See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/tiny-dummy-qwen2
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 7b7d4c2e25bfcfaa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7b7d4c2e25bfcfaa_train_data.json
type:
field_input: span_labels
field_instruction: source_text
field_output: target_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/06162734-d351-41bb-82e7-47e4efe3d9c9
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 142749
micro_batch_size: 2
mlflow_experiment_name: /tmp/7b7d4c2e25bfcfaa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.022261303176687963
wandb_entity: null
wandb_mode: online
wandb_name: b4837e4a-e96f-46cd-948c-e22b70f0c278
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b4837e4a-e96f-46cd-948c-e22b70f0c278
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
06162734-d351-41bb-82e7-47e4efe3d9c9
This model is a fine-tuned version of fxmarty/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.8945
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 54902
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 11.931 | 0.0000 | 1 | 11.9320 |
| 11.908 | 0.0146 | 400 | 11.9114 |
| 11.914 | 0.0291 | 800 | 11.9078 |
| 11.9067 | 0.0437 | 1200 | 11.9058 |
| 11.9008 | 0.0583 | 1600 | 11.9040 |
| 11.911 | 0.0729 | 2000 | 11.9033 |
| 11.9088 | 0.0874 | 2400 | 11.9021 |
| 11.9003 | 0.1020 | 2800 | 11.9015 |
| 11.9191 | 0.1166 | 3200 | 11.9009 |
| 11.8979 | 0.1311 | 3600 | 11.9004 |
| 11.8947 | 0.1457 | 4000 | 11.8999 |
| 11.9035 | 0.1603 | 4400 | 11.8998 |
| 11.9037 | 0.1749 | 4800 | 11.8993 |
| 11.8862 | 0.1894 | 5200 | 11.8990 |
| 11.8968 | 0.2040 | 5600 | 11.8987 |
| 11.8981 | 0.2186 | 6000 | 11.8983 |
| 11.9071 | 0.2331 | 6400 | 11.8981 |
| 11.8955 | 0.2477 | 6800 | 11.8977 |
| 11.9008 | 0.2623 | 7200 | 11.8975 |
| 11.8946 | 0.2769 | 7600 | 11.8974 |
| 11.8937 | 0.2914 | 8000 | 11.8972 |
| 11.8924 | 0.3060 | 8400 | 11.8969 |
| 11.8988 | 0.3206 | 8800 | 11.8968 |
| 11.9037 | 0.3351 | 9200 | 11.8968 |
| 11.8975 | 0.3497 | 9600 | 11.8966 |
| 11.906 | 0.3643 | 10000 | 11.8966 |
| 11.9076 | 0.3789 | 10400 | 11.8963 |
| 11.9063 | 0.3934 | 10800 | 11.8961 |
| 11.8964 | 0.4080 | 11200 | 11.8961 |
| 11.9075 | 0.4226 | 11600 | 11.8959 |
| 11.9032 | 0.4371 | 12000 | 11.8958 |
| 11.9125 | 0.4517 | 12400 | 11.8955 |
| 11.8889 | 0.4663 | 12800 | 11.8955 |
| 11.9002 | 0.4809 | 13200 | 11.8954 |
| 11.897 | 0.4954 | 13600 | 11.8953 |
| 11.9072 | 0.5100 | 14000 | 11.8952 |
| 11.9026 | 0.5246 | 14400 | 11.8951 |
| 11.899 | 0.5391 | 14800 | 11.8951 |
| 11.9073 | 0.5537 | 15200 | 11.8949 |
| 11.9005 | 0.5683 | 15600 | 11.8948 |
| 11.8986 | 0.5829 | 16000 | 11.8950 |
| 11.8816 | 0.5974 | 16400 | 11.8948 |
| 11.8973 | 0.6120 | 16800 | 11.8948 |
| 11.8944 | 0.6266 | 17200 | 11.8947 |
| 11.8867 | 0.6411 | 17600 | 11.8947 |
| 11.884 | 0.6557 | 18000 | 11.8945 |
| 11.8971 | 0.6703 | 18400 | 11.8945 |
| 11.9007 | 0.6849 | 18800 | 11.8945 |
| 11.8896 | 0.6994 | 19200 | 11.8945 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/06162734-d351-41bb-82e7-47e4efe3d9c9
Base model
fxmarty/tiny-dummy-qwen2