twscrape-prepared-regression-qwen-3b-full-1epochs
This model is a fine-tuned version of Qwen/Qwen2.5-3B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3087
- Mse: 0.0003
- Target 0 Mse: 0.0008
- Target 0 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f8816507ac0>
- Target 0 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f8815712fe0>
- Target 1 Mse: 0.0003
- Target 1 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f8b78b175e0>
- Target 1 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f8815ff4d90>
- Target 2 Mse: 0.0000
- Target 2 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f881603e680>
- Target 2 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f88158d2c80>
- Target 3 Mse: 0.0000
- Target 3 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f8815d6c8b0>
- Target 3 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f8815db5c60>
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Target 0 Mse | Target 0 Distributions | Target 0 Error Distribution | Target 1 Mse | Target 1 Distributions | Target 1 Error Distribution | Target 2 Mse | Target 2 Distributions | Target 2 Error Distribution | Target 3 Mse | Target 3 Distributions | Target 3 Error Distribution |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.1793 | 0.9997 | 1588 | 1.3087 | 0.0003 | 0.0008 | <wandb.sdk.data_types.image.Image object at 0x7f8b914f69e0> | <wandb.sdk.data_types.image.Image object at 0x7f8b914f6aa0> | 0.0003 | <wandb.sdk.data_types.image.Image object at 0x7f8815643a30> | <wandb.sdk.data_types.image.Image object at 0x7f88151c3430> | 0.0000 | <wandb.sdk.data_types.image.Image object at 0x7f8814e109a0> | <wandb.sdk.data_types.image.Image object at 0x7f8814e9bc70> | 0.0000 | <wandb.sdk.data_types.image.Image object at 0x7f88150ff6a0> | <wandb.sdk.data_types.image.Image object at 0x7f8815712d40> |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.21.0
- Downloads last month
- 2
Model tree for AlekseyKorshuk/twscrape-prepared-regression-qwen-3b-full-1epochs
Base model
Qwen/Qwen2.5-3B