)
Model Details
- Base Model: ResNet-50
- Dataset: ChineseFoodNet (101,565 images)
- Classes: 114 Chinese food categories
- Test Accuracy: 75.4%
Performance
- Test Accuracy: 0.7536
- Macro F1-Score: 0.7409
- Weighted F1-Score: 0.7520
Usage
from transformers import AutoImageProcessor, ResNetForImageClassification
import torch
from PIL import Image
processor = AutoImageProcessor.from_pretrained("Albertbeta123/resnet-50-chinese-food")
model = ResNetForImageClassification.from_pretrained("Albertbeta123/resnet-50-chinese-food")
image = Image.open("chinese_food_image.jpg")
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(-1).item()
predicted_class = model.config.id2label[predicted_class_id]
confidence = torch.nn.functional.softmax(logits, dim=-1).max().item()
print(f"Predicted: {predicted_class} ({confidence:.1%})")
- Downloads last month
- 20
Model tree for Albertbeta123/resnet-50-chinese-food
Base model
microsoft/resnet-50